diff options
author | Thomas White <taw@physics.org> | 2011-11-15 12:05:55 +0100 |
---|---|---|
committer | Thomas White <taw@physics.org> | 2012-02-22 15:27:40 +0100 |
commit | 38089071300b8e04ed42236dd08d9055094fb3b8 (patch) | |
tree | 91e1487ac820eb549e7652750867cd4fec039097 /libcrystfel/src/detector.c | |
parent | 404c612223dbfa0210902ebc5c9226927335aa65 (diff) |
Introduce "libcrystfel"
Diffstat (limited to 'libcrystfel/src/detector.c')
-rw-r--r-- | libcrystfel/src/detector.c | 1233 |
1 files changed, 1233 insertions, 0 deletions
diff --git a/libcrystfel/src/detector.c b/libcrystfel/src/detector.c new file mode 100644 index 00000000..54bae1d7 --- /dev/null +++ b/libcrystfel/src/detector.c @@ -0,0 +1,1233 @@ +/* + * detector.c + * + * Detector properties + * + * (c) 2006-2011 Thomas White <taw@physics.org> + * (c) 2011 Rick Kirian <rkirian@asu.edu> + * + * Part of CrystFEL - crystallography with a FEL + * + */ + + +#include <stdlib.h> +#include <math.h> +#include <stdio.h> +#include <string.h> +#include <assert.h> +#include <ctype.h> + +#include "image.h" +#include "utils.h" +#include "detector.h" +#include "beam-parameters.h" +#include "hdf5-file.h" + + +/** + * SECTION:detector + * @short_description: Detector geometry + * @title: Detector + * @section_id: + * @see_also: + * @include: "detector.h" + * @Image: + * + * This structure represents the detector geometry + */ + + +static int atob(const char *a) +{ + if ( strcasecmp(a, "true") == 0 ) return 1; + if ( strcasecmp(a, "false") == 0 ) return 0; + return atoi(a); +} + + +static int assplode_algebraic(const char *a_orig, char ***pbits) +{ + int len, i; + int nexp; + char **bits; + char *a; + int idx, istr; + + len = strlen(a_orig); + + /* Add plus at start if no sign there already */ + if ( (a_orig[0] != '+') && (a_orig[0] != '-') ) { + len += 1; + a = malloc(len+1); + snprintf(a, len+1, "+%s", a_orig); + a[len] = '\0'; + + } else { + a = strdup(a_orig); + } + + /* Count the expressions */ + nexp = 0; + for ( i=0; i<len; i++ ) { + if ( (a[i] == '+') || (a[i] == '-') ) nexp++; + } + + bits = calloc(nexp, sizeof(char *)); + + /* Break the string up */ + idx = -1; + istr = 0; + assert((a[0] == '+') || (a[0] == '-')); + for ( i=0; i<len; i++ ) { + + char ch; + + ch = a[i]; + + if ( (ch == '+') || (ch == '-') ) { + if ( idx >= 0 ) bits[idx][istr] = '\0'; + idx++; + bits[idx] = malloc(len+1); + istr = 0; + } + + if ( !isdigit(ch) && (ch != '.') && (ch != 'x') && (ch != 'y') + && (ch != '+') && (ch != '-') ) + { + ERROR("Invalid character '%C' found.\n", ch); + return 0; + } + + assert(idx >= 0); + bits[idx][istr++] = ch; + + } + if ( idx >= 0 ) bits[idx][istr] = '\0'; + + *pbits = bits; + free(a); + + return nexp; +} + + +/* Parses the scan directions (accounting for possible rotation) + * Assumes all white spaces have been already removed */ +static int dir_conv(const char *a, double *sx, double *sy) +{ + int n; + char **bits; + int i; + + *sx = 0.0; *sy = 0.0; + + n = assplode_algebraic(a, &bits); + + if ( n == 0 ) { + ERROR("Invalid direction '%s'\n", a); + return 1; + } + + for ( i=0; i<n; i++ ) { + + int len; + double val; + char axis; + int j; + + len = strlen(bits[i]); + assert(len != 0); + axis = bits[i][len-1]; + if ( (axis != 'x') && (axis != 'y') ) { + ERROR("Invalid symbol '%C' - must be x or y.