diff options
author | Thomas White <taw@physics.org> | 2012-10-19 10:55:40 -0700 |
---|---|---|
committer | Thomas White <taw@physics.org> | 2012-10-19 10:55:40 -0700 |
commit | 673dae374edf54c04d41f44e0f95041d5cf1cc7a (patch) | |
tree | 11164757434366667cd216d065d2f1f010651042 /libcrystfel | |
parent | ec5b87bcfc83b3f2a38202ce26184c35adf870f7 (diff) |
Convert SymOpList to use IntegerMatrix
This simplifies things a lot
Diffstat (limited to 'libcrystfel')
-rw-r--r-- | libcrystfel/src/integer_matrix.c | 93 | ||||
-rw-r--r-- | libcrystfel/src/integer_matrix.h | 7 | ||||
-rw-r--r-- | libcrystfel/src/symmetry.c | 887 |
3 files changed, 518 insertions, 469 deletions
diff --git a/libcrystfel/src/integer_matrix.c b/libcrystfel/src/integer_matrix.c index c8849dda..ad38a9fe 100644 --- a/libcrystfel/src/integer_matrix.c +++ b/libcrystfel/src/integer_matrix.c @@ -88,13 +88,38 @@ IntegerMatrix *intmat_new(unsigned int rows, unsigned int cols) /** + * intmat_copy: + * @m: An %IntegerMatrix + * + * Returns: a newly allocated copy of @m, or NULL on error/ + **/ +IntegerMatrix *intmat_copy(IntegerMatrix *m) +{ + IntegerMatrix *p; + int i, j; + + p = intmat_new(m->rows, m->cols); + if ( p == NULL ) return NULL; + + for ( i=0; i<m->rows; i++ ) { + for ( j=0; j<m->rows; j++ ) { + intmat_set(p, i, j, intmat_get(m, i, j)); + } + } + + return p; +} + + +/** * intmat_free: * @m: An %IntegerMatrix * - * Frees @m. + * Frees @m, unless @m is NULL in which case nothing is done. **/ void intmat_free(IntegerMatrix *m) { + if ( m == NULL ) return; free(m->v); free(m); } @@ -388,6 +413,8 @@ int intmat_is_identity(const IntegerMatrix *m) { int i, j; + if ( m->rows != m->cols ) return 0; + for ( i=0; i<m->rows; i++ ) { for ( j=0; j<m->cols; j++ ) { @@ -406,3 +433,67 @@ int intmat_is_identity(const IntegerMatrix *m) return 1; } + + +/** + * intmat_is_inversion + * @m: An %IntegerMatrix + * + * Returns true if @m = -I, where I is an identity matrix. + * + */ +int intmat_is_inversion(const IntegerMatrix *m) +{ + int i, j; + + if ( m->rows != m->cols ) return 0; + + for ( i=0; i<m->rows; i++ ) { + for ( j=0; j<m->cols; j++ ) { + + signed int v; + + v = intmat_get(m, i, j); + + if ( i == j ) { + if ( v != -1 ) return 0; + } else { + if ( v != 0 ) return 0; + } + + } + } + + return 1; +} + + +/** + * intmat_equals + * @a: An %IntegerMatrix + * @b: An %IntegerMatrix + * + * Returns true if @a = @b. + * + */ +int intmat_equals(const IntegerMatrix *a, const IntegerMatrix *b) +{ + int i, j; + + if ( a->rows != b->rows ) return 0; + if ( a->cols != b->cols ) return 0; + + for ( i=0; i<a->rows; i++ ) { + for ( j=0; j<b->cols; j++ ) { + + signed int v; + + v = intmat_get(a, i, j); + + if ( v != intmat_get(b, i, j) ) return 0; + + } + } + + return 1; +} diff --git a/libcrystfel/src/integer_matrix.h b/libcrystfel/src/integer_matrix.h index f413573a..2573bfec 100644 --- a/libcrystfel/src/integer_matrix.h +++ b/libcrystfel/src/integer_matrix.h @@ -43,6 +43,7 @@ typedef struct _integermatrix IntegerMatrix; /* Alloc/dealloc */ extern IntegerMatrix *intmat_new(unsigned int rows, unsigned int cols); +extern IntegerMatrix *intmat_copy(IntegerMatrix *m); extern void intmat_free(IntegerMatrix *m); /* Get/set */ @@ -68,6 +69,12 @@ extern signed int intmat_det(const IntegerMatrix *m); /* Is identity? */ extern int intmat_is_identity(const IntegerMatrix *m); +/* Is inversion? */ +extern int intmat_is_inversion(const IntegerMatrix *m); + +/* Comparison */ +extern int intmat_equals(const IntegerMatrix *a, const IntegerMatrix *b); + /* Diagnostics */ extern void intmat_print(const IntegerMatrix *m); diff --git a/libcrystfel/src/symmetry.c b/libcrystfel/src/symmetry.c index 8a8a6184..db0073c9 100644 --- a/libcrystfel/src/symmetry.c +++ b/libcrystfel/src/symmetry.c @@ -54,18 +54,9 @@ */ -struct sym_op -{ - signed int *h; - signed int *k; - signed int *l; /* Contributions to h, k and l from h, k and l */ - int order; -}; - - struct _symoplist { - struct sym_op *ops; + IntegerMatrix **ops; int n_ops; int max_ops; char *name; @@ -83,7 +74,7 @@ struct _symopmask static void alloc_ops(SymOpList *ops) { - ops->ops = realloc(ops->ops, ops->max_ops*sizeof(struct sym_op)); + ops->ops = realloc(ops->ops, ops->max_ops*sizeof(IntegerMatrix *)); } @@ -145,9 +136,7 @@ void free_symoplist(SymOpList *ops) if ( ops == NULL ) return; for ( i=0; i<ops->n_ops; i++ ) { - free(ops->ops[i].h); - free(ops->ops[i].k); - free(ops->ops[i].l); + intmat_free(ops->ops[i]); } if ( ops->ops != NULL ) free(ops->ops); if ( ops->name != NULL ) free(ops->name); @@ -176,55 +165,53 @@ static int num_ops(const SymOpList *ops) } -/* Add a operation to a SymOpList */ -static void add_symop(SymOpList *ops, - signed int *h, signed int *k, signed int *l, - int order) +/** + * add_symop: + * @ops: A %SymOpList + * @m: An %IntegerMatrix + * + * Adds @m to @ops. + **/ +void add_symop(SymOpList *ops, IntegerMatrix *m) { - int n; - if ( ops->n_ops == ops->max_ops ) { - /* Pretty sure this never happens, but still... */ ops->max_ops += 16; alloc_ops(ops); } - n = ops->n_ops; - ops->ops[n].h = h; - ops->ops[n].k = k; - ops->ops[n].l = l; - ops->ops[n].order = order; - ops->n_ops++; + ops->ops[ops->n_ops++] = m; } -/* Add a operation to a SymOpList */ -static void add_copied_op(SymOpList *ops, struct sym_op *copyme) +/* Add a operation to a SymOpList, starting from v(..) */ +static void add_symop_v(SymOpList *ops, + signed int *h, signed int *k, signed int *l) { - int n; - signed int *h, *k, *l; + IntegerMatrix *m; + int i; - if ( ops->n_ops == ops->max_ops ) { - ops->max_ops += 