diff options
author | Thomas White <taw@physics.org> | 2012-10-02 15:03:11 +0200 |
---|---|---|
committer | Thomas White <taw@physics.org> | 2012-10-02 15:03:11 +0200 |
commit | 6633efd7a1931925bb6814dad0761f10d0a457b7 (patch) | |
tree | 4ad51c1254344fad9bac57ab4307d6aabea1aa07 /libcrystfel/src/cell-utils.c | |
parent | ea8e5c457b96184bd152eb20b72fb15682b18474 (diff) | |
parent | d51007fe1a9d8a797bdd9b71eea715a09252cc6e (diff) |
Merge branch 'tom/symmetry'
Diffstat (limited to 'libcrystfel/src/cell-utils.c')
-rw-r--r-- | libcrystfel/src/cell-utils.c | 1205 |
1 files changed, 1205 insertions, 0 deletions
diff --git a/libcrystfel/src/cell-utils.c b/libcrystfel/src/cell-utils.c new file mode 100644 index 00000000..3aaae90e --- /dev/null +++ b/libcrystfel/src/cell-utils.c @@ -0,0 +1,1205 @@ +/* + * cell-utils.c + * + * Unit Cell utility functions + * + * Copyright © 2012 Deutsches Elektronen-Synchrotron DESY, + * a research centre of the Helmholtz Association. + * Copyright © 2012 Lorenzo Galli + * + * Authors: + * 2009-2012 Thomas White <taw@physics.org> + * 2012 Lorenzo Galli + * + * This file is part of CrystFEL. + * + * CrystFEL is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * CrystFEL is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with CrystFEL. If not, see <http://www.gnu.org/licenses/>. + * + */ + +#ifdef HAVE_CONFIG_H +#include <config.h> +#endif + +#include <math.h> +#include <stdlib.h> +#include <stdio.h> +#include <string.h> +#include <gsl/gsl_matrix.h> +#include <gsl/gsl_blas.h> +#include <gsl/gsl_linalg.h> +#include <assert.h> + +#include "cell.h" +#include "cell-utils.h" +#include "utils.h" +#include "image.h" + + +/** + * SECTION:cell-utils + * @short_description: Unit cell utilities + * @title: Unit cell utilities + * @section_id: + * @see_also: + * @include: "cell-utils.h" + * @Image: + * + * There are some utility functions associated with the core %UnitCell. + **/ + + +/* Weighting factor of lengths relative to angles */ +#define LWEIGHT (10.0e-9) + + +/** + * cell_rotate: + * @in: A %UnitCell to rotate + * @quat: A %quaternion + * + * Rotate a %UnitCell using a %quaternion. + * + * Returns: a newly allocated rotated copy of @in. + * + */ +UnitCell *cell_rotate(UnitCell *in, struct quaternion quat) +{ + struct rvec a, b, c; + struct rvec an, bn, cn; + UnitCell *out = cell_new_from_cell(in); + + cell_get_cartesian(in, &a.u, &a.v, &a.w, + &b.u, &b.v, &b.w, + &c.u, &c.v, &c.w); + + an = quat_rot(a, quat); + bn = quat_rot(b, quat); + cn = quat_rot(c, quat); + + cell_set_cartesian(out, an.u, an.v, an.w, + bn.u, bn.v, bn.w, + cn.u, cn.v, cn.w); + + return out; +} + + +const char *str_lattice(LatticeType l) +{ + switch ( l ) + { + case L_TRICLINIC : return "triclinic"; + case L_MONOCLINIC : return "monoclinic"; + case L_ORTHORHOMBIC : return "orthorhombic"; + case L_TETRAGONAL : return "tetragonal"; + case L_RHOMBOHEDRAL : return "rhombohedral"; + case L_HEXAGONAL : return "hexagonal"; + case L_CUBIC : return "cubic"; + } + + return "unknown lattice"; +} + + +int right_handed(UnitCell *cell) +{ + double asx, asy, asz; + double bsx, bsy, bsz; + double csx, csy, csz; + struct rvec aCb; + double aCb_dot_c; + int rh_reciprocal; + int rh_direct; + + if ( cell_get_reciprocal(cell, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz) ) { + ERROR("Couldn't get reciprocal cell.\n"); + return 0; + } + + /* "a" cross "b" */ + aCb.u = asy*bsz - asz*bsy; + aCb.v = - (asx*bsz - asz*bsx); + aCb.w = asx*bsy - asy*bsx; + + /* "a cross b" dot "c" */ + aCb_dot_c = aCb.u*csx + aCb.v*csy + aCb.w*csz; + + rh_reciprocal = aCb_dot_c > 0.0; + + if ( cell_get_cartesian(cell, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz) ) { + ERROR("Couldn't get direct cell.