diff options
author | Alexandra Tolstikova <alexandra.tolstikova@desy.de> | 2015-02-11 13:44:59 +0100 |
---|---|---|
committer | Alexandra Tolstikova <alexandra.tolstikova@desy.de> | 2015-02-11 13:44:59 +0100 |
commit | f8d230451e7e0f71d5bf90d5f1079b89d19c8272 (patch) | |
tree | d8ffc5a24298393ab4a6e43b2e61ae440989e449 /libcrystfel | |
parent | a80c4c5d0fbc26062084dde2c380ae5370dcd600 (diff) |
asdf.c: codestyle fixed
Diffstat (limited to 'libcrystfel')
-rw-r--r-- | libcrystfel/src/asdf.c | 910 |
1 files changed, 469 insertions, 441 deletions
diff --git a/libcrystfel/src/asdf.c b/libcrystfel/src/asdf.c index 0735a14f..6ad29645 100644 --- a/libcrystfel/src/asdf.c +++ b/libcrystfel/src/asdf.c @@ -26,24 +26,24 @@ struct asdf_private { /* Possible direct vector */ struct tvector { - gsl_vector *t; - int n; // number of fitting reflections - int *fits; + gsl_vector *t; + int n; // number of fitting reflections + int *fits; }; struct asdf_cell { - gsl_vector *axes[3]; - gsl_vector *reciprocal[3]; - - int n; // number of fitting reflections - double volume; - - int N_refls; // total number of reflections - int *reflections; // reflections[i] = 1 if reflections fits - double **indices; // indices[i] = [h, k, l] for all reflections (not rounded) - - int acl; // minimum number of reflections fitting to one of the axes[] - int n_max; // maximum number of reflections fitting to some t-vector + gsl_vector *axes[3]; + gsl_vector *reciprocal[3]; + + int n; // number of fitting reflections + double volume; + + int N_refls; // total number of reflections + int *reflections; // reflections[i] = 1 if reflections fits + double **indices; // indices[i] = [h, k, l] for all reflections (not rounded) + + int acl; // minimum number of reflections fitting to one of the axes[] + int n_max; // maximum number of reflections fitting to some t-vector }; struct tvector tvector_new(int n) { @@ -73,13 +73,13 @@ static int tvector_memcpy(struct tvector *dest, struct tvector *src, int n) { static int asdf_cell_free(struct asdf_cell c) { int i; - for (i = 0; i < 3; i ++) { + for ( i = 0; i < 3; i++ ) { gsl_vector_free(c.axes[i]); gsl_vector_free(c.reciprocal[i]); } free(c.reflections); - for (i = 0; i < c.N_refls; i ++) { + for ( i = 0; i < c.N_refls; i++ ) { free(c.indices[i]); } free(c.indices); @@ -92,7 +92,7 @@ static struct asdf_cell asdf_cell_new(int n) { struct asdf_cell c; int i; - for (i = 0; i < 3; i ++) { + for ( i = 0; i < 3; i++ ) { c.axes[i] = gsl_vector_alloc(3); c.reciprocal[i] = gsl_vector_alloc(3); } @@ -101,7 +101,7 @@ static struct asdf_cell asdf_cell_new(int n) { c.reflections = malloc(sizeof(int) * n); c.indices = malloc(sizeof(int *) * n); - for (i = 0; i < n; i ++) { + for ( i = 0; i < n; i++ ) { c.indices[i] = malloc(sizeof(int) * 3); } @@ -115,7 +115,7 @@ static struct asdf_cell asdf_cell_new(int n) { static int asdf_cell_memcpy(struct asdf_cell *dest, struct asdf_cell *src) { int i; - for (i = 0; i < 3; i ++) { + for ( i = 0; i < 3; i++ ) { gsl_vector_memcpy(dest->axes[i], src->axes[i]); gsl_vector_memcpy(dest->reciprocal[i], src->reciprocal[i]); } @@ -130,7 +130,7 @@ static int asdf_cell_memcpy(struct asdf_cell *dest, struct asdf_cell *src) { memcpy(dest->indices, src->indices, sizeof(int *) * n); - for (i = 0; i < n; i ++) { + for (i = 0; i < n; i++ ) { memcpy(dest->indices[i], src->indices[i], sizeof(int) * 3); } @@ -140,51 +140,52 @@ static int asdf_cell_memcpy(struct asdf_cell *dest, struct asdf_cell *src) { } /* result = vec1 cross vec2 */ -static int cross_product(gsl_vector *vec1, gsl_vector *vec2, gsl_vector **result) { - double c1[3], c2[3], p[3]; - int i; - for (i = 0; i < 3; i += 1) { - c1[i] = gsl_vector_get(vec1, i); - c2[i] = gsl_vector_get(vec2, i); - } - - p[0] = c1[1] * c2[2] - c1[2] * c2[1]; - p[1] = - c1[0] * c2[2] + c1[2] * c2[0]; - p[2] = c1[0] * c2[1] - c1[1] * c2[0]; - - for (i = 0; i < 3; i += 1) { - gsl_vector_set(*result, i, p[i]); - } - - return 1; +static int cross_product(gsl_vector *vec1, gsl_vector *vec2, + gsl_vector **result) { + double c1[3], c2[3], p[3]; + int i; + for ( i = 0; i < 3; i++ ) { + c1[i] = gsl_vector_get(vec1, i); + c2[i] = gsl_vector_get(vec2, i); + } + + p[0] = c1[1] * c2[2] - c1[2] * c2[1]; + p[1] = - c1[0] * c2[2] + c1[2] * c2[0]; + p[2] = c1[0] * c2[1] - c1[1] * c2[0]; + + for ( i = 0; i < 3; i++ ) { + gsl_vector_set(*result, i, p[i]); + } + + return 1; } /* Returns triple product of three gsl_vectors */ static double calc_volume(gsl_vector *vec1, gsl_vector *vec2, gsl_vector *vec3) { - double volume; - gsl_vector *cross = gsl_vector_alloc(3); - - cross_product(vec1, vec2, &cross); - gsl_blas_ddot(vec3, cross, &volume); - - gsl_vector_free(cross); - return volume; + double volume; + gsl_vector *cross = gsl_vector_alloc(3); + + cross_product(vec1, vec2, &cross); + gsl_blas_ddot(vec3, cross, &volume); + + gsl_vector_free(cross); + return volume; } static int calc_reciprocal(gsl_vector **direct, gsl_vector **reciprocal) { - double volume; - - cross_product(direct[1], direct[2], &reciprocal[0]); - gsl_blas_ddot(direct[0], reciprocal[0], &volume); - gsl_vector_scale(reciprocal[0], 1/volume); - - cross_product(direct[2], direct[0], &reciprocal[1]); - gsl_vector_scale(reciprocal[1], 1/volume); - - cross_product(direct[0], direct[1], &reciprocal[2]); - gsl_vector_scale(reciprocal[2], 1/volume); - - return 1; + double volume; + + cross_product(direct[1], direct[2], &reciprocal[0]); + gsl_blas_ddot(direct[0], reciprocal[0], &volume); + gsl_vector_scale(reciprocal[0], 1/volume); + + cross_product(direct[2], direct[0], &reciprocal[1]); + gsl_vector_scale(reciprocal[1], 1/volume); + + cross_product(direct[0], direct[1], &reciprocal[2]); + gsl_vector_scale(reciprocal[2], 1/volume); + + return 1; } static int check_cell(struct asdf_private *dp, struct image *image, @@ -230,21 +231,21 @@ static int check_cell(struct asdf_private *dp, struct image *image, static int compare_doubles (const void *a, const void *b) { - const double *da = (const double *) a; - const double *db = (const double *) b; - - return (*da > *db) - (*da < *db); + const double *da = (const double *) a; + const double *db = (const double *) b; + + return (*da > *db) - (*da < *db); } /* Compares tvectors by length */ static int compare_tvectors (const void *a, const void *b) { - struct tvector *ta = (struct tvector *) a; - struct tvector *tb = (struct tvector *) b; + struct tvector *ta = (struct tvector *) a; + struct tvector *tb = (struct tvector *) b; //~ if (ta->n == tb->n) { - return (gsl_blas_dnrm2(ta->t) > gsl_blas_dnrm2(tb->t)) - - (gsl_blas_dnrm2(ta->t) < gsl_blas_dnrm2(tb->t)); + return (gsl_blas_dnrm2(ta->t) > gsl_blas_dnrm2(tb->t)) - + (gsl_blas_dnrm2(ta->t) < gsl_blas_dnrm2(tb->t)); //~ } //~ //~ return (ta->n > tb->n) - (ta->n < tb->n); @@ -253,75 +254,75 @@ static int compare_tvectors (const void *a, const void *b) /* Calculates normal to a triplet c1, c2, c3. Returns 0 if reflections are on * the same line */ static int calc_normal(gsl_vector *c1, gsl_vector *c2, gsl_vector *c3, - gsl_vector *normal) { + gsl_vector *normal) { - gsl_vector *c12 = gsl_vector_alloc(3); - gsl_vector *c23 = gsl_vector_alloc(3); - gsl_vector *c31 = gsl_vector_alloc(3); - gsl_vector *res = gsl_vector_alloc(3); - - cross_product(c1, c2, &c12); - cross_product(c2, c3, &c23); - cross_product(c3, c1, &c31); - - int i; - for (i = 0; i < 3; i += 1) { - gsl_vector_set(res, i, gsl_vector_get(c12, i) + - gsl_vector_get(c23, i) + - gsl_vector_get(c31, i)); - } - - gsl_vector_free(c12); - gsl_vector_free(c23); - gsl_vector_free(c31); - - double norm = gsl_blas_dnrm2(res); - if (norm < 0.0001) { - gsl_vector_free(res); - return 0; - } else { - gsl_vector_scale(res, 1/norm); - gsl_vector_memcpy(normal, res); - gsl_vector_free(res); - } - - return 1; + gsl_vector *c12 = gsl_vector_alloc(3); + gsl_vector *c23 = gsl_vector_alloc(3); + gsl_vector *c31 = gsl_vector_alloc(3); + gsl_vector *res = gsl_vector_alloc(3); + + cross_product(c1, c2, &c12); + cross_product(c2, c3, &c23); + cross_product(c3, c1, &c31); + + int i; + for ( i = 0; i < 3; i++ ) { + gsl_vector_set(res, i, gsl_vector_get(c12, i) + + gsl_vector_get(c23, i) + + gsl_vector_get(c31, i)); + } + + gsl_vector_free(c12); + gsl_vector_free(c23); + gsl_vector_free(c31); + + double norm = gsl_blas_dnrm2(res); + if ( norm < 0.0001 ) { + gsl_vector_free(res); + return 0; + } else { + gsl_vector_scale(res, 1/norm); + gsl_vector_memcpy(normal, res); + gsl_vector_free(res); + } + + return 1; } static float find_ds_fft(double *projections, int N_projections, double d_max) { - int n = N_projections; - double projections_sorted[n]; - memcpy(projections_sorted, projections, sizeof(double) * n); - qsort(projections_sorted, n, sizeof(double), compare_doubles); - - int i; - - int N = 1024; // number of points in fft calculation - - double *in = malloc(sizeof(double) * N); - fftw_complex *out = fftw_malloc(sizeof (fftw_complex) * N); - - for (i = 0; i < N; i++) { - in[i] = 0; - } - - for (i = 0; i < n; i++) { - in[(int)((projections_sorted[i] - projections_sorted[0]) / - (projections_sorted[n - 1] - projections_sorted[0]) * N)] ++; - } + int n = N_projections; + double projections_sorted[n]; + memcpy(projections_sorted, projections, sizeof(double) * n); + qsort(projections_sorted, n, sizeof(double), compare_doubles); + + int i; + + int N = 1024; // number of points in fft calculation + + double *in = malloc(sizeof(double) * N); + fftw_complex *out = fftw_malloc(sizeof (fftw_complex) * N); + + for ( i = 0; i < N; i++ ) { + in[i] = 0; + } + + for ( i = 0; i < n; i++ ) { + in[(int)((projections_sorted[i] - projections_sorted[0]) / + (projections_sorted[n - 1] - projections_sorted[0]) * N)] ++; + } - fftw_plan p = fftw_plan_dft_r2c_1d(N, in, out, FFTW_MEASURE); - fftw_execute(p); - fftw_destroy_plan(p); - - int i_max = (int)(d_max * (projections_sorted[n - 1] - - projections_sorted[0])); - - int d = 1; - double max = 0; - double a; - for (i = 1; i <= i_max; i ++) { + fftw_plan p = fftw_plan_dft_r2c_1d(N, in, out, FFTW_MEASURE); + fftw_execute(p); + fftw_destroy_plan(p); + + int i_max = (int)(d_max * (projections_sorted[n - 1] - + projections_sorted[0])); + + int d = 1; + double max = 0; + double a; + for ( i = 1; i <= i_max; i++ ) { a = sqrt(out[i][0] * out[i][0] + out[i][1] * out[i][1]); if (a > max) { max = a; @@ -343,17 +344,19 @@ static float find_ds_fft(double *projections, int N_projections, double d_max) { static int check_refl_fitting_ds(double *projections, int N_projections, double ds, double LevelFit) { - if (ds == 0) return 0; + if ( ds == 0 ) return 0; - int i; - int n = 0; - for (i = 0; i < N_projections; i += 1) { - if (fabs(projections[i] - ds * round(projections[i]/ds)) < LevelFit) { + int i; + int n = 0; + for ( i = 0; i < N_projections; i++ ) { + if ( fabs(projections[i] - + ds * round(projections[i]/ds)) < LevelFit ) + { n += 1; } } - return n; + return n; } /* Refines d*, writes 1 to fits[i] if the i-th projection fits d* */ @@ -370,11 +373,12 @@ static float refine_ds(double *projections, int N_projections, double ds, double c1, cov11, sumsq; double ds_new = ds; - while (N_fits < N_new) { + while ( N_fits < N_new ) { N_fits = 0; - for (i = 0; i < N_projections; i ++) { - if (fabs(projections[i] - ds_new * round(projections[i]/ds_new)) < - LevelFit) { + for ( i = 0; i < N_projections; i++ ) { + if ( fabs(projections[i] - ds_new * + round(projections[i] / ds_new)) < LevelFit ) + { fit_refls[N_fits] = projections[i]; indices[N_fits] = round(projections[i]/ds_new); N_fits ++; @@ -385,9 +389,11 @@ static float refine_ds(double *projections, int N_projections, double ds, } - gsl_fit_mul(indices, 1, fit_refls, 1, N_fits, &c1, &cov11, &sumsq); - N_new = check_refl_fitting_ds(projections, N_projections, c1, LevelFit); - if (N_new >= N_fits) { + gsl_fit_mul(indices, 1, fit_refls, 1, N_fits, &c1, &cov11, + &sumsq); + N_new = check_refl_fitting_ds(projections, N_projections, c1, + LevelFit); + if ( N_new >= N_fits ) { ds_new = c1; } } @@ -397,142 +403,146 @@ static float refine_ds(double *projections, int N_projections, double ds, static int check_refl_fitting_cell(struct asdf_cell *c, gsl_vector **reflections, - int N_reflections, double IndexFit) { - - double dist[3]; - - calc_reciprocal(c->axes, c->reciprocal); - c->n = 0; - int i, j, k; - for(i = 0; i < N_reflections; i += 1) { - - for (j = 0; j < 3; j += 1) dist[j] = 0; - - for (j = 0; j < 3; j += 1) { - gsl_blas_ddot(reflections[i], c->axes[j], &c->indices[i][j]); - - for (k = 0; k < 3; k += 1) { - dist[k] += gsl_vector_get(c->reciprocal[j], k) * - (c->indices[i][j] - round(c->indices[i][j])); - } - } - - /* A reflection fits if the distance (in reciprocal space) between the - * observed and calculated reflection position is less than Indexfit */ - - if (dist[0]*dist[0] + dist[1]*dist[1] + dist[2]*dist[2] < - IndexFit * IndexFit ) { - c->reflections[i] = 1; - c->n += 1; - } else { - c->reflections[i] = 0; - } - } - - return 1; + int N_reflections, double IndexFit) { + + double dist[3]; + + calc_reciprocal(c->axes, c->reciprocal); + c->n = 0; + int i, j, k; + for( i = 0; i < N_reflections; i += 1 ) { + + for ( j = 0; j < 3; j++ ) dist[j] = 0; + + for ( j = 0; j < 3; j++ ) { + gsl_blas_ddot(reflections[i], c->axes[j], + &c->indices[i][j]); + + for ( k = 0; k < 3; k++ ) { + dist[k] += gsl_vector_get(c->reciprocal[j], k) * + (c->indices[i][j] - round(c->indices[i][j])); + } + } + + /* A reflection fits if the distance (in reciprocal space) + * between the observed and calculated reflection position + * is less than Indexfit */ + + if ( dist[0]*dist[0] + dist[1]*dist[1] + dist[2]*dist[2] < + IndexFit * IndexFit ) { + c->reflections[i] = 1; + c->n++; + } else { + c->reflections[i] = 0; + } + } + + return 1; } static void print_asdf_cell(struct asdf_cell cc) { - double a, b, c, alpha, beta, gamma, ab, bc, ca; - - a = gsl_blas_dnrm2(cc.axes[0]); - b = gsl_blas_dnrm2(cc.axes[1]); - c = gsl_blas_dnrm2(cc.axes[2]); - - gsl_blas_ddot(cc.axes[0], cc.axes[1], &ab); - gsl_blas_ddot(cc.axes[1], cc.axes[2], &bc); - gsl_blas_ddot(cc.axes[0], cc.axes[2], &ca); - - alpha = acos(bc/b/c)/M_PI*180; - beta = acos(ca/a/c)/M_PI*180; - gamma = acos(ab/a/b)/M_PI*180; - - //~ int i, j; - //~ for (i = 0; i < 3; i ++) { + double a, b, c, alpha, beta, gamma, ab, bc, ca; + + a = gsl_blas_dnrm2(cc.axes[0]); + b = gsl_blas_dnrm2(cc.axes[1]); + c = gsl_blas_dnrm2(cc.axes[2]); + + gsl_blas_ddot(cc.axes[0], cc.axes[1], &ab); + gsl_blas_ddot(cc.axes[1], cc.axes[2], &bc); + gsl_blas_ddot(cc.axes[0], cc.axes[2], &ca); + + alpha = acos(bc/b/c)/M_PI*180; + beta = acos(ca/a/c)/M_PI*180; + gamma = acos(ab/a/b)/M_PI*180; + + //~ int i, j; + //~ for (i = 0; i < 3; i ++) { //~ for (j = 0; j < 3; j ++) { //~ printf("%f ", gsl_vector_get(cc.axes[i], j)); //~ } //~ printf("\n"); //~ } - printf("%.2f %.2f %.2f %.2f %.2f %.2f %.0f %d \n", a, b, c, - alpha, beta, gamma, - cc.volume, cc.n); - + printf("%.2f %.2f %.2f %.2f %.2f %.2f %.0f %d \n", a, b, c, + alpha, beta, gamma, + cc.volume, cc.n); + } +/* Returns 0 when refinement doesn't converge (i.e. all fitting reflections + * lie in the same plane) */ static int refine_asdf_cell(struct asdf_cell c, gsl_vector **reflections, int N_reflections, double IndexFit) { - gsl_matrix *X = gsl_matrix_alloc(c.n, 3); - - gsl_vector *r[] = {gsl_vector_alloc(c.n), - gsl_vector_alloc(c.n), - gsl_vector_alloc(c.n)}; - - gsl_vector *res = gsl_vector_alloc(3); - gsl_matrix *cov = gsl_matrix_alloc (3, 3); - double chisq; - - int i, j; - int n = 0; - for (i = 0; i < N_reflections; i += 1) { - if (c.reflections[i] == 1) { - for (j = 0; j < 3; j += 1) { - gsl_matrix_set(X, n, j, round(c.indices[i][j])); - gsl_vector_set(r[j], n, gsl_vector_get(reflections[i], j)); - } - n += 1; - } - } - - gsl_multifit_linear_workspace *work = gsl_multifit_linear_alloc(c.n, 3); - - for (i = 0; i < 3; i += 1) { - gsl_multifit_linear (X, r[i], res, cov, &chisq, work); - - for (j = 0; j < 3; j += 1) { - gsl_vector_set(c.reciprocal[j], i, gsl_vector_get(res, j)); - } - } - - calc_reciprocal(c.reciprocal, c.axes); + gsl_matrix *X = gsl_matrix_alloc(c.n, 3); + + gsl_vector *r[] = {gsl_vector_alloc(c.n), + gsl_vector_alloc(c.n), + gsl_vector_alloc(c.n)}; + + gsl_vector *res = gsl_vector_alloc(3); + gsl_matrix *cov = gsl_matrix_alloc (3, 3); + double chisq; + + int i, j; + int n = 0; + for ( i = 0; i < N_reflections; i++ ) if ( c.reflections[i] == 1 ) + { + for ( j = 0; j < 3; j++ ) { + gsl_matrix_set(X, n, j, round(c.indices[i][j])); + gsl_vector_set(r[j], n, + gsl_vector_get(reflections[i], j)); + } + n++; + } + + gsl_multifit_linear_workspace *work = gsl_multifit_linear_alloc(c.n, 3); + + for ( i = 0; i < 3; i++ ) { + gsl_multifit_linear (X, r[i], res, cov, &chisq, work); + + for (j = 0; j < 3; j++ ) { + gsl_vector_set(c.reciprocal[j], i, + gsl_vector_get(res, j)); + } + } + + calc_reciprocal(c.reciprocal, c.axes); double a[3]; - for (i = 0; i < 3; i ++) { + for ( i = 0; i < 3; i++ ) { a[i] = gsl_blas_dnrm2(c.axes[i]); } - - gsl_multifit_linear_free(work); - gsl_vector_free(res); - gsl_matrix_free(cov); - gsl_matrix_free(X); - for (i = 0; i < 3; i += 1) { - gsl_vector_free(r[i]); - } - - if (fabs(a[0]) > 10000 || fabs(a[1]) > 10000 || fabs(a[2]) > 10000 - || isnan(a[0])) { + + gsl_multifit_linear_free(work); + gsl_vector_free(res); + gsl_matrix_free(cov); + gsl_matrix_free(X); + for ( i = 0; i < 3; i++ ) { + gsl_vector_free(r[i]); + } + + if ( fabs(a[0]) > 10000 || fabs(a[1]) > 10000 || + fabs(a[2]) > 10000 || isnan(a[0]) ) + { return 0; } - return 1; + return 1; } static int reduce_asdf_cell(struct asdf_cell *cl) { double a, b, c, alpha, beta, gamma, ab, bc, ca, bb, cc; - gsl_vector *va = gsl_vector_alloc(3); - - gsl_vector *vb = gsl_vector_alloc(3); - - gsl_vector *vc = gsl_vector_alloc(3); + gsl_vector *va = gsl_vector_alloc(3); + gsl_vector *vb = gsl_vector_alloc(3); + gsl_vector *vc = gsl_vector_alloc(3); int changed = 1; - while (changed) { + while ( changed ) { changed = 0; - gsl_vector_memcpy(va, cl->axes[0]); + gsl_vector_memcpy(va, cl->axes[0]); gsl_vector_memcpy(vb, cl->axes[1]); gsl_vector_memcpy(vc, cl->axes[2]); @@ -548,9 +558,9 @@ static int reduce_asdf_cell(struct asdf_cell *cl) { beta = acos(ca/a/c)/M_PI*180; gamma = acos(ab/a/b)/M_PI*180; - if (changed == 0) { + if ( changed == 0 ) { - if (gamma < 90) { + if ( gamma < 90 ) { gsl_vector_scale(vb, -1); gamma = 180 - gamma; alpha = 180 - alpha; @@ -558,9 +568,9 @@ static int reduce_asdf_cell(struct asdf_cell *cl) { gsl_vector_add(vb, va); bb = gsl_blas_dnrm2(vb); - if (bb < b) { + if ( bb < b ) { b = bb; - if (a < b) { + if ( a < b ) { gsl_vector_memcpy(cl->axes[1], vb); } else { gsl_vector_memcpy(cl->axes[1], va); @@ -570,9 +580,9 @@ static int reduce_asdf_cell(struct asdf_cell *cl) { } } - if (changed == 0) { + if ( changed == 0 ) { - if (beta < 90) { + if ( beta < 90 ) { gsl_vector_scale(vc, -1); beta = 180 - beta; alpha = 180 - alpha; @@ -580,11 +590,11 @@ static int reduce_asdf_cell(struct asdf_cell *cl) { gsl_vector_add(vc, va); cc = gsl_blas_dnrm2(vc); - if (cc < c) { + if ( cc < c ) { c = cc; - if (b < c) { + if ( b < c ) { gsl_vector_memcpy(cl->axes[2], vc); - } else if (a < c) { + } else if ( a < c ) { gsl_vector_memcpy(cl->axes[1], vc); gsl_vector_memcpy(cl->axes[2], vb); } else { @@ -596,8 +606,8 @@ static int reduce_asdf_cell(struct asdf_cell *cl) { } } - if (changed == 0) { - if (alpha < 90) { + if ( changed == 0 ) { + if ( alpha < 90 ) { gsl_vector_scale(vc, -1); beta = 180 - beta; alpha = 180 - alpha; @@ -605,11 +615,11 @@ static int reduce_asdf_cell(struct asdf_cell *cl) { gsl_vector_add(vc, vb); cc = gsl_blas_dnrm2(vc); - if (cc < c) { + if ( cc < c ) { c = cc; - if (b < c) { + if ( b < c ) { gsl_vector_memcpy(cl->axes[2], vc); - } else if (a < c) { + } else if ( a < c ) { gsl_vector_memcpy(cl->axes[1], vc); gsl_vector_memcpy(cl->axes[2], vb); } else { @@ -624,7 +634,7 @@ static int reduce_asdf_cell(struct asdf_cell *cl) { cross_product(cl->axes[0], cl->axes[1], &vc); gsl_blas_ddot(vc, cl->axes[2], &cl->volume); - if (cl->volume < 0) { + if ( cl->volume < 0 ) { gsl_vector_scale(cl->axes[2], -1); cl->volume *= -1; } @@ -637,34 +647,36 @@ static int reduce_asdf_cell(struct asdf_cell *cl) { } static int check_cell_angles(gsl_vector *va, gsl_vector *vb, gsl_vector *vc, - double max_cos) { + double max_cos) +{ double a, b, c, cosa, cosb, cosg, ab, bc, ca; - a = gsl_blas_dnrm2(va); - b = gsl_blas_dnrm2(vb); - c = gsl_blas_dnrm2(vc); - - gsl_blas_ddot(va, vb, &ab); - gsl_blas_ddot(vb, vc, &bc); - gsl_blas_ddot(vc, va, &ca); - - cosa = bc/b/c; - cosb = ca/a/c; - cosg = ab/a/b; - - if (fabs(cosa) > max_cos || fabs(cosb) > max_cos || fabs(cosg) > max_cos) { + a = gsl_blas_dnrm2(va); + b = gsl_blas_dnrm2(vb); + c = gsl_blas_dnrm2(vc); + + gsl_blas_ddot(va, vb, &ab); + gsl_blas_ddot(vb, vc, &bc); + gsl_blas_ddot(vc, va, &ca); + + cosa = bc/b/c; + cosb = ca/a/c; + cosg = ab/a/b; + + if ( fabs(cosa) > max_cos || fabs(cosb) > max_cos || + fabs(cosg) > max_cos ) { return 0; } - - return 1; + + return 1; } /* Returns min(t1.n, t2.n, t3.n) */ static int find_acl(struct tvector t1, struct tvector t2, struct tvector t3) { int i = t1.n, j = t2.n, k = t3.n; - if (i <= j && i <= k) return i; - if (j <= i && j <= k) return j; - if (k <= i && k <= j) return k; + if ( i <= j && i <= k ) return i; + if ( j <= i && j <= k ) return j; + if ( k <= i && k <= j ) return k; } static int find_cell(struct tvector *tvectors, int N_tvectors, double IndexFit, @@ -676,110 +688,118 @@ static int find_cell(struct tvector *tvectors, int N_tvectors, double IndexFit, double volume; - // only tvectors with number of fitting reflections > acl are considered + /* Only tvectors with the number of fitting reflections > acl are + * considered */ int acl = N_reflections < 18 ? 