diff options
author | Thomas White <taw@physics.org> | 2014-09-30 16:58:29 +0200 |
---|---|---|
committer | Thomas White <taw@physics.org> | 2014-09-30 16:58:29 +0200 |
commit | 015ffcd77acc4b7f3178753b21e6591fd8212e4c (patch) | |
tree | 45f96bce23cb229067bfaf97434b9fd621b695ee /src/post-refinement.c | |
parent | b57deca8061316d2fc09dedcf8a91fa7523f081f (diff) |
Cell vector gradients for SCSphere, plus general rationalisation
Diffstat (limited to 'src/post-refinement.c')
-rw-r--r-- | src/post-refinement.c | 177 |
1 files changed, 93 insertions, 84 deletions
diff --git a/src/post-refinement.c b/src/post-refinement.c index e971f96a..73656e66 100644 --- a/src/post-refinement.c +++ b/src/post-refinement.c @@ -55,24 +55,43 @@ #define MAX_CYCLES (10) -static double dpdq(double r, double profile_radius) +/* Returns dp(gauss)/dr at "r" */ +static double gaussian_fraction_gradient(double r, double pr) { - double q; + double q, dpdq, dqdr; - /* Calculate degree of penetration */ - q = (r + profile_radius)/(2.0*profile_radius); + /* If the Ewald sphere isn't within the profile, the gradient is zero */ + if ( r < -pr ) return 0.0; + if ( r > +pr ) return 0.0; - return 6.0*(q-q*q); + q = (r + pr)/(2.0*pr); + dpdq = 6.0*(q - q*q); /* FIXME: Put a real gradient on this line */ + dqdr = 1.0 / (2.0*pr); + return dpdq * dqdr; +} + + +/* Returns dp(sph)/dr at "r" */ +static double sphere_fraction_gradient(double r, double pr) +{ + double q, dpdq, dqdr; + + /* If the Ewald sphere isn't within the profile, the gradient is zero */ + if ( r < -pr ) return 0.0; + if ( r > +pr ) return 0.0; + + q = (r + pr)/(2.0*pr); + dpdq = 6.0*(q - q*q); + dqdr = 1.0 / (2.0*pr); + return dpdq * dqdr; } /* Returns dp/dr at "r" */ -static double partiality_gradient(double r, double profile_radius, +static double partiality_gradient(double r, double pr, PartialityModel pmodel, - double rlow, double rhigh, double p) + double rlow, double rhigh) { - double dqdr; /* dq/dr */ - double dpsphdr; /* dpsph / dr */ double A, D; D = rlow - rhigh; @@ -84,25 +103,25 @@ static double partiality_gradient(double r, double profile_radius, return 0.0; case PMODEL_SCSPHERE: - dqdr = 1.0 / (2.0*profile_radius); - dpsphdr = dpdq(r, profile_radius) * dqdr; - A = (dpsphdr/D) - p*pow(rlow-rhigh, -2.0); - return 4.0*profile_radius*A/3.0; + A = sphere_fraction_gradient(r, pr)/D; + return 4.0*pr*A/3.0; case PMODEL_SCGAUSSIAN: - /* FIXME: Get a proper gradient */ - dqdr = 1.0 / (2.0*profile_radius); - return dpdq(r, profile_radius) * dqdr; + A = gaussian_fraction_gradient(r, pr)/D; + return 4.0*pr*A/3.0; } } -/* Returns dp/drad at "r" */ -static double partiality_rgradient(double r, double profile_radius, - PartialityModel pmodel) +/* Returns dp/d(pr) at "r" */ +static double partiality_rgradient(double r, double pr, + PartialityModel pmodel, + double rlow, double rhigh) { - double dqdrad; /* dq/drad */ + double A, D; + + D = rlow - rhigh; switch ( pmodel ) { @@ -111,14 +130,12 @@ static double partiality_rgradient(double r, double profile_radius, return 0.0; case PMODEL_SCSPHERE: - /* FIXME: wrong (?) */ - dqdrad = -0.5 * r / (profile_radius * profile_radius); - return dpdq(r, profile_radius) * dqdrad; + A = 0.0;//r*sphere_fraction_rgradient(r, pr) + // + sphere_fraction(rlow, rhigh, pr); + return 4.0*A / (3.0*D); case PMODEL_SCGAUSSIAN: - /* FIXME: Get a proper gradient */ - dqdrad = -0.5 * r / (profile_radius * profile_radius); - return dpdq(r, profile_radius) * dqdrad; + return 0.0; } } @@ -128,7 +145,7 @@ static double partiality_rgradient(double r, double profile_radius, * of 'image'. */ double p_gradient(Crystal *cr, int k, Reflection *refl, PartialityModel pmodel) { - double ds, azi; + double azi; double glow, ghigh; double asx, asy, asz; double bsx, bsy, bsz; @@ -136,7 +153,6 @@ double p_gradient(Crystal *cr, int k, Reflection *refl, PartialityModel pmodel) double xl, yl, zl; signed int hs, ks, ls; double rlow, rhigh, p; - int clamp_low, clamp_high; double philow, phihigh, phi; double khigh, klow; double tl, cet, cez; @@ -144,51 +160,11 @@ double p_gradient(Crystal *cr, int k, Reflection *refl, PartialityModel pmodel) struct image *image = crystal_get_image(cr); double r = crystal_get_profile_radius(cr); - get_symmetric_indices(refl, &hs, &ks, &ls); - - cell_get_reciprocal(crystal_get_cell(cr), &asx, &asy, &asz, - &bsx, &bsy, &bsz, - &csx, &csy, &csz); - xl = hs*asx + ks*bsx + ls*csx; - yl = hs*asy + ks*bsy + ls*csy; - zl = hs*asz + ks*bsz + ls*csz; - - ds = 2.0 * resolution(crystal_get_cell(cr), hs, ks, ls); - get_partial(refl, &rlow, &rhigh, &p, &clamp_low, &clamp_high); - - /* "low" gives the largest Ewald sphere (wavelength short => k large) - * "high" gives the smallest Ewald sphere (wavelength long => k small) - */ - klow = 1.0/(image->lambda - image->lambda*image->bw/2.0); - khigh = 1.0/(image->lambda + image->lambda*image->bw/2.0); - - tl = sqrt(xl*xl + yl*yl); - ds = modulus(xl, yl, zl); - - cet = -sin(image->div/2.0) * klow; - cez = -cos(image->div/2.0) * klow; - philow = M_PI_2 - angle_between_2d(tl-cet, zl-cez, 1.0, 0.0); - - cet = -sin(image->div/2.0) * khigh; - cez = -cos(image->div/2.0) * khigh; - phihigh = M_PI_2 - angle_between_2d(tl-cet, zl-cez, 1.0, 0.0); - - /* Approximation: philow and phihigh are very similar */ - phi = (philow + phihigh) / 2.0; - - azi = atan2(yl, xl); + get_partial(refl, &rlow, &rhigh, &p); /* Calculate the gradient of partiality wrt excitation error. */ - if ( clamp_low == 0 ) { - glow = partiality_gradient(rlow, r, pmodel, rlow, rhigh, p); - } else { - glow = 0.0; - } - if ( clamp_high == 0 ) { - ghigh = partiality_gradient(rhigh, r, pmodel, rlow, rhigh, p); - } else { - ghigh = 0.0; - } + glow = partiality_gradient(rlow, r, pmodel, rlow, rhigh); + ghigh = partiality_gradient(rhigh, r, pmodel, rlow, rhigh); if ( k == REF_R ) { switch ( pmodel ) { @@ -198,19 +174,22 @@ double p_gradient(Crystal *cr, int k, Reflection *refl, PartialityModel pmodel) return 0.0; case PMODEL_SCSPHERE: - gr = partiality_rgradient(rlow, r, pmodel); - gr -= partiality_rgradient(rhigh, r, pmodel); + gr =0.0;// partiality_rgradient(rlow, r, pmodel); + //gr -= partiality_rgradient(rhigh, r, pmodel); return gr; case PMODEL_SCGAUSSIAN: - gr = partiality_rgradient(rlow, r, pmodel); - gr -= partiality_rgradient(rhigh, r, pmodel); + gr =0.0;// partiality_rgradient(rlow, r, pmodel); + //gr -= partiality_rgradient(rhigh, r, pmodel); return gr; } } if ( k == REF_DIV ) { + + double ds = 2.0 * resolution(crystal_get_cell(cr), hs, ks, ls); + switch ( pmodel ) { default: @@ -226,37 +205,67 @@ double p_gradient(Crystal *cr, int k, Reflection *refl, PartialityModel pmodel) } } + get_symmetric_indices(refl, &hs, &ks, &ls); + + cell_get_reciprocal(crystal_get_cell(cr), &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz); + xl = hs*asx + ks*bsx + ls*csx; + yl = hs*asy + ks*bsy + ls*csy; + zl = hs*asz + ks*bsz + ls*csz; + + /* "low" gives the largest Ewald sphere (wavelength short => k large) + * "high" gives the smallest Ewald sphere (wavelength long => k small) + */ + klow = 1.0/(image->lambda - image->lambda*image->bw/2.0); + khigh = 1.0/(image->lambda + image->lambda*image->bw/2.0); + + tl = sqrt(xl*xl + yl*yl); + + cet = -sin(image->div/2.0) * klow; + cez = -cos(image->div/2.0) * klow; + philow = angle_between_2d(tl-cet, zl-cez, 0.0, 1.0); + + cet = -sin(image->div/2.0) * khigh; + cez = -cos(image->div/2.0) * khigh; + phihigh = angle_between_2d(tl-cet, zl-cez, 0.0, 1.0); + + /* Approximation: philow and phihigh are very similar */ + phi = (philow + phihigh) / 2.0; + + azi = atan2(yl, xl); + /* For many gradients, just multiply the above number by the gradient * of excitation error wrt whatever. */ switch ( k ) { /* Cell parameters and orientation */ case REF_ASX : - return hs * sin(phi) * cos(azi) * (ghigh-glow); + return - hs * sin(phi) * cos(azi) * (glow-ghigh); case REF_BSX : - return ks * sin(phi) * cos(azi) * (ghigh-glow); + return - ks * sin(phi) * cos(azi) * (glow-ghigh); case REF_CSX : - return ls * sin(phi) * cos(azi) * (ghigh-glow); + return - ls * sin(phi) * cos(azi) * (glow-ghigh); case REF_ASY : - return hs * sin(phi) * sin(azi) * (ghigh-glow); + return - hs * sin(phi) * sin(azi) * (glow-ghigh); case REF_BSY : - return ks * sin(phi) * sin(azi) * (ghigh-glow); + return - ks * sin(phi) * sin(azi) * (glow-ghigh); case REF_CSY : - return ls * sin(phi) * sin(azi) * (ghigh-glow); + return - ls * sin(phi) * sin(azi) * (glow-ghigh); case REF_ASZ : - return hs * cos(phi) * (ghigh-glow); + return - hs * cos(phi) * (glow-ghigh); case REF_BSZ : - return ks * cos(phi) * (ghigh-glow); + return - ks * cos(phi) * (glow-ghigh); case REF_CSZ : - return ls * cos(phi) * (ghigh-glow); + return - ls * cos(phi) * (glow-ghigh); } |