16; - alloc_ops(ops); - } + m = intmat_new(3, 3); + assert(m != NULL); - n = ops->n_ops; + for ( i=0; i<3; i++ ) intmat_set(m, 0, i, h[i]); + for ( i=0; i<3; i++ ) intmat_set(m, 1, i, k[i]); + for ( i=0; i<3; i++ ) intmat_set(m, 2, i, l[i]); - h = malloc(3*sizeof(signed int)); - k = malloc(3*sizeof(signed int)); - l = malloc(3*sizeof(signed int)); + free(h); + free(k); + free(l); - memcpy(h, copyme->h, 3*sizeof(signed int)); - memcpy(k, copyme->k, 3*sizeof(signed int)); - memcpy(l, copyme->l, 3*sizeof(signed int)); + add_symop(ops, m); +} - ops->ops[n].h = h; - ops->ops[n].k = k; - ops->ops[n].l = l; - ops->ops[n].order = copyme->order; - ops->n_ops++; +static signed int *v(signed int h, signed int k, signed int i, signed int l) +{ + signed int *vec = malloc(3*sizeof(signed int)); + if ( vec == NULL ) return NULL; + /* Convert back to 3-index form now */ + vec[0] = h-i; vec[1] = k-i; vec[2] = l; + return vec; } @@ -254,139 +241,88 @@ int num_equivs(const SymOpList *ops, const SymOpMask *m) } -static signed int *v(signed int h, signed int k, signed int i, signed int l) +static void add_identity(SymOpList *s) { - signed int *vec = malloc(3*sizeof(signed int)); - if ( vec == NULL ) return NULL; - /* Convert back to 3-index form now */ - vec[0] = h-i; vec[1] = k-i; vec[2] = l; - return vec; -} - - -static void combine_ops(signed int *h1, signed int *k1, signed int *l1, - signed int *h2, signed int *k2, signed int *l2, - signed int *hnew, signed int *knew, signed int *lnew) -{ - /* Yay matrices */ - hnew[0] = h1[0]*h2[0] + h1[1]*k2[0] + h1[2]*l2[0]; - hnew[1] = h1[0]*h2[1] + h1[1]*k2[1] + h1[2]*l2[1]; - hnew[2] = h1[0]*h2[2] + h1[1]*k2[2] + h1[2]*l2[2]; - - knew[0] = k1[0]*h2[0] + k1[1]*k2[0] + k1[2]*l2[0]; - knew[1] = k1[0]*h2[1] + k1[1]*k2[1] + k1[2]*l2[1]; - knew[2] = k1[0]*h2[2] + k1[1]*k2[2] + k1[2]*l2[2]; + int i, ni; + int found; - lnew[0] = l1[0]*h2[0] + l1[1]*k2[0] + l1[2]*l2[0]; - lnew[1] = l1[0]*h2[1] + l1[1]*k2[1] + l1[2]*l2[1]; - lnew[2] = l1[0]*h2[2] + l1[1]*k2[2] + l1[2]*l2[2]; + found = 0; + ni = num_ops(s); + for ( i=0; i<ni; i++ ) { + if ( intmat_is_identity(s->ops[i]) ) { + found = 1; + break; + } + } + if ( !found ) { + add_symop_v(s, v(1,0,0,0), v(0,1,0,0), v(0,0,0,1)); /* I */ + } } -static void combine_and_add_symop(struct sym_op *opi, int oi, - struct sym_op *opj, - SymOpList *s) +/* Fill in the other operations for a point group starting from its + * generators */ +static void expand_ops(SymOpList *s) { - int i; - signed int *h, *k, *l; - - h = malloc(3*sizeof(signed int)); - k = malloc(3*sizeof(signed int)); - l = malloc(3*sizeof(signed int)); - assert(h != NULL); - assert(k != NULL); - assert(l != NULL); - - memcpy(h, opj->h, 3*sizeof(signed int)); - memcpy(k, opj->k, 3*sizeof(signed int)); - memcpy(l, opj->l, 3*sizeof(signed int)); - - for ( i=0; i<oi; i++ ) { - - signed int hfs[3], kfs[3], lfs[3]; + int added; - combine_ops(h, k, l, opi->h, opi->k, opi->l, hfs, kfs, lfs); + add_identity(s); - memcpy(h, hfs, 3*sizeof(signed int)); - memcpy(k, kfs, 3*sizeof(signed int)); - memcpy(l, lfs, 3*sizeof(signed int)); - - } - -// STATUS("Creating %3i %3i %3i\n", h[0], h[1], h[2]); -// STATUS(" %3i %3i %3i\n", k[0], k[1], k[2]); -// STATUS(" %3i %3i %3i\n", l[0], l[1], l[2]); + do { - add_symop(s, h, k, l, 1); -} + int i, ni; + added = 0; -/* Fill in the other operations for a point group starting from its - * generators */ -static SymOpList *expand_ops(SymOpList *s) -{ - int n, i; - SymOpList *e; + ni = num_ops(s); + for ( i=0; i<ni; i++ ) { - e = new_symoplist(); - if ( e == NULL ) return NULL; - e->name = strdup(symmetry_name(s)); + int j; + IntegerMatrix *opi = s->ops[i]; - add_symop(e, v(1,0,0,0), v(0,1,0,0), v(0,0,0,1), 1); /* I */ + /* Apply op 'i' to all the current ops in the list */ + for ( j=0; j<ni; j++ ) { - n = num_ops(s); - for ( i=0; i<n; i++ ) { + IntegerMatrix *opj = s->ops[j]; + IntegerMatrix *m; + int k, nk; + int found; - int j, nj; - struct sym_op *opi = &s->ops[i]; + m = intmat_intmat_mult(opi, opj); + assert(m != NULL); - /* Apply op 'i' to all the current ops in the list */ - nj = num_ops(e); - for ( j=0; j<nj; j++ ) { + nk = num_ops(s); + found = 0; + for ( k=0; k<nk; k++ ) { + if ( intmat_equals(m, s->ops[k]) ) { + found = 1; + intmat_free(m); + break; + } + } - int oi; + if ( !found ) { + add_symop(s, m); + added++; + } - for ( oi=0; oi<opi->order-1; oi++ ) { - combine_and_add_symop(opi, oi+1, &e->ops[j], e); } } - } - - free_symoplist(s); - - return e; + } while ( added ); } /* Transform all the operations in a SymOpList by a given matrix. * The matrix must have a determinant of +/- 1 (otherwise its inverse would * not also be an integer matrix). */ -static void transform_ops(SymOpList *s, signed int *na, - signed int *nb, - signed int *nc) +static void transform_ops(SymOpList *s, IntegerMatrix *t) { int n, i; - IntegerMatrix *t, *inv; + IntegerMatrix *inv; signed int det; - t = intmat_new(3, 3); - if ( t == NULL ) { - ERROR("Failed to allocate matrix.\n"); - return; - } - - intmat_set(t, 0, 0, na[0]); - intmat_set(t, 1, 0, na[1]); - intmat_set(t, 2, 0, na[2]); - intmat_set(t, 0, 1, nb[0]); - intmat_set(t, 1, 1, nb[1]); - intmat_set(t, 2, 1, nb[2]); - intmat_set(t, 0, 2, nc[0]); - intmat_set(t, 1, 2, nc[1]); - intmat_set(t, 2, 2, nc[2]); - det = intmat_det(t); if ( det == -1 ) { ERROR("Warning: mirrored SymOpList.\n"); @@ -404,30 +340,13 @@ static void transform_ops(SymOpList *s, signed int *na, n = num_ops(s); for ( i=0; i<n; i++ ) { - IntegerMatrix *m, *r, *f; - - m = intmat_new(3, 3); - if ( m == NULL ) { - ERROR("Failed to allocate matrix.