\n", axis); + return 1; + } + + /* Chop off the symbol now it's dealt with */ + bits[i][len-1] = '\0'; + + /* Check for anything that isn't part of a number */ + for ( j=0; j<strlen(bits[i]); j++ ) { + if ( isdigit(bits[i][j]) ) continue; + if ( bits[i][j] == '+' ) continue; + if ( bits[i][j] == '-' ) continue; + if ( bits[i][j] == '.' ) continue; + ERROR("Invalid coefficient '%s'\n", bits[i]); + } + + if ( strlen(bits[i]) == 0 ) { + val = 1.0; + } else { + val = atof(bits[i]); + } + if ( strlen(bits[i]) == 1 ) { + if ( bits[i][0] == '+' ) val = 1.0; + if ( bits[i][0] == '-' ) val = -1.0; + } + if ( axis == 'x' ) { + *sx += val; + } else if ( axis == 'y' ) { + *sy += val; + } + + free(bits[i]); + + } + free(bits); + + //STATUS("'%s' -> %5.2fx + %5.2fy\n", a, *sx, *sy); + + return 0; +} + + +struct rvec get_q_for_panel(struct panel *p, double fs, double ss, + double *ttp, double k) +{ + struct rvec q; + double twotheta, r, az; + double rx, ry; + double xs, ys; + + /* Convert xs and ys, which are in fast scan/slow scan coordinates, + * to x and y */ + xs = fs*p->fsx + ss*p->ssx; + ys = fs*p->fsy + ss*p->ssy; + + rx = (xs + p->cnx) / p->res; + ry = (ys + p->cny) / p->res; + + /* Calculate q-vector for this sub-pixel */ + r = sqrt(pow(rx, 2.0) + pow(ry, 2.0)); + + twotheta = atan2(r, p->clen); + az = atan2(ry, rx); + if ( ttp != NULL ) *ttp = twotheta; + + q.u = k * sin(twotheta)*cos(az); + q.v = k * sin(twotheta)*sin(az); + q.w = k * (cos(twotheta) - 1.0); + + return q; +} + + +struct rvec get_q(struct image *image, double fs, double ss, + double *ttp, double k) +{ + struct panel *p; + const unsigned int fsi = fs; + const unsigned int ssi = ss; /* Explicit rounding */ + + /* Determine which panel to use */ + p = find_panel(image->det, fsi, ssi); + assert(p != NULL); + + return get_q_for_panel(p, fs-(double)p->min_fs, ss-(double)p->min_ss, + ttp, k); +} + + +int in_bad_region(struct detector *det, double fs, double ss) +{ + double rx, ry; + struct panel *p; + double xs, ys; + int i; + + /* Determine which panel to use */ + p = find_panel(det, fs, ss); + + /* No panel found -> definitely bad! */ + if ( p == NULL ) return 1; + + /* Convert xs and ys, which are in fast scan/slow scan coordinates, + * to x and y */ + xs = (fs-(double)p->min_fs)*p->fsx + (ss-(double)p->min_ss)*p->ssx; + ys = (fs-(double)p->min_fs)*p->fsy + (ss-(double)p->min_ss)*p->ssy; + + rx = xs + p->cnx; + ry = ys + p->cny; + + for ( i=0; i<det->n_bad; i++ ) { + struct badregion *b = &det->bad[i]; + if ( rx < b->min_x ) continue; + if ( rx > b->max_x ) continue; + if ( ry < b->min_y ) continue; + if ( ry > b->max_y ) continue; + return 1; + } + + return 0; +} + + +double get_tt(struct image *image, double fs, double ss) +{ + double r, rx, ry; + struct panel *p; + double xs, ys; + + p = find_panel(image->det, fs, ss); + + /* Convert xs and ys, which are in fast scan/slow scan coordinates, + * to x and y */ + xs = (fs-p->min_fs)*p->fsx + (ss-p->min_ss)*p->ssx; + ys = (fs-p->min_fs)*p->fsy + (ss-p->min_ss)*p->ssy; + + rx = (xs + p->cnx) / p->res; + ry = (ys + p->cny) / p->res; + + r = sqrt(pow(rx, 2.0) + pow(ry, 2.0)); + + return atan2(r, p->clen); +} + + +void record_image(struct image *image, int do_poisson) +{ + int x, y; + double total_energy, energy_density; + double ph_per_e; + double area; + double max_tt = 0.0; + int n_inf1 = 0; + int n_neg1 = 0; + int n_nan1 = 0; + int n_inf2 = 0; + int n_neg2 = 0; + int n_nan2 = 0; + + /* How many photons are scattered per electron? */ + area = M_PI*pow(image->beam->beam_radius, 2.0); + total_energy = image->beam->fluence * ph_lambda_to_en(image->lambda); + energy_density = total_energy / area; + ph_per_e = (image->beam->fluence /area) * pow(THOMSON_LENGTH, 2.0); + STATUS("Fluence = %8.2e photons, " + "Energy