6 : N_reflections/3; struct asdf_cell c = asdf_cell_new(N_reflections); - // traversing a 3d array in slices perpendicular to the main diagonal - int sl; - for (sl = 0; sl < 3 * N_tvectors - 1; sl++) { - - int i_min = sl < 2 * N_tvectors ? 0 : sl - 2 * N_tvectors; - int i_max = sl < N_tvectors ? sl : N_tvectors; + /* Traversing a 3d array in slices perpendicular to the main diagonal */ + int sl; + for ( sl = 0; sl < 3 * N_tvectors - 1; sl++ ) { - for (i = i_min; i < i_max; i++) if (tvectors[i].n > acl) { - - int j_min = sl - N_tvectors - 2 * i - 1 < 0 ? i + 1 : sl - N_tvectors - i; - int j_max = sl - N_tvectors - i < 0 ? sl - i : N_tvectors; - - - for (j = j_min; j < j_max; j++) if (tvectors[j].n > acl) { - - k = sl - i - j - 1; - - if (k > j && tvectors[k].n > acl && - check_cell_angles(tvectors[i].t, - tvectors[j].t, - tvectors[k].t, 0.99) ) { + int i_min = sl < 2 * N_tvectors ? 0 : sl - 2 * N_tvectors; + int i_max = sl < N_tvectors ? sl : N_tvectors; + + for ( i = i_min; i < i_max; i++) if (tvectors[i].n > acl ) { + + int j_min = sl - N_tvectors - 2 * i - 1 < 0 ? i + 1 : sl - N_tvectors - i; + int j_max = sl - N_tvectors - i < 0 ? sl - i : N_tvectors; + + for ( j = j_min; j < j_max; j++) if (tvectors[j].n > acl ) { + + k = sl - i - j - 1; + + if ( k > j && tvectors[k].n > acl && + check_cell_angles(tvectors[i].t, + tvectors[j].t, + tvectors[k].t, 0.99) ) + { + + volume = calc_volume(tvectors[i].t, + tvectors[j].t, + tvectors[k].t); + + if ( fabs(volume) > volume_min && + fabs(volume) < volume_max ) + { + + gsl_vector_memcpy(c.axes[0], tvectors[i].t); + gsl_vector_memcpy(c.axes[1], tvectors[j].t); + gsl_vector_memcpy(c.axes[2], tvectors[k].t); + + c.volume = volume; + check_refl_fitting_cell(&c, reflections, + N_reflections, + IndexFit); - volume = calc_volume(tvectors[i].t, - tvectors[j].t, - tvectors[k].t); + if ( c.n < 6 ) break; + + reduce_asdf_cell(&c); + + /* if one of the cell angles > 135 or < 45 + * do not continue */ + if ( !check_cell_angles(c.axes[0], c.axes[1], + c.axes[2], 0.71) ) break; + + /* index reflections with new cell axes */ + check_refl_fitting_cell(&c, reflections, + N_reflections, + IndexFit); + + acl = find_acl(tvectors[i], + tvectors[j], + tvectors[k]); + + c.acl = acl; + c.n_max = n_max; + + /* refine cell until the number of fitting + * reflections stops increasing */ + n = 0; + cell_correct = 1; + while ( c.n - n && cell_correct ) { + n = c.n; + cell_correct = refine_asdf_cell(c, + reflections, + N_reflections, + IndexFit); - if (fabs(volume) > volume_min && fabs(volume) < volume_max){ - - gsl_vector_memcpy(c.axes[0], tvectors[i].t); - gsl_vector_memcpy(c.axes[1], tvectors[j].t); - gsl_vector_memcpy(c.axes[2], tvectors[k].t); - - c.volume = volume; - check_refl_fitting_cell(&c, reflections, N_reflections, - IndexFit); - - if (c.n >= 6) { - reduce_asdf_cell(&c); - - // if one of the cell angles > 135 or < 45 do not continue - if (!check_cell_angles(c.axes[0], c.axes[1], - c.axes[2], 0.71)) break; - - // index reflections with new cell axes - check_refl_fitting_cell(&c, reflections, - N_reflections, IndexFit); - - acl = find_acl(tvectors[i], - tvectors[j], - tvectors[k]); - - c.acl = acl; - c.n_max = n_max; - - // refine cell until number of fitting reflections - // stops increasing - n = 0; - cell_correct = 1; - while (c.n - n && cell_correct) { - n = c.n; - cell_correct = refine_asdf_cell(c, reflections, - N_reflections, - IndexFit); - - check_refl_fitting_cell(&c, reflections, - N_reflections, IndexFit); - } - - if (cell_correct) { - reduce_asdf_cell(&c); - if (result->n < c.n) - asdf_cell_memcpy(result, &c); - - acl++; - - if (acl > n_max) break; - if (tvectors[j].n <= acl || - tvectors[i].n <= acl) break; - } - } + check_refl_fitting_cell(&c, reflections, + N_reflections, + IndexFit); + } + + if ( cell_correct ) { + reduce_asdf_cell(&c); + if ( result->n < c.n ) { + asdf_cell_memcpy(result, &c); } + acl++; + + if (acl > n_max) break; + if (tvectors[j].n <= acl || + tvectors[i].n <= acl) break; } } - if (acl > n_max) break; - if (tvectors[i].n <= acl) break; } - if (acl > n_max) break; + } + if ( acl > n_max ) break; + if ( tvectors[i].n <= acl ) break; + } + if ( acl > n_max ) break; } asdf_cell_free(c); - if (result->n) return 1; + if ( result->n ) return 1; return 0; } static void shuffle_triplets(int **triplets, int n) { int i, j; int t[3]; - for (i = 0; i < n - 1; i++) { + for ( i = 0; i < n - 1; i++ ) { j = i + rand() / (RAND_MAX / (n - i) + 1); memcpy(t, triplets[j], 3 * sizeof(int)); memcpy(triplets[j], triplets[i], 3 * sizeof(int)); @@ -793,9 +813,10 @@ static double angle_between_gsl(gsl_vector *a, gsl_vector *b) { return acos(ab/gsl_blas_dnrm2(a)/gsl_blas_dnrm2(b)) * 180 / M_PI; } -static int index_refls(gsl_vector **reflections, int N_reflections, double d_max, - double volume_min, double volume_max, double LevelFit, - double IndexFit, int i_max, struct asdf_cell *c) { +static int index_refls(gsl_vector **reflections, int N_reflections, + double d_max, double volume_min, double volume_max, + double LevelFit, double IndexFit, int i_max, + struct asdf_cell *c) { int i, j, k, l, n; @@ -805,9 +826,9 @@ static int index_refls(gsl_vector **reflections, int N_reflections, double d_max int **triplets = malloc(N_triplets * sizeof(int *)); l = 0; - for (i = 0; i < N_reflections; i++) { - for (j = i + 1; j < N_reflections; j++) { - for (k = j + 1; k < N_reflections; k++) { + for ( i = 0; i < N_reflections; i++ ) { + for ( j = i + 1; j < N_reflections; j++ ) { + for ( k = j + 1; k < N_reflections; k++ ) { triplets[l] = malloc(3 * sizeof(int)); triplets[l][0] = i; @@ -819,7 +840,7 @@ static int index_refls(gsl_vector **reflections, int N_reflections, double d_max } /* Triplets are processed in a random sequence if N_triplets > 10000 */ - if (N_reflections > 40) shuffle_triplets(triplets, N_triplets); + if ( N_reflections > 40 ) shuffle_triplets(triplets, N_triplets); gsl_vector *normal = gsl_vector_alloc(3); @@ -828,41 +849,47 @@ static int index_refls(gsl_vector **reflections, int N_reflections, double d_max int *fits = malloc(N_reflections * sizeof(int)); - if (i_max > N_triplets) i_max = N_triplets; + if ( i_max > N_triplets ) i_max = N_triplets; - struct tvector *tvectors = malloc(i_max * sizeof(struct tvector)); + struct tvector *tvectors = malloc(i_max * sizeof(struct tvector)); int N_tvectors = 0; int n_max = 0; // maximum number of reflections fitting one of tvectors - for (i = 0; i < i_max; i++) { - if (calc_normal(reflections[triplets[i][0]], - reflections[triplets[i][1]], - reflections[triplets[i][2]], - normal)) { + for ( i = 0; i < i_max; i++ ) { + if ( calc_normal(reflections[triplets[i][0]], + reflections[triplets[i][1]], + reflections[triplets[i][2]], + normal) ) + { - // calculate projections of reflections to normal - for (k = 0; k < N_reflections; k++) { - gsl_blas_ddot(normal, reflections[k], &projections[k]); + /* Calculate projections of reflections to normal */ + for ( k = 0; k < N_reflections; k++ ) { + gsl_blas_ddot(normal, reflections[k], + &projections[k]); } - // find ds - period in 1d lattice of projections + /* Find ds - period in 1d lattice of projections */ ds = find_ds_fft(projections, N_reflections, d_max); - // refine ds, write 1 to fits[i] if reflections[i] fits ds - ds = refine_ds(projections, N_reflections, ds, LevelFit, fits); + /* Refine ds, write 1 to fits[i] if reflections[i] + * fits ds */ + ds = refine_ds(projections, N_reflections, ds, LevelFit, + fits); - // n - number of reflections fitting ds - n = check_refl_fitting_ds(projections, N_reflections, ds, LevelFit); + /* n - number of reflections fitting ds */ + n = check_refl_fitting_ds(projections, N_reflections, + ds, LevelFit); - // normal/ds - possible direct vector + /* normal/ds - possible direct vector */ gsl_vector_scale(normal, 1/ds); - if (n > N_reflections/3 && n > 6) { + if ( n > N_reflections/3 && n > 6 ) { tvectors[N_tvectors] = tvector_new(N_reflections); - gsl_vector_memcpy(tvectors[N_tvectors].t, normal); + gsl_vector_memcpy(tvectors[N_tvectors].t, + normal); memcpy(tvectors[N_tvectors].fits, fits, N_reflections * sizeof(int)); @@ -874,37 +901,39 @@ static int index_refls(gsl_vector **reflections, int N_reflections, double d_max } } - if ((i != 0 && i % 10000 == 0) || i == i_max - 1) { + if ( (i != 0 && i % 10000 == 0) || i == i_max - 1 ) { - // sort tvectors by length + /* Sort tvectors by length */ qsort(tvectors, N_tvectors, sizeof(struct tvector), compare_tvectors); - /* three shortest independent tvectors with t.n > acl determine - * the final cell. acl is selected for the solution with the - * maximum number of fitting reflections */ - - find_cell(tvectors, N_tvectors, IndexFit, volume_min, volume_max, - n_max, reflections, N_reflections, c); + /* Three shortest independent tvectors with t.n > acl + * determine the final cell. acl is selected for the + * solution with the maximum number of fitting + * reflections */ + + find_cell(tvectors, N_tvectors, IndexFit, volume_min, + volume_max, n_max, reflections, + N_reflections, c); - if (c->n > 4 * n_max / 5) { + if ( c->n > 4 * n_max / 5 ) { break; } } } free(fits); - for (i = 0; i < N_tvectors; i++) { + for ( i = 0; i < N_tvectors; i++ ) { tvector_free(tvectors[i]); } free(tvectors); - for (i = 0; i < N_triplets; i++) { + for ( i = 0; i < N_triplets; i++ ) { free(triplets[i]); } free(triplets); - if (c->n) return 1; + if ( c->n ) return 1; return 0; } @@ -936,30 +965,30 @@ double cell_get_volume(UnitCell *cell) } int run_asdf(struct image *image, IndexingPrivate *ipriv) { - int i; + int i; - double LevelFit = 1./1000; - double IndexFit = 1./500; - double d_max = 220.; // thrice the maximum expected axis length - double volume_min = 100.; - double volume_max = 1000000.; - - int i_max = 10000; // maximum number of triplets - - struct asdf_private *dp = (struct asdf_private *)ipriv; - - if ( dp->indm & INDEXING_CHECK_CELL_AXES ) { + double LevelFit = 1./1000; + double IndexFit = 1./500; + double d_max = 220.; // thrice the maximum expected axis length + double volume_min = 100.; + double volume_max = 1000000.; + + int i_max = 10000; // maximum number of triplets + + struct asdf_private *dp = (struct asdf_private *)ipriv; + + if ( dp->indm & INDEXING_CHECK_CELL_AXES ) { double volume = cell_get_volume(dp->template); volume_min = volume * 0.95; volume_max = volume * 1.05; } - int N_reflections = image_feature_count(image->features); - gsl_vector *reflections[N_reflections]; - - for (i = 0; i < N_reflections; i++) { + int N_reflections = image_feature_count(image->features); + gsl_vector *reflections[N_reflections]; + + for ( i = 0; i < N_reflections; i++ ) { struct imagefeature *f; - + f = image_get_feature(image->features, i); if ( f == NULL ) continue; @@ -969,38 +998,37 @@ int run_asdf(struct image *image, IndexingPrivate *ipriv) { gsl_vector_set(reflections[i], 2, f->rz/1e10); } - struct asdf_cell c = asdf_cell_new(N_reflections); - - if (N_reflections == 0) return 0; - - i = index_refls(reflections, N_reflections, d_max, volume_min, volume_max, - LevelFit, IndexFit, i_max, &c); - //~ - - for (i = 0; i < N_reflections; i ++) { + struct asdf_cell c = asdf_cell_new(N_reflections); + + if ( N_reflections == 0 ) return 0; + + i = index_refls(reflections, N_reflections, d_max, volume_min, volume_max, + LevelFit, IndexFit, i_max, &c); + + for ( i = 0; i < N_reflections; i++ ) { gsl_vector_free(reflections[i]); } - - if (i) { + + if ( i ) { UnitCell *uc; uc = cell_new(); cell_set_cartesian(uc, gsl_vector_get(c.axes[0], 0) * 1e-10, - gsl_vector_get(c.axes[0], 1) * 1e-10, - gsl_vector_get(c.axes[0], 2) * 1e-10, - gsl_vector_get(c.axes[1], 0) * 1e-10, - gsl_vector_get(c.axes[1], 1) * 1e-10, - gsl_vector_get(c.axes[1], 2) * 1e-10, - gsl_vector_get(c.axes[2], 0) * 1e-10, - gsl_vector_get(c.axes[2], 1) * 1e-10, - gsl_vector_get(c.axes[2], 2) * 1e-10); - + gsl_vector_get(c.axes[0], 1) * 1e-10, + gsl_vector_get(c.axes[0], 2) * 1e-10, + gsl_vector_get(c.axes[1], 0) * 1e-10, + gsl_vector_get(c.axes[1], 1) * 1e-10, + gsl_vector_get(c.axes[1], 2) * 1e-10, + gsl_vector_get(c.axes[2], 0) * 1e-10, + gsl_vector_get(c.axes[2], 1) * 1e-10, + gsl_vector_get(c.axes[2], 2) * 1e-10); + if ( check_cell(dp, image, uc) ) { cell_free(uc); return 1; } - cell_free(uc); + cell_free(uc); } return 0; |