\n"); + return 0; + } + + /* "a" cross "b" */ + aCb.u = asy*bsz - asz*bsy; + aCb.v = - (asx*bsz - asz*bsx); + aCb.w = asx*bsy - asy*bsx; + + /* "a cross b" dot "c" */ + aCb_dot_c = aCb.u*csx + aCb.v*csy + aCb.w*csz; + + rh_direct = aCb_dot_c > 0.0; + + assert(rh_reciprocal == rh_direct); + + return rh_direct; +} + + +void cell_print(UnitCell *cell) +{ + double asx, asy, asz; + double bsx, bsy, bsz; + double csx, csy, csz; + double a, b, c, alpha, beta, gamma; + double ax, ay, az, bx, by, bz, cx, cy, cz; + LatticeType lt; + char cen; + + lt = cell_get_lattice_type(cell); + cen = cell_get_centering(cell); + + STATUS("%s %c", str_lattice(lt), cen); + + if ( (lt==L_MONOCLINIC) || (lt==L_TETRAGONAL) || ( lt==L_HEXAGONAL) + || ( (lt==L_ORTHORHOMBIC) && (cen=='A') ) + || ( (lt==L_ORTHORHOMBIC) && (cen=='B') ) + || ( (lt==L_ORTHORHOMBIC) && (cen=='C') ) ) + { + STATUS(", unique axis %c", cell_get_unique_axis(cell)); + } + + if ( right_handed(cell) ) { + STATUS(", right handed"); + } else { + STATUS(", left handed"); + } + + STATUS(", point group '%s'.\n", cell_get_pointgroup(cell)); + + cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma); + + STATUS(" a b c alpha beta gamma\n"); + STATUS("%5.2f %5.2f %5.2f nm %6.2f %6.2f %6.2f deg\n", + a*1e9, b*1e9, c*1e9, + rad2deg(alpha), rad2deg(beta), rad2deg(gamma)); + + cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); + + STATUS("a = %10.3e %10.3e %10.3e m\n", ax, ay, az); + STATUS("b = %10.3e %10.3e %10.3e m\n", bx, by, bz); + STATUS("c = %10.3e %10.3e %10.3e m\n", cx, cy, cz); + + cell_get_reciprocal(cell, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz); + + STATUS("astar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", + asx, asy, asz, modulus(asx, asy, asz)); + STATUS("bstar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", + bsx, bsy, bsz, modulus(bsx, bsy, bsz)); + STATUS("cstar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", + csx, csy, csz, modulus(csx, csy, csz)); + + STATUS("Cell representation is %s.\n", cell_rep(cell)); +} + + +int bravais_lattice(UnitCell *cell) +{ + LatticeType lattice = cell_get_lattice_type(cell); + char centering = cell_get_centering(cell); + char ua = cell_get_unique_axis(cell); + + switch ( centering ) + { + case 'P' : + return 1; + + case 'A' : + case 'B' : + case 'C' : + if ( lattice == L_MONOCLINIC ) { + if ( (ua=='a') && (centering=='A') ) return 1; + if ( (ua=='b') && (centering=='B') ) return 1; + if ( (ua=='c') && (centering=='C') ) return 1; + } else if ( lattice == L_ORTHORHOMBIC) { + return 1; + } + return 0; + + case 'I' : + if ( (lattice == L_ORTHORHOMBIC) + || (lattice == L_TETRAGONAL) + || (lattice == L_CUBIC) ) + { + return 1; + } + return 0; + + case 'F' : + if ( (lattice == L_ORTHORHOMBIC) || (lattice == L_CUBIC) ) { + return 1; + } + return 0; + + case 'H' : + /* "Hexagonal H" is not a Bravais lattice, but rather something + * invented by the PDB to make life difficult for programmers. + * Accepting it as Bravais seems to be the least painful way to + * handle it correctly. Yuk. */ + if ( ua != 'c' ) return 0; + if ( lattice == L_HEXAGONAL ) return 1; + return 0; + + case 'R' : + if ( lattice == L_RHOMBOHEDRAL ) return 1; + return 0; + + default : + return 0; + } +} + + +static UnitCellTransformation *uncentering_transformation(UnitCell *in, + char *new_centering, + LatticeType *new_latt) +{ + UnitCellTransformation *t; + const double OT = 1.0/3.0; + const double TT = 2.0/3.0; + const double H = 0.5; + LatticeType lt; + char ua, cen; + + lt = cell_get_lattice_type(in); + ua = cell_get_unique_axis(in); + cen = cell_get_centering(in); + + t = tfn_identity(); + if ( t == NULL ) return NULL; + + if ( ua == 'a' ) { + tfn_combine(t, tfn_vector(0,0,1), + tfn_vector(0,1,0), + tfn_vector(-1,0,0)); + } + + if ( ua == 'b' ) { + tfn_combine(t, tfn_vector(1,0,0), + tfn_vector(0,0,1), + tfn_vector(0,-1,0)); + } + + switch ( cen ) { + + case 'P' : + *new_latt = lt; + *new_centering = 'P'; + break; + + case 'R' : + *new_latt = L_RHOMBOHEDRAL; + *new_centering = 'R'; + break; + + case 'I' : + tfn_combine(t, tfn_vector(-H,H,H), + tfn_vector(H,-H,H), + tfn_vector(H,H,-H)); + if ( lt == L_CUBIC ) { + *new_latt = L_RHOMBOHEDRAL; + *new_centering = 'R'; + } else { + /* Tetragonal or orthorhombic */ + *new_latt = L_TRICLINIC; + *new_centering = 'P'; + } + break; + + case 'F' : + tfn_combine(t, tfn_vector(0,H,H), + tfn_vector(H,0,H), + tfn_vector(H,H,0)); + if ( lt == L_CUBIC ) { + *new_latt = L_RHOMBOHEDRAL; + *new_centering = 'R'; + } else { + assert(lt == L_ORTHORHOMBIC); + *new_latt = L_TRICLINIC; + *new_centering = 'P'; + } + break; + + case 'A' : + case 'B' : + case 'C' : + tfn_combine(t, tfn_vector(H,H,0), + tfn_vector(-H,H,0), + tfn_vector(0,0,1)); + *new_latt = L_MONOCLINIC; + *new_centering = 'P'; + break; + + case 'H' : + /* Obverse setting */ + tfn_combine(t, tfn_vector(TT,OT,OT), + tfn_vector(-OT,OT,OT), + tfn_vector(-OT,-TT,OT)); + assert(lt == L_HEXAGONAL); + *new_latt = L_RHOMBOHEDRAL; + *new_centering = 'R'; + break; + + default : + ERROR("Invalid centering '%c'\n", cell_get_centering(in)); + return NULL; + + } + + /* Reverse the axis permutation, but only if this was not an H->R + * transformation */ + if ( !((cen=='H') && (*new_latt == L_RHOMBOHEDRAL)) ) { + if ( ua == 'a' ) { + tfn_combine(t, tfn_vector(0,0,-1), + tfn_vector(0,1,0), + tfn_vector(1,0,0)); + } + + if ( ua == 'b' ) { + tfn_combine(t, tfn_vector(1,0,0), + tfn_vector(0,0,-1), + tfn_vector(0,1,0)); + } + } + + return t; +} + + +/** + * uncenter_cell: + * @in: A %UnitCell + * @t: Location at which to store the transformation which was used. + * + * Turns any cell into a primitive one, e.g. for comparison purposes. The + * transformation which was used is stored at @t, which can be NULL if the + * transformation is not required. + * + * Returns: a primitive version of @in in a conventional (unique axis c) + * setting. + * + */ +UnitCell *uncenter_cell(UnitCell *in, UnitCellTransformation **t) +{ + UnitCellTransformation *tt; + char new_centering; + LatticeType new_latt; + UnitCell *out; + + if ( !bravais_lattice(in) ) { + ERROR("Cannot uncenter: not a Bravais lattice.\n"); + cell_print(in); + return NULL; + } + + tt = uncentering_transformation(in, &new_centering, &new_latt); + if ( tt == NULL ) return NULL; + + if ( t != NULL ) *t = tt; + + out = cell_transform(in, tt); + if ( out == NULL ) return NULL; + + cell_set_lattice_type(out, new_latt); + cell_set_centering(out, new_centering); + + return out; +} + + +#define MAX_CAND (1024) + +static int right_handed_vec(struct rvec a, struct rvec b, struct rvec c) +{ + struct rvec aCb; + double aCb_dot_c; + + /* "a" cross "b" */ + aCb.u = a.v*b.w - a.w*b.v; + aCb.v = - (a.u*b.w - a.w*b.u); + aCb.w = a.u*b.v - a.v*b.u; + + /* "a cross b" dot "c" */ + aCb_dot_c = aCb.u*c.u + aCb.v*c.v + aCb.w*c.w; + + if ( aCb_dot_c > 0.0 ) return 1; + return 0; +} + + +struct cvec { + struct rvec vec; + float na; + float nb; + float nc; + float fom; +}; + + +static int same_vector(struct cvec a, struct cvec b) +{ + if ( a.na != b.na ) return 0; + if ( a.nb != b.nb ) return 0; + if ( a.nc != b.nc ) return 0; + return 1; +} + + +/* Attempt to make 'cell' fit into 'template' somehow */ +UnitCell *match_cell(UnitCell *cell_in, UnitCell *template_in, int verbose, + const float *tols, int reduce) +{ + signed int n1l, n2l, n3l; + double asx, asy, asz; + double bsx, bsy, bsz; + double csx, csy, csz; + int i, j; + double lengths[3]; + double angles[3]; + struct cvec *cand[3]; + UnitCell *new_cell = NULL; + float best_fom = +999999999.9; /* Large number.. */ + int ncand[3] = {0,0,0}; + signed int ilow, ihigh; + float angtol = deg2rad(tols[3]); + UnitCell *cell; + UnitCell *template; + UnitCellTransformation *uncentering; + UnitCell *new_cell_trans; + + /* "Un-center" the template unit cell to make the comparison easier */ + template = uncenter_cell(template_in, &uncentering); + + /* The candidate cell is also uncentered, because it might be centered + * if it came from (e.g.) MOSFLM */ + cell = uncenter_cell(cell_in, NULL); + + if ( cell_get_reciprocal(template, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz) ) { + ERROR("Couldn't get reciprocal cell for template.\n"); + return NULL; + } + + lengths[0] = modulus(asx, asy, asz); + lengths[1] = modulus(bsx, bsy, bsz); + lengths[2] = modulus(csx, csy, csz); + + angles[0] = angle_between(bsx, bsy, bsz, csx, csy, csz); + angles[1] = angle_between(asx, asy, asz, csx, csy, csz); + angles[2] = angle_between(asx, asy, asz, bsx, bsy, bsz); + + cand[0] = malloc(MAX_CAND*sizeof(struct cvec)); + cand[1] = malloc(MAX_CAND*sizeof(struct cvec)); + cand[2] = malloc(MAX_CAND*sizeof(struct cvec)); + + if ( cell_get_reciprocal(cell, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz) ) { + ERROR("Couldn't get reciprocal cell.\n"); + return NULL; + } + + if ( reduce ) { + ilow = -2; ihigh = 4; + } else { + ilow = 0; ihigh = 1; + } + + /* Negative values mean 1/n, positive means n, zero means zero */ + for ( n1l=ilow; n1l<=ihigh; n1l++ ) { + for ( n2l=ilow; n2l<=ihigh; n2l++ ) { + for ( n3l=ilow; n3l<=ihigh; n3l++ ) { + + float n1, n2, n3; + signed int b1, b2, b3; + + n1 = (n1l>=0) ? (n1l) : (1.0/n1l); + n2 = (n2l>=0) ? (n2l) : (1.0/n2l); + n3 = (n3l>=0) ? (n3l) : (1.0/n3l); + + if ( !reduce ) { + if ( n1l + n2l + n3l > 1 ) continue; + } + + /* 'bit' values can be +1 or -1 */ + for ( b1=-1; b1<=1; b1+=2 ) { + for ( b2=-1; b2<=1; b2+=2 ) { + for ( b3=-1; b3<=1; b3+=2 ) { + + double tx, ty, tz; + double tlen; + int i; + + n1 *= b1; n2 *= b2; n3 *= b3; + + tx = n1*asx + n2*bsx + n3*csx; + ty = n1*asy + n2*bsy + n3*csy; + tz = n1*asz + n2*bsz + n3*csz; + tlen = modulus(tx, ty, tz); + + /* Test modulus for agreement with moduli of template */ + for ( i=0; i<3; i++ ) { + + if ( !within_tolerance(lengths[i], tlen, + tols[i]) ) + { + continue; + } + + if ( ncand[i] == MAX_CAND ) { + ERROR("Too many cell candidates - "); + ERROR("consider tightening the unit "); + ERROR("cell tolerances.\n"); + } else { + + double fom; + + fom = fabs(lengths[i] - tlen); + + cand[i][ncand[i]].vec.u = tx; + cand[i][ncand[i]].vec.v = ty; + cand[i][ncand[i]].vec.w = tz; + cand[i][ncand[i]].na = n1; + cand[i][ncand[i]].nb = n2; + cand[i][ncand[i]].nc = n3; + cand[i][ncand[i]].fom = fom; + + ncand[i]++; + + } + } + + } + } + } + + } + } + } + + if ( verbose ) { + STATUS("Candidates: %i %i %i\n", ncand[0], ncand[1], ncand[2]); + } + + for ( i=0; i<ncand[0]; i++ ) { + for ( j=0; j<ncand[1]; j++ ) { + + double ang; + int k; + float fom1; + + if ( same_vector(cand[0][i], cand[1][j]) ) continue; + + /* Measure the angle between the ith candidate for axis 0 + * and the jth candidate for axis 1 */ + ang = angle_between(cand[0][i].vec.u, cand[0][i].vec.v, + cand[0][i].vec.w, cand[1][j].vec.u, + cand[1][j].vec.v, cand[1][j].vec.w); + + /* Angle between axes 0 and 1 should be angle 2 */ + if ( fabs(ang - angles[2]) > angtol ) continue; + + fom1 = fabs(ang - angles[2]); + + for ( k=0; k<ncand[2]; k++ ) { + + float fom2, fom3; + + if ( same_vector(cand[1][j], cand[2][k]) ) continue; + + /* Measure the angle between the current candidate for + * axis 0 and the kth candidate for axis 2 */ + ang = angle_between(cand[0][i].vec.u, cand[0][i].vec.v, + cand[0][i].vec.w, cand[2][k].vec.u, + cand[2][k].vec.v, cand[2][k].vec.w); + + /* ... it should be angle 1 ... */ + if ( fabs(ang - angles[1]) > angtol ) continue; + + fom2 = fom1 + fabs(ang - angles[1]); + + /* Finally, the angle between the current candidate for + * axis 1 and the kth candidate for axis 2 */ + ang = angle_between(cand[1][j].vec.u, cand[1][j].vec.v, + cand[1][j].vec.w, cand[2][k].vec.u, + cand[2][k].vec.v, cand[2][k].vec.w); + + /* ... it should be angle 0 ... */ + if ( fabs(ang - angles[0]) > angtol ) continue; + + /* Unit cell must be right-handed */ + if ( !right_handed_vec(cand[0][i].vec, cand[1][j].vec, + cand[2][k].vec) ) continue; + + fom3 = fom2 + fabs(ang - angles[0]); + fom3 += LWEIGHT * (cand[0][i].fom + cand[1][j].fom + + cand[2][k].fom); + + if ( fom3 < best_fom ) { + if ( new_cell != NULL ) free(new_cell); + new_cell = cell_new_from_reciprocal_axes( + cand[0][i].vec, cand[1][j].vec, + cand[2][k].vec); + best_fom = fom3; + } + + } + + } + } + + free(cand[0]); + free(cand[1]); + free(cand[2]); + + /* Reverse the de-centering transformation */ + new_cell_trans = cell_transform_inverse(new_cell, uncentering); + cell_free(new_cell); + cell_set_lattice_type(new_cell, cell_get_lattice_type(template_in)); + cell_set_centering(new_cell, cell_get_centering(template_in)); + cell_set_unique_axis(new_cell, cell_get_unique_axis(template_in)); + + return new_cell_trans; +} + + +UnitCell *match_cell_ab(UnitCell *cell_in, UnitCell *template_in) +{ + double ax, ay, az; + double bx, by, bz; + double cx, cy, cz; + int i; + double lengths[3]; + int used[3]; + struct rvec real_a, real_b, real_c; + struct rvec params[3]; + double alen, blen; + float ltl = 5.0; /* percent */ + int have_real_a; + int have_real_b; + int have_real_c; + UnitCell *cell; + UnitCell *template; + UnitCellTransformation *to_given_cell; + UnitCell *new_cell; + UnitCell *new_cell_trans; + + /* "Un-center" the template unit cell to make the comparison easier */ + template = uncenter_cell(template_in, &to_given_cell); + + /* The candidate cell is also uncentered, because it might be centered + * if it came from (e.g.) MOSFLM */ + cell = uncenter_cell(cell_in, NULL); + + /* Get the lengths to match */ + if ( cell_get_cartesian(template, &ax, &ay, &az, + &bx, &by, &bz, + &cx, &cy, &cz) ) + { + ERROR("Couldn't get cell for template.\n"); + return NULL; + } + alen = modulus(ax, ay, az); + blen = modulus(bx, by, bz); + + /* Get the lengths from the cell and turn them into anonymous vectors */ + if ( cell_get_cartesian(cell, &ax, &ay, &az, + &bx, &by, &bz, + &cx, &cy, &cz) ) + { + ERROR("Couldn't get cell.\n"); + return NULL; + } + lengths[0] = modulus(ax, ay, az); + lengths[1] = modulus(bx, by, bz); + lengths[2] = modulus(cx, cy, cz); + used[0] = 0; used[1] = 0; used[2] = 0; + params[0].u = ax; params[0].v = ay; params[0].w = az; + params[1].u = bx; params[1].v = by; params[1].w = bz; + params[2].u = cx; params[2].v = cy; params[2].w = cz; + + real_a.u = 0.0; real_a.v = 0.0; real_a.w = 0.0; + real_b.u = 0.0; real_b.v = 0.0; real_b.w = 0.0; + real_c.u = 0.0; real_c.v = 0.0; real_c.w = 0.0; + + /* Check each vector against a and b */ + have_real_a = 0; + have_real_b = 0; + for ( i=0; i<3; i++ ) { + if ( within_tolerance(lengths[i], alen, ltl) + && !used[i] && !have_real_a ) + { + used[i] = 1; + memcpy(&real_a, ¶ms[i], sizeof(struct rvec)); + have_real_a = 1; + } + if ( within_tolerance(lengths[i], blen, ltl) + && !used[i] && !have_real_b ) + { + used[i] = 1; + memcpy(&real_b, ¶ms[i], sizeof(struct rvec)); + have_real_b = 1; + } + } + + /* Have we matched both a and b? */ + if ( !