density = %5.3f kJ/cm^2, " + "Total energy = %5.3f microJ\n", + image->beam->fluence, energy_density/1e7, total_energy*1e6); + + for ( x=0; x<image->width; x++ ) { + for ( y=0; y<image->height; y++ ) { + + double counts; + double cf; + double intensity, sa; + double pix_area, Lsq; + double xs, ys, rx, ry; + double dsq, proj_area; + struct panel *p; + + intensity = (double)image->data[x + image->width*y]; + if ( isinf(intensity) ) n_inf1++; + if ( intensity < 0.0 ) n_neg1++; + if ( isnan(intensity) ) n_nan1++; + + p = find_panel(image->det, x, y); + + /* Area of one pixel */ + pix_area = pow(1.0/p->res, 2.0); + Lsq = pow(p->clen, 2.0); + + /* Area of pixel as seen from crystal (approximate) */ + proj_area = pix_area * cos(image->twotheta[x + image->width*y]); + + /* Calculate distance from crystal to pixel */ + xs = (x-p->min_fs)*p->fsx + (y-p->min_ss)*p->ssx; + ys = (x-p->min_fs)*p->fsy + (y-p->min_ss)*p->ssy; + rx = (xs + p->cnx) / p->res; + ry = (ys + p->cny) / p->res; + dsq = sqrt(pow(rx, 2.0) + pow(ry, 2.0)); + + /* Projected area of pixel divided by distance squared */ + sa = proj_area / (dsq + Lsq); + + if ( do_poisson ) { + counts = poisson_noise(intensity * ph_per_e + * sa * image->beam->dqe ); + } else { + cf = intensity * ph_per_e * sa * image->beam->dqe; + counts = cf; + } + + image->data[x + image->width*y] = counts + * image->beam->adu_per_photon; + + /* Sanity checks */ + if ( isinf(image->data[x+image->width*y]) ) n_inf2++; + if ( isnan(image->data[x+image->width*y]) ) n_nan2++; + if ( image->data[x+image->width*y] < 0.0 ) n_neg2++; + + if ( image->twotheta[x + image->width*y] > max_tt ) { + max_tt = image->twotheta[x + image->width*y]; + } + + } + progress_bar(x, image->width-1, "Post-processing"); + } + + STATUS("Max 2theta = %.2f deg, min d = %.2f nm\n", + rad2deg(max_tt), (image->lambda/(2.0*sin(max_tt/2.0)))/1e-9); + + double tt_side = image->twotheta[(image->width/2)+image->width*0]; + STATUS("At middle of bottom edge: %.2f deg, min d = %.2f nm\n", + rad2deg(tt_side), (image->lambda/(2.0*sin(tt_side/2.0)))/1e-9); + + tt_side = image->twotheta[0+image->width*(image->height/2)]; + STATUS("At middle of left edge: %.2f deg, min d = %.2f nm\n", + rad2deg(tt_side), (image->lambda/(2.0*sin(tt_side/2.0)))/1e-9); + + STATUS("Halve the d values to get the voxel size for a synthesis.\n"); + + if ( n_neg1 + n_inf1 + n_nan1 + n_neg2 + n_inf2 + n_nan2 ) { + ERROR("WARNING: The raw calculation produced %i negative" + " values, %i infinities and %i NaNs.\n", + n_neg1, n_inf1, n_nan1); + ERROR("WARNING: After processing, there were %i negative" + " values, %i infinities and %i NaNs.\n", + n_neg2, n_inf2, n_nan2); + } +} + + +struct panel *find_panel(struct detector *det, double fs, double ss) +{ + int p; + + for ( p=0; p<det->n_panels; p++ ) { + if ( (fs >= det->panels[p].min_fs) + && (fs <= det->panels[p].max_fs) + && (ss >= det->panels[p].min_ss) + && (ss <= det->panels[p].max_ss) ) { + return &det->panels[p]; + } + } + + return NULL; +} + + +int find_panel_number(struct detector *det, int fs, int ss) +{ + int p; + + for ( p=0; p<det->n_panels; p++ ) { + if ( (fs >= det->panels[p].min_fs) + && (fs <= det->panels[p].max_fs) + && (ss >= det->panels[p].min_ss) + && (ss <= det->panels[p].max_ss) ) return p; + } + + return -1; +} + + +void fill_in_values(struct detector *det, struct hdfile *f) +{ + int i; + + for ( i=0; i<det->n_panels; i++ ) { + + struct panel *p = &det->panels[i]; + + if ( p->clen_from != NULL ) { + p->clen = get_value(f, p->clen_from) * 1.0e-3; + free(p->clen_from); + p->clen_from = NULL; + } + + p->clen += p->coffset; + + } +} + + +static struct panel *new_panel(struct detector *det, const char *name) +{ + struct panel *new; + + det->n_panels++; + det->panels = realloc(det->panels, det->n_panels*sizeof(struct panel)); + + new = &det->panels[det->n_panels-1]; + memcpy(new, &det->defaults, sizeof(struct panel)); + + /* Create a new copy of the camera length location if needed */ + if ( new->clen_from != NULL ) { + new->clen_from = strdup(new->clen_from); + } + strcpy(new->name, name); + + return new; +} + + +static struct badregion *new_bad_region(struct detector *det, const char *name) +{ + struct badregion *new; + + det->n_bad++; + det->bad = realloc(det->bad, det->n_bad*sizeof(struct badregion)); + + new = &det->bad[det->n_bad-1]; + new->min_x = NAN; + new->max_x = NAN; + new->min_y = NAN; + new->max_y = NAN; + strcpy(new->name, name); + + return new; +} + + +struct panel *find_panel_by_name(struct detector *det, const char *name) +{ + int i; + + for ( i=0; i<det->n_panels; i++ ) { + if ( strcmp(det->panels[i].name, name) == 0 ) { + return &det->panels[i]; + } + } + + return NULL; +} + + +static struct badregion *find_bad_region_by_name(struct detector *det, + const char *name) +{ + int i; + + for ( i=0; i<det->n_bad; i++ ) { + if ( strcmp(det->bad[i].name, name) == 0 ) { + return &det->bad[i]; + } + } + + return NULL; +} + + +static char *find_or_add_rg(struct detector *det, const char *name) +{ + int i; + char **new; + char *tmp; + + for ( i=0; i<det->num_rigid_groups; i++ ) { + + if ( strcmp(det->rigid_groups[i], name) == 0 ) { + return det->rigid_groups[i]; + } + + } + + new = realloc(det->rigid_groups, + (1+det->num_rigid_groups)*sizeof(char *)); + if ( new == NULL ) return NULL; + + det->rigid_groups = new; + + tmp = strdup(name); + det->rigid_groups[det->num_rigid_groups] = tmp; + + det->num_rigid_groups++; + + return tmp; +} + + +static int parse_field_for_panel(struct panel *panel, const char *key, + const char *val, struct detector *det) +{ + int reject = 0; + + if ( strcmp(key, "min_fs") == 0 ) { + panel->min_fs = atof(val); + } else if ( strcmp(key, "max_fs") == 0 ) { + panel->max_fs = atof(val); + } else if ( strcmp(key, "min_ss") == 0 ) { + panel->min_ss = atof(val); + } else if ( strcmp(key, "max_ss") == 0 ) { + panel->max_ss = atof(val); + } else if ( strcmp(key, "corner_x") == 0 ) { + panel->cnx = atof(val); + } else if ( strcmp(key, "corner_y") == 0 ) { + panel->cny = atof(val); + } else if ( strcmp(key, "rigid_group") == 0 ) { + panel->rigid_group = find_or_add_rg(det, val); + } else if ( strcmp(key, "clen") == 0 ) { + + char *end; + double v = strtod(val, &end); + if ( end == val ) { + /* This means "fill in later" */ + panel->clen = -1.0; + panel->clen_from = strdup(val); + } else { + panel->clen = v; + panel->clen_from = NULL; + } + + } else if ( strcmp(key, "coffset") == 0) { + panel->coffset = atof(val); + } else if ( strcmp(key, "res") == 0 ) { + panel->res = atof(val); + } else if ( strcmp(key, "peak_sep") == 0 ) { + panel->peak_sep = atof(val); + } else if ( strcmp(key, "integr_radius") == 0 ) { + panel->integr_radius = atof(val); + } else if ( strcmp(key, "badrow_direction") == 0 ) { + panel->badrow = val[0]; /* First character only */ + if ( (panel->badrow != 'x') && (panel->badrow != 'y') + && (panel->badrow != 'f') && (panel->badrow != 's') + && (panel->badrow != '-') ) { + ERROR("badrow_direction must be x, y, f, s or '-'\n"); + ERROR("Assuming '-'\n."); + panel->badrow = '-'; + } + if ( panel->badrow == 'x' ) panel->badrow = 'f'; + if ( panel->badrow == 'y' ) panel->badrow = 's'; + } else if ( strcmp(key, "no_index") == 0 ) { + panel->no_index = atob(val); + } else if ( strcmp(key, "fs") == 0 ) { + if ( dir_conv(val, &panel->fsx, &panel->fsy) != 0 ) { + ERROR("Invalid fast scan direction '%s'\n", val); + reject = 1; + } + } else if ( strcmp(key, "ss") == 0 ) { + if ( dir_conv(val, &panel->ssx, &panel->ssy) != 0 ) { + ERROR("Invalid slow scan direction '%s'\n", val); + reject = 1; + } + } else { + ERROR("Unrecognised field '%s'\n", key); + } + + return reject; +} + + +static int parse_field_bad(struct badregion *panel, const char *key, + const char *val) +{ + int reject = 0; + + if ( strcmp(key, "min_x") == 0 ) { + panel->min_x = atof(val); + } else if ( strcmp(key, "max_x") == 0 ) { + panel->max_x = atof(val); + } else if ( strcmp(key, "min_y") == 0 ) { + panel->min_y = atof(val); + } else if ( strcmp(key, "max_y") == 0 ) { + panel->max_y = atof(val); + } else { + ERROR("Unrecognised field '%s'\n", key); + } + + return reject; +} + + +static void parse_toplevel(struct detector *det, const char *key, + const char *val) +{ + if ( strcmp(key, "mask") == 0 ) { + + det->mask = strdup(val); + + } else if ( strcmp(key, "mask_bad") == 0 ) { + + char *end; + double v = strtod(val, &end); + + if ( end != val ) { + det->mask_bad = v; + } + + } else if ( strcmp(key, "mask_good") == 0 ) { + + char *end; + double v = strtod(val, &end); + + if ( end != val ) { + det->mask_good = v; + } + + } else if ( strcmp(key, "peak_sep") == 0 ) { + det->defaults.peak_sep = atof(val); + } else if ( strcmp(key, "integr_radius") == 0 ) { + det->defaults.integr_radius = atof(val); + } else if ( parse_field_for_panel(&det->defaults, key, val, det) ) { + ERROR("Unrecognised top level field '%s'\n", key); + } +} + + +struct detector *get_detector_geometry(const char *filename) +{ + FILE *fh; + struct detector *det; + char *rval; + char **bits; + int i; + int reject = 0; + int x, y, max_fs, max_ss; + + fh = fopen(filename, "r"); + if ( fh == NULL ) return NULL; + + det = calloc(1, sizeof(struct detector)); + if ( det == NULL ) { + fclose(fh); + return NULL; + } + + det->n_panels = 0; + det->panels = NULL; + det->n_bad = 0; + det->bad = NULL; + det->mask_good = 0; + det->mask_bad = 0; + det->mask = NULL; + det->num_rigid_groups = 0; + det->rigid_groups = NULL; + + /* The default defaults... */ + det->defaults.min_fs = -1; + det->defaults.min_ss = -1; + det->defaults.max_fs = -1; + det->defaults.max_ss = -1; + det->defaults.cnx = NAN; + det->defaults.cny = NAN; + det->defaults.clen = -1.0; + det->defaults.coffset = 0.0; + det->defaults.res = -1.0; + det->defaults.badrow = '-'; + det->defaults.no_index = 0; + det->defaults.peak_sep = 50.0; + det->defaults.integr_radius = 3.0; + det->defaults.fsx = 1.0; + det->defaults.fsy = 0.0; + det->defaults.ssx = 0.0; + det->defaults.ssy = 1.0; + det->defaults.rigid_group = NULL; + strncpy(det->defaults.name, "", 1023); + + do { + + int n1, n2; + char **path; + char line[1024]; + struct badregion *badregion = NULL; + struct panel *panel = NULL; + char *key; + char wholeval[1024]; + + rval = fgets(line, 1023, fh); + if ( rval == NULL ) break; + chomp(line); + + if ( line[0] == ';' ) continue; + + n1 = assplode(line, " \t", &bits, ASSPLODE_NONE); + if ( n1 < 3 ) { + for ( i=0; i<n1; i++ ) free(bits[i]); + free(bits); + continue; + } + + /* Stitch the pieces of the "value" back together */ + wholeval[0] = '\0'; /* Empty string */ + for ( i=2; i<n1; i++ ) { + if ( bits[i][0] == ';' ) break; /* Stop on