\n"); - return; - } + IntegerMatrix *r, *f; - intmat_set(m, 0, 0, s->ops[i].h[0]); - intmat_set(m, 1, 0, s->ops[i].h[1]); - intmat_set(m, 2, 0, s->ops[i].h[2]); - intmat_set(m, 0, 1, s->ops[i].k[0]); - intmat_set(m, 1, 1, s->ops[i].k[1]); - intmat_set(m, 2, 1, s->ops[i].k[2]); - intmat_set(m, 0, 2, s->ops[i].l[0]); - intmat_set(m, 1, 2, s->ops[i].l[1]); - intmat_set(m, 2, 2, s->ops[i].l[2]); - - r = intmat_intmat_mult(m, t); + r = intmat_intmat_mult(s->ops[i], t); if ( r == NULL ) { ERROR("Matrix multiplication failed.\n"); return; } - intmat_free(m); f = intmat_intmat_mult(inv, r); if ( f == NULL ) { @@ -436,20 +355,12 @@ static void transform_ops(SymOpList *s, signed int *na, } intmat_free(r); - s->ops[i].h[0] = intmat_get(f, 0, 0); - s->ops[i].h[1] = intmat_get(f, 1, 0); - s->ops[i].h[2] = intmat_get(f, 2, 0); - s->ops[i].k[0] = intmat_get(f, 0, 1); - s->ops[i].k[1] = intmat_get(f, 1, 1); - s->ops[i].k[2] = intmat_get(f, 2, 1); - s->ops[i].l[0] = intmat_get(f, 0, 2); - s->ops[i].l[1] = intmat_get(f, 1, 2); - s->ops[i].l[2] = intmat_get(f, 2, 2); + intmat_free(s->ops[i]); + s->ops[i] = intmat_copy(f); intmat_free(f); } - intmat_free(t); intmat_free(inv); } @@ -459,9 +370,10 @@ static void transform_ops(SymOpList *s, signed int *na, static SymOpList *make_1bar() { SymOpList *new = new_symoplist(); - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1), 2); /* -I */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1)); /* -I */ new->name = strdup("-1"); - return expand_ops(new); + expand_ops(new); + return new; } @@ -469,7 +381,8 @@ static SymOpList *make_1() { SymOpList *new = new_symoplist(); new->name = strdup("1"); - return expand_ops(new); + expand_ops(new); + return new; } @@ -478,28 +391,31 @@ static SymOpList *make_1() static SymOpList *make_2m() { SymOpList *new = new_symoplist(); - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* 2 // l */ - add_symop(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* m -| l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1)); /* 2 // l */ + add_symop_v(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* m -| l */ new->name = strdup("2/m"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_2() { SymOpList *new = new_symoplist(); - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* 2 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1)); /* 2 // l */ new->name = strdup("2"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_m() { SymOpList *new = new_symoplist(); - add_symop(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* m -| l */ + add_symop_v(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* m -| l */ new->name = strdup("m"); - return expand_ops(new); + expand_ops(new); + return new; } @@ -508,31 +424,34 @@ static SymOpList *make_m() static SymOpList *make_mmm() { SymOpList *new = new_symoplist(); - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* 2 // l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* 2 // k */ - add_symop(new, v(1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* m -| k */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1)); /* 2 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* 2 // k */ + add_symop_v(new, v(1,0,0,0), v(0,-1,0,0), v(0,0,0,1)); /* m -| k */ new->name = strdup("mmm"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_222() { SymOpList *new = new_symoplist(); - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* 2 // l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* 2 // k */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1)); /* 2 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* 2 // k */ new->name = strdup("222"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_mm2() { SymOpList *new = new_symoplist(); - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* 2 // l */ - add_symop(new, v(1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* m -| k */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1)); /* 2 // l */ + add_symop_v(new, v(1,0,0,0), v(0,-1,0,0), v(0,0,0,1)); /* m -| k */ new->name = strdup("mm2"); - return expand_ops(new); + expand_ops(new); + return new; } @@ -541,79 +460,87 @@ static SymOpList *make_mm2() static SymOpList *make_4m() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1), 4); /* 4 // l */ - add_symop(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* m -| l */ + add_symop_v(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1)); /* 4 // l */ + add_symop_v(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* m -| l */ new->name = strdup("4/m"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_4() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1), 4); /* 4 // l */ + add_symop_v(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1)); /* 4 // l */ new->name = strdup("4"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_4mm() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1), 4); /* 4 // l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,1), 2); /* m -| l */ + add_symop_v(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1)); /* 4 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,1)); /* m -| l */ new->name = strdup("4mm"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_422() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1), 4); /* 4 // l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* 2 // k */ + add_symop_v(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1)); /* 4 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* 2 // k */ new->name = strdup("422"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_4bar() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,1,0,0), v(-1,0,0,0), v(0,0,0,-1), 4); /* -4 // l */ + add_symop_v(new, v(0,1,0,0), v(-1,0,0,0), v(0,0,0,-1)); /* -4 // l */ new->name = strdup("-4"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_4bar2m() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,1,0,0), v(-1,0,0,0), v(0,0,0,-1), 4); /* -4 // l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* 2 // k */ + add_symop_v(new, v(0,1,0,0), v(-1,0,0,0), v(0,0,0,-1)); /* -4 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* 2 // k */ new->name = strdup("-42m"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_4barm2() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,1,0,0), v(-1,0,0,0), v(0,0,0,-1), 4); /* -4 // l */ - add_symop(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,-1), 2); /* 2 // h+k */ + add_symop_v(new, v(0,1,0,0), v(-1,0,0,0), v(0,0,0,-1)); /* -4 // l */ + add_symop_v(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,-1)); /* 2 // h+k */ new->name = strdup("-4m2"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_4mmm() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1), 4); /* 4 // l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,1), 2); /* m -| k */ - add_symop(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* m -| l */ + add_symop_v(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1)); /* 4 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,1)); /* m -| k */ + add_symop_v(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* m -| l */ new->name = strdup("4/mmm"); - return expand_ops(new); + expand_ops(new); + return new; } @@ -622,50 +549,55 @@ static SymOpList *make_4mmm() static SymOpList *make_3_R() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0), 3); /* 3 // h+k+l */ + add_symop_v(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0)); /* 3 // h+k+l */ new->name = strdup("3_R"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_3bar_R() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0), 3); /* -3 // h+k+l */ - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1), 2); /* -I */ + add_symop_v(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0)); /* -3 // h+k+l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1)); /* -I */ new->name = strdup("-3_R"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_32_R() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0), 3); /* 3 // h+k+l */ - add_symop(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,-1), 2); /* 2 -| 3 */ + add_symop_v(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0)); /* 3 // h+k+l */ + add_symop_v(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,-1)); /* 2 -| 3 */ new->name = strdup("32_R"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_3m_R() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0), 3); /* 3 // h+k+l */ - add_symop(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,1), 2); /* m */ + add_symop_v(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0)); /* 3 // h+k+l */ + add_symop_v(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,1)); /* m */ new->name = strdup("3m_R"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_3barm_R() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0), 3); /* -3 // h+k+l */ - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1), 2); /* -I */ - add_symop(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,1), 2); /* m */ + add_symop_v(new, v(0,0,0,1), v(1,0,0,0), v(0,1,0,0)); /* -3 // h+k+l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1)); /* -I */ + add_symop_v(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,1)); /* m */ new->name = strdup("-3m_R"); - return expand_ops(new); + expand_ops(new); + return new; } @@ -674,81 +606,89 @@ static SymOpList *make_3barm_R() static SymOpList *make_3_H() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1), 3); /* 3 // l */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1)); /* 3 // l */ new->name = strdup("3_H"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_3bar_H() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1), 3); /* 3 // l */ - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1), 2); /* -I */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1)); /* 3 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1)); /* -I */ new->name = strdup("-3_H"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_321_H() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1), 3); /* 3 // l */ - add_symop(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,-1), 2); /* 2 // h */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1)); /* 3 // l */ + add_symop_v(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,-1)); /* 2 // h */ new->name = strdup("321_H"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_312_H() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1), 3); /* 3 // l */ - add_symop(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,-1), 2); /* 2 // h+k */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1)); /* 3 // l */ + add_symop_v(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,-1)); /* 2 // h+k */ new->name = strdup("312_H"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_3m1_H() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1), 3); /* 3 // l */ - add_symop(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,1), 2); /* m -| i */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1)); /* 3 // l */ + add_symop_v(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,1)); /* m -| i */ new->name = strdup("3m1_H"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_31m_H() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1), 3); /* 3 // l */ - add_symop(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,1), 2); /* m -| (k+i) */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1)); /* 3 // l */ + add_symop_v(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,1)); /* m -| (k+i) */ new->name = strdup("31m_H"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_3barm1_H() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1), 3); /* 3 // l */ - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1), 2); /* -I */ - add_symop(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,-1), 2); /* 2 // h */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1)); /* 3 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1)); /* -I */ + add_symop_v(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,-1)); /* 2 // h */ new->name = strdup("-3m1_H"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_3bar1m_H() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1), 3); /* 3 // l */ - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1), 2); /* -I */ - add_symop(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,-1), 2); /* 2 // h+k */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,1)); /* 3 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1)); /* -I */ + add_symop_v(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,-1)); /* 2 // h+k */ new->name = strdup("-31m_H"); - return expand_ops(new); + expand_ops(new); + return new; } @@ -757,79 +697,87 @@ static SymOpList *make_3bar1m_H() static SymOpList *make_6() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,-1,0), v(-1,0,0,0), v(0,0,0,1), 6); /* 6 // l */ + add_symop_v(new, v(0,0,-1,0), v(-1,0,0,0), v(0,0,0,1)); /* 6 // l */ new->name = strdup("6"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_6bar() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,-1), 6); /* -6 // l */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,-1)); /* -6 // l */ new->name = strdup("-6"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_6m() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,-1,0), v(-1,0,0,0), v(0,0,0,1), 6); /* 6 // l */ - add_symop(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* m -| l */ + add_symop_v(new, v(0,0,-1,0), v(-1,0,0,0), v(0,0,0,1)); /* 6 // l */ + add_symop_v(new, v(1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* m -| l */ new->name = strdup("6/m"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_622() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,-1,0), v(-1,0,0,0), v(0,0,0,1), 6); /* 6 // l */ - add_symop(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,-1), 2); /* 2 // h */ + add_symop_v(new, v(0,0,-1,0), v(-1,0,0,0), v(0,0,0,1)); /* 6 // l */ + add_symop_v(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,-1)); /* 2 // h */ new->name = strdup("622"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_6mm() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,-1,0), v(-1,0,0,0), v(0,0,0,1), 6); /* 6 // l */ - add_symop(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,1), 2); /* m -| i */ + add_symop_v(new, v(0,0,-1,0), v(-1,0,0,0), v(0,0,0,1)); /* 6 // l */ + add_symop_v(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,1)); /* m -| i */ new->name = strdup("6mm"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_6barm2() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,-1), 6); /* -6 // l */ - add_symop(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,1), 2); /* m -| i */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,-1)); /* -6 // l */ + add_symop_v(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,1)); /* m -| i */ new->name = strdup("-6m2"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_6bar2m() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,-1), 6); /* -6 // l */ - add_symop(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,1), 2); /* m -| (k+i) */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,-1)); /* -6 // l */ + add_symop_v(new, v(0,1,0,0), v(1,0,0,0), v(0,0,0,1)); /* m -| (k+i) */ new->name = strdup("-62m"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_6mmm() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,-1), 6); /* -6 // l */ - add_symop(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,1), 2); /* m -| i */ - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1), 2); /* -I */ + add_symop_v(new, v(0,0,1,0), v(1,0,0,0), v(0,0,0,-1)); /* -6 // l */ + add_symop_v(new, v(0,-1,0,0), v(-1,0,0,0), v(0,0,0,1)); /* m -| i */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1)); /* -I */ new->name = strdup("6/mmm"); - return expand_ops(new); + expand_ops(new); + return new; } @@ -838,57 +786,62 @@ static SymOpList *make_6mmm() static SymOpList *make_23() { SymOpList *new = new_symoplist(); - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* 2// l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* 2// k */ - add_symop(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0), 3); /* 3// h+k+l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1)); /* 2 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* 2 // k */ + add_symop_v(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0)); /* 3 // h+k+l */ new->name = strdup("23"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_m3bar() { SymOpList *new = new_symoplist(); - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* 2// l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* 2// k */ - add_symop(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0), 3); /* 3// h+k+l */ - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1), 2); /* -I */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,1)); /* 2 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* 2 // k */ + add_symop_v(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0)); /* 3 // h+k+l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1)); /* -I */ new->name = strdup("m-3"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_432() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1), 4); /* 4 // l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2);/* 2 // k */ - add_symop(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0), 3); /* 3 // h+k+l */ + add_symop_v(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1)); /* 4 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1));/* 2 // k */ + add_symop_v(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0)); /* 3 // h+k+l */ new->name = strdup("432"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_4bar3m() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,1,0,0), v(-1,0,0,0), v(0,0,0,-1), 4); /* -4 // l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2);/* 2 // k */ - add_symop(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0), 3); /* 3 // h+k+l */ + add_symop_v(new, v(0,1,0,0), v(-1,0,0,0), v(0,0,0,-1)); /* -4 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1)); /* 2 // k */ + add_symop_v(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0)); /* 3 // h+k+l */ new->name = strdup("-43m"); - return expand_ops(new); + expand_ops(new); + return new; } static SymOpList *make_m3barm() { SymOpList *new = new_symoplist(); - add_symop(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1), 4); /* 4 // l */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2);/* 2 // k */ - add_symop(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0), 3); /* 3 // h+k+l */ - add_symop(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1), 2); /* -I */ + add_symop_v(new, v(0,-1,0,0), v(1,0,0,0), v(0,0,0,1)); /* 4 // l */ + add_symop_v(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1));/* 2 // k */ + add_symop_v(new, v(0,1,0,0), v(0,0,0,1), v(1,0,0,0)); /* 3 // h+k+l */ + add_symop_v(new, v(-1,0,0,0), v(0,-1,0,0), v(0,0,0,-1)); /* -I */ new->name = strdup("m-3m"); - return expand_ops(new); + expand_ops(new); + return new; } @@ -976,6 +929,7 @@ static SymOpList *getpg_arbitrary_ua(const char *sym, size_t s) char ua; char *pg_type; SymOpList *pg; + IntegerMatrix *t; if ( strncmp(sym+s, "ua", 2) == 0 ) { ua = sym[s+2]; @@ -998,22 +952,28 @@ static SymOpList *getpg_arbitrary_ua(const char *sym, size_t s) } free(pg_type); + t = intmat_new(3, 3); + if ( t == NULL ) return NULL; + switch ( ua ) { case 'a' : - transform_ops(pg, v(0,0,0,1), - v(0,1,0,0), - v(-1,0,0,0)); + intmat_set(t, 0, 2, 1); + intmat_set(t, 1, 1, 1); + intmat_set(t, 2, 0, -1); break; case 'b' : - transform_ops(pg, v(1,0,0,0), - v(0,0,0,1), - v(0,-1,0,0)); + intmat_set(t, 0, 0, 1); + intmat_set(t, 1, 2, 1); + intmat_set(t, 2, 1, -1); + break; case 'c' : - /* No transformation needed */ + intmat_set(t, 0, 0, 1); + intmat_set(t, 1, 1, 1); + intmat_set(t, 2, 2, 1); break; default : @@ -1023,6 +983,9 @@ static SymOpList *getpg_arbitrary_ua(const char *sym, size_t s) } + transform_ops(pg, t); + intmat_free(t); + return pg; } @@ -1074,13 +1037,20 @@ SymOpList *get_pointgroup(const char *sym) } -static void do_op(const struct sym_op *op, +static void do_op(const IntegerMatrix *op, signed int h, signed int k, signed int l, signed int *he, signed int *ke, signed int *le) { - *he = h*op->h[0] + k*op->h[1] + l*op->h[2]; - *ke = h*op->k[0] + k*op->k[1] + l*op->k[2]; - *le = h*op->l[0] + k*op->l[1] + l*op->l[2]; + signed int v[3]; + signed int *ans; + + v[0] = h; v[1] = k; v[2] = l; + + ans = intmat_intvec_mult(op, v); + assert(ans != NULL); + + *he = ans[0]; *ke = ans[1]; *le = ans[2]; + free(ans); } @@ -1119,7 +1089,7 @@ void get_equiv(const SymOpList *ops, const SymOpMask *m, int idx, for ( i=0; i<n; i++ ) { if ( (c == idx) && m->mask[i] ) { - do_op(&ops->ops[i], h, k, l, he, ke, le); + do_op(ops->ops[i], h, k, l, he, ke, le); return; } @@ -1151,7 +1121,7 @@ void get_equiv(const SymOpList *ops, const SymOpMask *m, int idx, } - do_op(&ops->ops[idx], h, k, l, he, ke, le); + do_op(ops->ops[idx], h, k, l, he, ke, le); } @@ -1297,36 +1267,6 @@ void get_asymm(const SymOpList *ops, } -static int is_inversion(const struct sym_op *op) -{ - if ( (op->h[0]!=-1) || (op->h[1]!=0) || (op->h[2]!=0) ) return 0; - if ( (op->k[0]!=0) || (op->k[1]!=-1) || (op->k[2]!=0) ) return 0; - if ( (op->l[0]!=0) || (op->l[1]!=0) || (op->l[2]!=-1) ) return 0; - return 1; -} - - -static int is_identity(const struct sym_op *op) -{ - if ( (op->h[0]!=1) || (op->h[1]!=0) || (op->h[2]!=0) ) return 0; - if ( (op->k[0]!=0) || (op->k[1]!=1) || (op->k[2]!=0) ) return 0; - if ( (op->l[0]!=0) || (op->l[1]!=0) || (op->l[2]!=1) ) return 0; - return 1; -} - - -static signed int determinant(const struct sym_op *op) -{ - signed int det = 0; - - det += op->h[0] * (op->k[1]*op->l[2] - op->k[2]*op->l[1]); - det -= op->h[1] * (op->k[0]*op->l[2] - op->k[2]*op->l[0]); - det += op->h[2] * (op->k[0]*op->l[1] - op->k[1]*op->l[0]); - - return det; -} - - /** * is_centrosymmetric: * @s: A %SymOpList @@ -1339,49 +1279,25 @@ int is_centrosymmetric(const SymOpList *s) n = num_ops(s); for ( i=0; i<n; i++ ) { - if ( is_inversion(&s->ops[i]) ) return 1; + if ( intmat_is_inversion(s->ops[i]) ) return 1; } return 0; } -static int ops_equal(const struct sym_op *op, - signed int *h, signed int *k, signed int *l) -{ - if ( (op->h[0]!