(have_real_a && have_real_b) ) return NULL; + + /* "c" is "the other one" */ + have_real_c = 0; + for ( i=0; i<3; i++ ) { + if ( !used[i] ) { + memcpy(&real_c, ¶ms[i], sizeof(struct rvec)); + have_real_c = 1; + } + } + + if ( !have_real_c ) { + ERROR("Huh? Couldn't find the third vector.\n"); + ERROR("Matches: %i %i %i\n", used[0], used[1], used[2]); + return NULL; + } + + /* Flip c if not right-handed */ + if ( !right_handed_vec(real_a, real_b, real_c) ) { + real_c.u = -real_c.u; + real_c.v = -real_c.v; + real_c.w = -real_c.w; + } + + new_cell = cell_new_from_direct_axes(real_a, real_b, real_c); + + /* Reverse the de-centering transformation */ + new_cell_trans = cell_transform_inverse(new_cell, to_given_cell); + cell_free(new_cell); + cell_set_lattice_type(new_cell, cell_get_lattice_type(template_in)); + cell_set_centering(new_cell, cell_get_centering(template_in)); + cell_set_unique_axis(new_cell, cell_get_unique_axis(template_in)); + + return new_cell_trans; +} + + +/* Return sin(theta)/lambda = 1/2d. Multiply by two if you want 1/d */ +double resolution(UnitCell *cell, signed int h, signed int k, signed int l) +{ + double a, b, c, alpha, beta, gamma; + + cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma); + + const double Vsq = a*a*b*b*c*c*(1 - cos(alpha)*cos(alpha) + - cos(beta)*cos(beta) + - cos(gamma)*cos(gamma) + + 2*cos(alpha)*cos(beta)*cos(gamma) ); + + const double S11 = b*b*c*c*sin(alpha)*sin(alpha); + const double S22 = a*a*c*c*sin(beta)*sin(beta); + const double S33 = a*a*b*b*sin(gamma)*sin(gamma); + const double S12 = a*b*c*c*(cos(alpha)*cos(beta) - cos(gamma)); + const double S23 = a*a*b*c*(cos(beta)*cos(gamma) - cos(alpha)); + const double S13 = a*b*b*c*(cos(gamma)*cos(alpha) - cos(beta)); + + const double brackets = S11*h*h + S22*k*k + S33*l*l + + 2*S12*h*k + 2*S23*k*l + 2*S13*h*l; + const double oneoverdsq = brackets / Vsq; + const double oneoverd = sqrt(oneoverdsq); + + return oneoverd / 2; +} + + +static void determine_lattice(UnitCell *cell, + const char *as, const char *bs, const char *cs, + const char *als, const char *bes, const char *gas) +{ + int n_right; + + /* Rhombohedral or cubic? */ + if ( (strcmp(as, bs) == 0) && (strcmp(as, cs) == 0) ) { + + if ( (strcmp(als, " 90.00") == 0) + && (strcmp(bes, " 90.00") == 0) + && (strcmp(gas, " 90.00") == 0) ) + { + /* Cubic. Unique axis irrelevant. */ + cell_set_lattice_type(cell, L_CUBIC); + return; + } + + if ( (strcmp(als, bes) == 0) && (strcmp(als, gas) == 0) ) { + /* Rhombohedral. Unique axis irrelevant. */ + cell_set_lattice_type(cell, L_RHOMBOHEDRAL); + return; + } + + } + + if ( (strcmp(als, " 90.00") == 0) + && (strcmp(bes, " 90.00") == 0) + && (strcmp(gas, " 90.00") == 0) ) + { + if ( strcmp(bs, cs) == 0 ) { + /* Tetragonal, unique axis a */ + cell_set_lattice_type(cell, L_TETRAGONAL); + cell_set_unique_axis(cell, 'a'); + return; + } + + if ( strcmp(as, cs) == 0 ) { + /* Tetragonal, unique axis b */ + cell_set_lattice_type(cell, L_TETRAGONAL); + cell_set_unique_axis(cell, 'b'); + return; + } + + if ( strcmp(as, bs) == 0 ) { + /* Tetragonal, unique axis c */ + cell_set_lattice_type(cell, L_TETRAGONAL); + cell_set_unique_axis(cell, 'c'); + return; + } + + /* Orthorhombic. Unique axis irrelevant, but point group + * can have different orientations. */ + cell_set_lattice_type(cell, L_ORTHORHOMBIC); + return; + } + + n_right = 0; + if ( strcmp(als, " 90.00") == 0 ) n_right++; + if ( strcmp(bes, " 90.00") == 0 ) n_right++; + if ( strcmp(gas, " 90.00") == 0 ) n_right++; + + /* Hexgonal or monoclinic? */ + if ( n_right == 2 ) { + + if ( (strcmp(als, " 120.00") == 0) + && (strcmp(bs, cs) == 0) ) + { + /* Hexagonal, unique axis a */ + cell_set_lattice_type(cell, L_HEXAGONAL); + cell_set_unique_axis(cell, 'a'); + return; + } + + if ( (strcmp(bes, " 120.00") == 0) + && (strcmp(as, cs) == 0) ) + { + /* Hexagonal, unique axis b */ + cell_set_lattice_type(cell, L_HEXAGONAL); + cell_set_unique_axis(cell, 'b'); + return; + } + + if ( (strcmp(gas, " 120.00") == 0) + && (strcmp(as, bs) == 0) ) + { + /* Hexagonal, unique axis c */ + cell_set_lattice_type(cell, L_HEXAGONAL); + cell_set_unique_axis(cell, 'c'); + return; + } + + if ( strcmp(als, " 90.00") != 0 ) { + /* Monoclinic, unique axis a */ + cell_set_lattice_type(cell, L_MONOCLINIC); + cell_set_unique_axis(cell, 'a'); + return; + } + + if ( strcmp(bes, " 90.00") != 0 ) { + /* Monoclinic, unique axis b */ + cell_set_lattice_type(cell, L_MONOCLINIC); + cell_set_unique_axis(cell, 'b'); + return; + } + + if ( strcmp(gas, " 90.00") != 0 ) { + /* Monoclinic, unique axis c */ + cell_set_lattice_type(cell, L_MONOCLINIC); + cell_set_unique_axis(cell, 'c'); + return; + } + } + + /* Triclinic, unique axis irrelevant. */ + cell_set_lattice_type(cell, L_TRICLINIC); +} + + +UnitCell *load_cell_from_pdb(const char *filename) +{ + FILE *fh; + char *rval; + UnitCell *cell = NULL; + + fh = fopen(filename, "r"); + if ( fh == NULL ) { + ERROR("Couldn't open '%s'\n", filename); + return NULL; + } + + do { + + char line[1024]; + + rval = fgets(line, 1023, fh); + + if ( strncmp(line, "CRYST1", 6) == 0 ) { + + float a, b, c, al, be, ga; + char as[10], bs[10], cs[10]; + char als[8], bes[8], gas[8]; + int r; + + memcpy(as, line+6, 9); as[9] = '\0'; + memcpy(bs, line+15, 9); bs[9] = '\0'; + memcpy(cs, line+24, 9); cs[9] = '\0'; + memcpy(als, line+33, 7); als[7] = '\0'; + memcpy(bes, line+40, 7); bes[7] = '\0'; + memcpy(gas, line+47, 7); gas[7] = '\0'; + + r = sscanf(as, "%f", &a); + r += sscanf(bs, "%f", &b); + r += sscanf(cs, "%f", &c); + r += sscanf(als, "%f", &al); + r += sscanf(bes, "%f", &be); + r += sscanf(gas, "%f", &ga); + + if ( r != 6 ) { + STATUS("Couldn't understand CRYST1 line.\n"); + continue; + } + + cell = cell_new_from_parameters(a*1e-10, + b*1e-10, c*1e-10, + deg2rad(al), + deg2rad(be), + deg2rad(ga)); + + determine_lattice(cell, as, bs, cs, als, bes, gas); + + if ( strlen(line) > 65 ) { + cell_set_centering(cell, line[55]); + } else { + cell_set_pointgroup(cell, "1"); + ERROR("CRYST1 line without centering.\n"); + } + + break; /* Done */ + } + + } while ( rval != NULL ); + + fclose(fh); + + validate_cell(cell); + + return cell; +} + + +/* Force the linker to bring in CBLAS to make GSL happy */ +void cell_fudge_gslcblas() +{ + STATUS("%p\n", cblas_sgemm); +} + + +UnitCell *rotate_cell(UnitCell *in, double omega, double phi, double rot) +{ + UnitCell *out; + double asx, asy, asz; + double bsx, bsy, bsz; + double csx, csy, csz; + double xnew, ynew, znew; + + cell_get_reciprocal(in, &asx, &asy, &asz, &bsx, &bsy, + &bsz, &csx, &csy, &csz); + + /* Rotate by "omega" about +z (parallel to c* and c unless triclinic) */ + xnew = asx*cos(omega) + asy*sin(omega); + ynew = -asx*sin(omega) + asy*cos(omega); + znew = asz; + asx = xnew; asy = ynew; asz = znew; + xnew = bsx*cos(omega) + bsy*sin(omega); + ynew = -bsx*sin(omega) + bsy*cos(omega); + znew = bsz; + bsx = xnew; bsy = ynew; bsz = znew; + xnew = csx*cos(omega) + csy*sin(omega); + ynew = -csx*sin(omega) + csy*cos(omega); + znew = csz; + csx = xnew; csy = ynew; csz = znew; + + /* Rotate by "phi" about +x (not parallel to anything specific) */ + xnew = asx; + ynew = asy*cos(phi) + asz*sin(phi); + znew = -asy*sin(phi) + asz*cos(phi); + asx = xnew; asy = ynew; asz = znew; + xnew = bsx; + ynew = bsy*cos(phi) + bsz*sin(phi); + znew = -bsy*sin(phi) + bsz*cos(phi); + bsx = xnew; bsy = ynew; bsz = znew; + xnew = csx; + ynew = csy*cos(phi) + csz*sin(phi); + znew = -csy*sin(phi) + csz*cos(phi); + csx = xnew; csy = ynew; csz = znew; + + /* Rotate by "rot" about the new +z (in-plane rotation) */ + xnew = asx*cos(rot) + asy*sin(rot); + ynew = -asx*sin(rot) + asy*cos(rot); + znew = asz; + asx = xnew; asy = ynew; asz = znew; + xnew = bsx*cos(rot) + bsy*sin(rot); + ynew = -bsx*sin(rot) + bsy*cos(rot); + znew = bsz; + bsx = xnew; bsy = ynew; bsz = znew; + xnew = csx*cos(rot) + csy*sin(rot); + ynew = -csx*sin(rot) + csy*cos(rot); + znew = csz; + csx = xnew; csy = ynew; csz = znew; + + out = cell_new_from_cell(in); + cell_set_reciprocal(out, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz); + + return out; +} + + +int cell_is_sensible(UnitCell *cell) +{ + double a, b, c, al, be, ga; + + cell_get_parameters(cell, &a, &b, &c, &al, &be, &ga); + if ( al + be + ga >= 2.0*M_PI ) return 0; + if ( al + be - ga >= 2.0*M_PI ) return 0; + if ( al - be + ga >= 2.0*M_PI ) return 0; + if ( - al + be + ga >= 2.0*M_PI ) return 0; + if ( al + be + ga <= 0.0 ) return 0; + if ( al + be - ga <= 0.0 ) return 0; + if ( al - be + ga <= 0.0 ) return 0; + if ( - al + be + ga <= 0.0 ) return 0; + if ( isnan(al) ) return 0; + if ( isnan(be) ) return 0; + if ( isnan(ga) ) return 0; + return 1; +} + + +/** + * validate_cell: + * @cell: A %UnitCell to validate + * + * Perform some checks for crystallographic validity @cell, such as that the + * lattice is a conventional Bravais lattice. + * Warnings are printied if any of the checks are failed. + * + * Returns: true if cell is invalid. + * + */ +int validate_cell(UnitCell *cell) +{ + int err = 0; + char cen, ua; + + if ( !cell_is_sensible(cell) ) { + ERROR("Warning: Unit cell parameters are not sensible.\n"); + err = 1; + } + + if ( !bravais_lattice(cell) ) { + ERROR("Warning: Unit cell is not a conventional Bravais" + " lattice.\n"); + err = 1; + } + + if ( !right_handed(cell) ) { + ERROR("Warning: Unit cell is not right handed.\n"); + err = 1; + } + + cen = cell_get_centering(cell); + ua = cell_get_unique_axis(cell); + if ( (cen == 'A') && (ua != 'a') ) { + ERROR("Warning: centering doesn't match unique axis.\n"); + err = 1; + } + if ( (cen == 'B') && (ua != 'b') ) { + ERROR("Warning: centering doesn't match unique axis.\n"); + err = 1; + } + if ( (cen == 'C') && (ua != 'c') ) { + ERROR("Warning: centering doesn't match unique axis.\n"); + err = 1; + } + + return err; +} + + +/** + * forbidden_reflection: + * @cell: A %UnitCell + * @h: h index to check + * @k: k index to check + * @l: l index to check + * + * Returns: true if this reflection is forbidden. + * + */ +int forbidden_reflection(UnitCell *cell, + signed int h, signed int k, signed int l) +{ + char cen; + + cen = cell_get_centering(cell); + + /* Reflection conditions here must match the transformation matrices + * in uncentering_transformation(). tests/centering_check verifies + * this (amongst other things). */ + + if ( cen == 'P' ) return 0; + if ( cen == 'R' ) return 0; + + if ( cen == 'A' ) return (k+l) % 2; + if ( cen == 'B' ) return (h+l) % 2; + if ( cen == 'C' ) return (h+k) % 2; + + if ( cen == 'I' ) return (h+k+l) % 2; + if ( cen == 'F' ) return ((h+k) % 2) || ((h+l) % 2) || ((k+l) % 2); + + /* Obverse setting */ + if ( cen == 'H' ) return (-h+k+l) % 3; + + return 0; +} |