comment */ + strncat(wholeval, bits[i], 1023); + } + + if ( bits[1][0] != '=' ) { + for ( i=0; i<n1; i++ ) free(bits[i]); + free(bits); + continue; + } + + n2 = assplode(bits[0], "/\\.", &path, ASSPLODE_NONE); + if ( n2 < 2 ) { + /* This was a top-level option, not handled above. */ + parse_toplevel(det, bits[0], bits[2]); + for ( i=0; i<n1; i++ ) free(bits[i]); + free(bits); + for ( i=0; i<n2; i++ ) free(path[i]); + free(path); + continue; + } + + if ( strncmp(path[0], "bad", 3) == 0 ) { + badregion = find_bad_region_by_name(det, path[0]); + if ( badregion == NULL ) { + badregion = new_bad_region(det, path[0]); + } + } else { + panel = find_panel_by_name(det, path[0]); + if ( panel == NULL ) { + panel = new_panel(det, path[0]); + } + } + + key = path[1]; + + if ( panel != NULL ) { + if ( parse_field_for_panel(panel, path[1], + wholeval, det) ) + { + reject = 1; + } + } else { + if ( parse_field_bad(badregion, path[1], wholeval) ) { + reject = 1; + } + } + + for ( i=0; i<n1; i++ ) free(bits[i]); + for ( i=0; i<n2; i++ ) free(path[i]); + free(bits); + free(path); + + } while ( rval != NULL ); + + if ( det->n_panels == -1 ) { + ERROR("No panel descriptions in geometry file.\n"); + fclose(fh); + free(det); + return NULL; + } + + max_fs = 0; + max_ss = 0; + for ( i=0; i<det->n_panels; i++ ) { + + if ( det->panels[i].min_fs < 0 ) { + ERROR("Please specify the minimum FS coordinate for" + " panel %s\n", det->panels[i].name); + reject = 1; + } + if ( det->panels[i].max_fs < 0 ) { + ERROR("Please specify the maximum FS coordinate for" + " panel %s\n", det->panels[i].name); + reject = 1; + } + if ( det->panels[i].min_ss < 0 ) { + ERROR("Please specify the minimum SS coordinate for" + " panel %s\n", det->panels[i].name); + reject = 1; + } + if ( det->panels[i].max_ss < 0 ) { + ERROR("Please specify the maximum SS coordinate for" + " panel %s\n", det->panels[i].name); + reject = 1; + } + if ( isnan(det->panels[i].cnx) ) { + ERROR("Please specify the corner X coordinate for" + " panel %s\n", det->panels[i].name); + reject = 1; + } + if ( isnan(det->panels[i].cny) ) { + ERROR("Please specify the corner Y coordinate for" + " panel %s\n", det->panels[i].name); + reject = 1; + } + if ( (det->panels[i].clen < 0.0) + && (det->panels[i].clen_from == NULL) ) { + ERROR("Please specify the camera length for" + " panel %s\n", det->panels[i].name); + reject = 1; + } + if ( det->panels[i].res < 0 ) { + ERROR("Please specify the resolution for" + " panel %s\n", det->panels[i].name); + reject = 1; + } + /* It's OK if the badrow direction is '0' */ + /* It's not a problem if "no_index" is still zero */ + /* The default peak_sep is OK (maybe) */ + /* The default transformation matrix is at least valid */ + + if ( det->panels[i].max_fs > max_fs ) { + max_fs = det->panels[i].max_fs; + } + if ( det->panels[i].max_ss > max_ss ) { + max_ss = det->panels[i].max_ss; + } + + } + + for ( i=0; i<det->n_bad; i++ ) { + + if ( isnan(det->bad[i].min_x) ) { + ERROR("Please specify the minimum x coordinate for" + " bad region %s\n", det->bad[i].name); + reject = 1; + } + if ( isnan(det->bad[i].min_y) ) { + ERROR("Please specify the minimum y coordinate for" + " bad region %s\n", det->bad[i].name); + reject = 1; + } + if ( isnan(det->bad[i].max_x) ) { + ERROR("Please specify the maximum x coordinate for" + " bad region %s\n", det->bad[i].name); + reject = 1; + } + if ( isnan(det->bad[i].max_y) ) { + ERROR("Please specify the maximum y coordinate for" + " bad region %s\n", det->bad[i].name); + reject = 1; + } + } + + for ( x=0; x<=max_fs; x++ ) { + for ( y=0; y<=max_ss; y++ ) { + if ( find_panel(det, x, y) == NULL ) { + ERROR("Detector geometry invalid: contains gaps.