=h[0]) || (op->h[1]!=h[1]) || (op->h[2]!=h[2]) ) - return 0; - if ( (op->k[0]!=k[0]) || (op->k[1]!=k[1]) || (op->k[2]!=k[2]) ) - return 0; - if ( (op->l[0]!=l[0]) || (op->l[1]!=l[1]) || (op->l[2]!=l[2]) ) - return 0; - return 1; -} - - -static int struct_ops_equal(const struct sym_op *op1, const struct sym_op *op2) -{ - return ops_equal(op1, op2->h, op2->k, op2->l); -} - - /* Return true if a*b = ans */ -static int check_mult(const struct sym_op *ans, - const struct sym_op *a, const struct sym_op *b) +static int check_mult(const IntegerMatrix *ans, + const IntegerMatrix *a, const IntegerMatrix *b) { - signed int *ans_h, *ans_k, *ans_l; int val; + IntegerMatrix *m; - ans_h = malloc(3*sizeof(signed int)); - ans_k = malloc(3*sizeof(signed int)); - ans_l = malloc(3*sizeof(signed int)); + m = intmat_intmat_mult(a, b); + assert(m != NULL); - combine_ops(a->h, a->k, a->l, b->h, b->k, b->l, ans_h, ans_k, ans_l); - val = ops_equal(ans, ans_h, ans_k, ans_l); - - free(ans_h); - free(ans_k); - free(ans_l); + val = intmat_equals(ans, m); + intmat_free(m); return val; } @@ -1409,9 +1325,7 @@ int is_subgroup(const SymOpList *source, const SymOpList *target) for ( j=0; j<n_src; j++ ) { - if ( struct_ops_equal(&target->ops[i], - &source->ops[j] ) ) - { + if ( intmat_equals(target->ops[i], source->ops[j]) ) { found = 1; break; } @@ -1426,52 +1340,52 @@ int is_subgroup(const SymOpList *source, const SymOpList *target) } -/** - * get_ambiguities: - * @source: The "source" symmetry, a %SymOpList - * @target: The "target" symmetry, a %SymOpList - - * Calculates twinning laws. Returns a %SymOpList containing the twinning - * operators, which are the symmetry operations which can be added to @target - * to generate @source. Only rotations are allowable - no mirrors nor - * inversions. - * To count the number of possibilities, use num_ops() on the result. - * - * Returns: A %SymOpList containing the twinning operators, or NULL if the - * source symmetry cannot be generated from that target symmetry without using - * mirror or inversion operations. - */ -SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) +/* Returns n, where m^n = I */ +static int order(const IntegerMatrix *m) { - int n_src, n_tgt; + IntegerMatrix *a; int i; - SymOpList *twins; - SymOpList *src_reordered; - SymOpMask *used; - char *name; - n_src = num_ops(source); - n_tgt = num_ops(target); + a = intmat_new(3, 3); + assert(a != NULL); + intmat_set(a, 0, 0, 1); + intmat_set(a, 1, 1, 1); + intmat_set(a, 2, 2, 1); - if ( !is_subgroup(source, target) ) { - ERROR("'%s' is not a subgroup of '%s'\n", - symmetry_name(target), symmetry_name(source)); - return NULL; - } + i = 0; + do { - if ( n_src % n_tgt != 0 ) { - ERROR("Subgroup index would be fractional.\n"); - return NULL; - } + IntegerMatrix *anew; + + anew = intmat_intmat_mult(m, a); + assert(anew != NULL); + intmat_free(a); + a = anew; + + i++; + + } while ( !intmat_is_identity(a) ); + + return i; +} + + +static SymOpList *flack_reorder(const SymOpList *source) +{ + SymOpList *src_reordered; + SymOpMask *used; + int i, n_src; src_reordered = new_symoplist(); used = new_symopmask(source); + n_src = num_ops(source); + /* Find identity */ for ( i=0; i<n_src; i++ ) { if ( used->mask[i] == 0 ) continue; - if ( is_identity(&source->ops[i]) ) { - add_copied_op(src_reordered, &source->ops[i]); + if ( intmat_is_identity(source->ops[i]) ) { + add_symop(src_reordered, intmat_copy(source->ops[i])); used->mask[i] = 0; } } @@ -1479,9 +1393,9 @@ SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) /* Find binary options (order=2) of first kind (determinant positive) */ for ( i=0; i<n_src; i++ ) { if ( used->mask[i] == 0 ) continue; - if ( (source->ops[i].order == 2) - && (determinant(&source->ops[i]) > 0) ) { - add_copied_op(src_reordered, &source->ops[i]); + if ( (order(source->ops[i]) == 2) + && (intmat_det(source->ops[i]) > 0) ) { + add_symop(src_reordered, intmat_copy(source->ops[i])); used->mask[i] = 0; } } @@ -1489,8 +1403,8 @@ SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) /* Find other operations of first kind (determinant positive) */ for ( i=0; i<n_src; i++ ) { if ( used->mask[i] == 0 ) continue; - if ( determinant(&source->ops[i]) > 0 ) { - add_copied_op(src_reordered, &source->ops[i]); + if ( intmat_det(source->ops[i]) > 0 ) { + add_symop(src_reordered, intmat_copy(source->ops[i])); used->mask[i] = 0; } } @@ -1498,8 +1412,8 @@ SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) /* Find inversion */ for ( i=0; i<n_src; i++ ) { if ( used->mask[i] == 0 ) continue; - if ( is_inversion(&source->ops[i]) ) { - add_copied_op(src_reordered, &source->ops[i]); + if ( intmat_is_inversion(source->ops[i]) ) { + add_symop(src_reordered, intmat_copy(source->ops[i])); used->mask[i] = 0; } } @@ -1507,9 +1421,9 @@ SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) /* Find binary options of second kind (determinant negative) */ for ( i=0; i<n_src; i++ ) { if ( used->mask[i] == 0 ) continue; - if ( (source->ops[i].order == 2) - && (determinant(&source->ops[i]) < 0) ) { - add_copied_op(src_reordered, &source->ops[i]); + if ( (order(source->ops[i]) == 2) + && (intmat_det(source->ops[i]) < 0) ) { + add_symop(src_reordered, intmat_copy(source->ops[i])); used->mask[i] = 0; } } @@ -1517,8 +1431,8 @@ SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) /* Find other operations of second kind (determinant negative) */ for ( i=0; i<n_src; i++ ) { if ( used->mask[i] == 0 ) continue; - if ( determinant(&source->ops[i]) < 0 ) { - add_copied_op(src_reordered, &source->ops[i]); + if ( intmat_det(source->ops[i]) < 0 ) { + add_symop(src_reordered, intmat_copy(source->ops[i])); used->mask[i] = 0; } } @@ -1539,9 +1453,62 @@ SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) } free_symopmask(used); - used = new_symopmask(src_reordered); - /* This is the first method from Flack (1987) */ + return src_reordered; +} + + +/** + * get_ambiguities: + * @source: The "source" symmetry, a %SymOpList + * @target: The "target" symmetry, a %SymOpList + + * Calculates twinning laws. Returns a %SymOpList containing the twinning + * operators, which are the symmetry operations which can be added to @target + * to generate @source. Only rotations are allowable - no mirrors nor + * inversions. + * To count the number of possibilities, use num_ops() on the result. + * + * The algorithm used is "Algorithm A" from Flack (1987), Acta Cryst A43 p564. + * + * Returns: A %SymOpList containing the twinning operators, or NULL if the + * source symmetry cannot be generated from that target symmetry without using + * mirror or inversion operations. + */ +SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) +{ + int n_src, n_tgt; + int i; + SymOpList *twins; + SymOpList *src_reordered; + SymOpList *tgt_reordered; + SymOpMask *used; + char *name; + + n_src = num_ops(source); + n_tgt = num_ops(target); + + if ( !is_subgroup(source, target) ) { + ERROR("'%s' is not a subgroup of '%s'\n", + symmetry_name(target), symmetry_name(source)); + return NULL; + } + + if ( n_src % n_tgt != 0 ) { + ERROR("Subgroup index would be fractional.\n"); + return NULL; + } + + /* Reorder operations to prefer rotations in the output */ + src_reordered = flack_reorder(source); + if ( src_reordered == NULL ) return NULL; + + /* Reorder the subgroup as well, but strictly speaking we only need + * the identity at the beginning */ + tgt_reordered = flack_reorder(target); + if ( tgt_reordered == NULL ) return NULL; + + used = new_symopmask(src_reordered); for ( i=0; i<n_src; i++ ) { int j; @@ -1551,9 +1518,9 @@ SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) int k; for ( k=i+1; k<n_src; k++ ) { - if ( check_mult(&src_reordered->ops[k], - &src_reordered->ops[i], - &target->ops[j]) ) + if ( check_mult(src_reordered->ops[k], + src_reordered->ops[i], + tgt_reordered->ops[j]) ) { used->mask[k] = 0; } @@ -1566,7 +1533,7 @@ SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) twins = new_symoplist(); for ( i=0; i<n_src; i++ ) { if ( used->mask[i] == 0 ) continue; - if ( determinant(&src_reordered->ops[i]) < 0 ) { + if ( intmat_det(src_reordered->ops[i]) < 0 ) { /* A mirror or inversion turned up in the list. * That means that no pure rotational ambiguity can * account for this subgroup relationship. */ @@ -1575,11 +1542,12 @@ SymOpList *get_ambiguities(const SymOpList *source, const SymOpList *target) free_symoplist(src_reordered); return NULL; } - add_copied_op(twins, &src_reordered->ops[i]); + add_symop(twins, intmat_copy(src_reordered->ops[i])); } free_symopmask(used); free_symoplist(src_reordered); + free_symoplist(tgt_reordered); name = malloc(64); snprintf(name, 63, "%s -> %s", symmetry_name(source), @@ -1601,7 +1569,7 @@ static void add_chars(char *t, const char *s, int max_len) } -static char *get_matrix_name(signed int *v) +static char *get_matrix_name(const IntegerMatrix *m, int row) { char *text; const int max_len = 9; @@ -1613,17 +1581,21 @@ static char *get_matrix_name(signed int *v) for ( i=0; i<3; i++ ) { - if ( v[i] == 0 ) continue; + signed int v; + + v = intmat_get(m, row, i); + + if ( v == 0 ) continue; - if ( v[i]<0 ) { + if ( v < 0 ) { add_chars(text, "-", max_len); } else { if ( printed ) add_chars(text, "+", max_len); } - if ( abs(v[i])>1 ) { + if ( abs(v) > 1 ) { char num[3]; - snprintf(num, 2, "%i", abs(v[i])); + snprintf(num, 2, "%i", abs(v)); add_chars(text, num, max_len); } @@ -1643,14 +1615,14 @@ static char *get_matrix_name(signed int *v) } -static char *name_equiv(const struct sym_op *op) +static char *name_equiv(const IntegerMatrix *op) { char *h, *k, *l; char *name; - h = get_matrix_name(op->h); - k = get_matrix_name(op->k); - l = get_matrix_name(op->l); + h = get_matrix_name(op, 0); + k = get_matrix_name(op, 1); + l = get_matrix_name(op, 2); name = malloc(32); if ( strlen(h)+strlen(k)+strlen(l) == 3 ) { @@ -1658,9 +1630,6 @@ static char *name_equiv(const struct sym_op *op) } else { snprintf(name, 31, "%s,%s,%s", h, k, l); } - free(h); - free(k); - free(l); return name; } @@ -1683,7 +1652,7 @@ void describe_symmetry(const SymOpList *s) for ( i=0; i<n; i++ ) { size_t len; - char *name = name_equiv(&s->ops[i]); + char *name = name_equiv(s->ops[i]); len = strlen(name); if ( len > max_len ) max_len = len; free(name); @@ -1695,7 +1664,7 @@ void describe_symmetry(const SymOpList *s) char *name; size_t m, j; - name = name_equiv(&s->ops[i]); + name = name_equiv(s->ops[i]); m = max_len - strlen(name) + 3; STATUS("%s", name); @@ -1721,21 +1690,3 @@ const char *symmetry_name(const SymOpList *ops) return ops->name; } - -/** - * add_op_intmat: - * @s: A %SymOpList - * @m: An %IntegerMatrix - * - * Adds @m to the @s. Operations are NOT cross-multiplied, i.e. the result - * might not be a point group. - */ - -void add_op_intmat(SymOpList *s, const IntegerMatrix *m) -{ - add_symop(s, - v(intmat_get(m, 0, 0), intmat_get(m, 0, 1), 0, intmat_get(m, 0, 2)), - v(intmat_get(m, 1, 0), intmat_get(m, 1, 1), 0, intmat_get(m, 1, 2)), - v(intmat_get(m, 2, 0), intmat_get(m, 2, 1), 0, intmat_get(m, 2, 2)), - 1); -} |