\n"); + reject = 1; + goto out; + } + } + } + +out: + det->max_fs = max_fs; + det->max_ss = max_ss; + + /* Calculate matrix inverse */ + for ( i=0; i<det->n_panels; i++ ) { + + struct panel *p; + double d; + + p = &det->panels[i]; + + if ( p->fsx*p->ssy == p->ssx*p->fsy ) { + ERROR("Panel %i transformation singular.\n", i); + reject = 1; + } + + d = (double)p->fsx*p->ssy - p->ssx*p->fsy; + p->xfs = p->ssy / d; + p->yfs = -p->ssx / d; + p->xss = -p->fsy / d; + p->yss = p->fsx / d; + + } + + if ( reject ) return NULL; + + fclose(fh); + + return det; +} + + +void free_detector_geometry(struct detector *det) +{ + int i; + + for ( i=0; i<det->num_rigid_groups; i++ ) { + free(det->rigid_groups[i]); + } + free(det->rigid_groups); + + free(det->panels); + free(det->bad); + free(det->mask); + free(det); +} + + +struct detector *copy_geom(const struct detector *in) +{ + struct detector *out; + int i; + + out = malloc(sizeof(struct detector)); + memcpy(out, in, sizeof(struct detector)); + + if ( in->mask != NULL ) { + out->mask = strdup(in->mask); + } else { + out->mask = NULL; /* = in->mask */ + } + + out->panels = malloc(out->n_panels * sizeof(struct panel)); + memcpy(out->panels, in->panels, out->n_panels * sizeof(struct panel)); + + out->bad = malloc(out->n_bad * sizeof(struct badregion)); + memcpy(out->bad, in->bad, out->n_bad * sizeof(struct badregion)); + + if ( in->rigid_groups != NULL ) { + + out->rigid_groups = malloc(out->num_rigid_groups*sizeof(char *)); + memcpy(out->rigid_groups, in->rigid_groups, + out->num_rigid_groups*sizeof(char *)); + + for ( i=0; i<in->num_rigid_groups; i++ ) { + out->rigid_groups[i] = strdup(in->rigid_groups[i]); + } + + } + + for ( i=0; i<out->n_panels; i++ ) { + + struct panel *p; + + p = &out->panels[i]; + + if ( p->clen_from != NULL ) { + /* Make a copy of the clen_from fields unique to this + * copy of the structure. */ + p->clen_from = strdup(p->clen_from); + } + + } + + for ( i=0; i<in->num_rigid_groups; i++ ) { + + int j; + char *rg = in->rigid_groups[i]; + char *rgn = out->rigid_groups[i]; + + for ( j=0; j<in->n_panels; j++ ) { + + if ( in->panels[j].rigid_group == rg ) { + out->panels[j].rigid_group = rgn; + } + + } + + } + + return out; +} + + +struct detector *simple_geometry(const struct image *image) +{ + struct detector *geom; + + geom = calloc(1, sizeof(struct detector)); + + geom->n_panels = 1; + geom->panels = calloc(1, sizeof(struct panel)); + + geom->panels[0].min_fs = 0; + geom->panels[0].max_fs = image->width-1; + geom->panels[0].min_ss = 0; + geom->panels[0].max_ss = image->height-1; + geom->panels[0].cnx = -image->width / 2.0; + geom->panels[0].cny = -image->height / 2.0; + geom->panels[0].rigid_group = NULL; + + geom->panels[0].fsx = 1; + geom->panels[0].fsy = 0; + geom->panels[0].ssx = 0; + geom->panels[0].ssy = 1; + + geom->panels[0].xfs = 1; + geom->panels[0].xss = 0; + geom->panels[0].yfs = 0; + geom->panels[0].yss = 1; + + return geom; +} + + +int reverse_2d_mapping(double x, double y, double *pfs, double *pss, + struct detector *det) +{ + int i; + + for ( i=0; i<det->n_panels; i++ ) { + + struct panel *p = &det->panels[i]; + double cx, cy, fs, ss; + + /* Get position relative to corner */ + cx = x - p->cnx; + cy = y - p->cny; + + /* Reverse the transformation matrix */ + fs = cx*p->xfs + cy*p->yfs; + ss = cx*p->xss + cy*p->yss; + + /* In range? */ + if ( fs < 0 ) continue; + if ( ss < 0 ) continue; + if ( fs > (p->max_fs-p->min_fs+1) ) continue; + if ( ss > (p->max_ss-p->min_ss+1) ) continue; + + *pfs = fs + p->min_fs; + *pss = ss + p->min_ss; + return 0; + + } + + return 1; +} + + +static void check_extents(struct panel p, double *min_x, double *min_y, + double *max_x, double *max_y, double fs, double ss) +{ + double xs, ys, rx, ry; + + xs = fs*p.fsx + ss*p.ssx; + ys = fs*p.fsy + ss*p.ssy; + + rx = xs + p.cnx; + ry = ys + p.cny; + + if ( rx > *max_x ) *max_x = rx; + if ( ry > *max_y ) *max_y = ry; + if ( rx < *min_x ) *min_x = rx; + if ( ry < *min_y ) *min_y = ry; +} + + +double largest_q(struct image *image) +{ + int fs, ss; + double ttm = 0.0; + double qmax = 0.0; + + for ( fs=0; fs<image->width; fs++ ) { + for ( ss=0; ss<image->height; ss++ ) { + + struct rvec q; + double tt; + + q = get_q(image, fs, ss, &tt, 1.0/image->lambda); + + if ( tt > ttm ) { + qmax = modulus(q.u, q.v, q.w); + ttm = tt; + } + + } + } + + return qmax; +} + + +double smallest_q(struct image *image) +{ + int fs, ss; + double ttm = +INFINITY; + double qmin = +INFINITY; + for ( fs=0; fs<image->width; fs++ ) { + for ( ss=0; ss<image->height; ss++ ) { + + struct rvec q; + double tt; + + q = get_q(image, fs, ss, &tt, 1.0/image->lambda); + + if ( tt < ttm ) { + qmin = modulus(q.u, q.v, q.w); + ttm = tt; + } + + } + } + + return qmin; +} + + +void get_pixel_extents(struct detector *det, + double *min_x, double *min_y, + double *max_x, double *max_y) +{ + int i; + + *min_x = 0.0; + *max_x = 0.0; + *min_y = 0.0; + *max_y = 0.0; + + /* To determine the maximum extents of the detector, put all four + * corners of each panel through the transformations and watch for the + * biggest */ + + for ( i=0; i<det->n_panels; i++ ) { + + check_extents(det->panels[i], min_x, min_y, max_x, max_y, + 0.0, + 0.0); + + check_extents(det->panels[i], min_x, min_y, max_x, max_y, + 0.0, + det->panels[i].max_ss-det->panels[i].min_ss+1); + + check_extents(det->panels[i], min_x, min_y, max_x, max_y, + det->panels[i].max_fs-det->panels[i].min_fs+1, + 0.0); + + check_extents(det->panels[i], min_x, min_y, max_x, max_y, + det->panels[i].max_fs-det->panels[i].min_fs+1, + det->panels[i].max_ss-det->panels[i].min_ss+1); + + + } +} + + +int write_detector_geometry(const char *filename, struct detector *det) +{ + struct panel *p; + int pi; + FILE *fh; + + if ( filename == NULL ) return 2; + if ( det->n_panels < 1 ) return 3; + + fh = fopen(filename, "w"); + if ( fh == NULL ) return 1; + + for ( pi=0; pi<det->n_panels; pi++) { + + p = &(det->panels[pi]); + + if ( p == NULL ) return 4; + + if ( pi > 0 ) fprintf(fh, "\n"); + + fprintf(fh, "%s/min_fs = %d\n", p->name, p->min_fs); + fprintf(fh, "%s/min_ss = %d\n", p->name, p->min_ss); + fprintf(fh, "%s/max_fs = %d\n", p->name, p->max_fs); + fprintf(fh, "%s/max_ss = %d\n", p->name, p->max_ss); + fprintf(fh, "%s/badrow_direction = %C\n", p->name, p->badrow); + fprintf(fh, "%s/res = %g\n", p->name, p->res); + fprintf(fh, "%s/peak_sep = %g\n", p->name, p->peak_sep); + fprintf(fh, "%s/clen = %s\n", p->name, p->clen_from); + fprintf(fh, "%s/fs = %+fx %+fy\n", p->name, p->fsx, p->fsy); + fprintf(fh, "%s/ss = %+fx %+fy\n", p->name, p->ssx, p->ssy); + fprintf(fh, "%s/corner_x = %g\n", p->name, p->cnx); + fprintf(fh, "%s/corner_y = %g\n", p->name, p->cny); + + if ( p->no_index ) { + fprintf(fh, "%s/no_index = 1\n", p->name); + } /* else don't clutter up the file */ + + if ( p->rigid_group != NULL ) { + fprintf(fh, "%s/rigid_group = %s\n", + p->name, p->rigid_group); + } + + } + fclose(fh); + + return 0; +} |