diff options
Diffstat (limited to 'libcrystfel/src/symmetry.c')
-rw-r--r-- | libcrystfel/src/symmetry.c | 265 |
1 files changed, 227 insertions, 38 deletions
diff --git a/libcrystfel/src/symmetry.c b/libcrystfel/src/symmetry.c index 52a9aae6..14681434 100644 --- a/libcrystfel/src/symmetry.c +++ b/libcrystfel/src/symmetry.c @@ -38,6 +38,7 @@ #include "symmetry.h" #include "utils.h" +#include "integer_matrix.h" /** @@ -57,7 +58,7 @@ struct sym_op { signed int *h; signed int *k; - signed int *l; /* Contributions to h, k and l from h, k, i and l */ + signed int *l; /* Contributions to h, k and l from h, k and l */ int order; }; @@ -359,6 +360,100 @@ static SymOpList *expand_ops(SymOpList *s) } +/* Transform all the operations in a SymOpList by a given matrix. + * The matrix must have a determinant of +/- 1 (otherwise its inverse would + * not also be an integer matrix). */ +static void transform_ops(SymOpList *s, signed int *na, + signed int *nb, + signed int *nc) +{ + int n, i; + IntegerMatrix *t, *inv; + signed int det; + + t = intmat_new(3, 3); + if ( t == NULL ) { + ERROR("Failed to allocate matrix.\n"); + return; + } + + intmat_set(t, 0, 0, na[0]); + intmat_set(t, 1, 0, na[1]); + intmat_set(t, 2, 0, na[2]); + intmat_set(t, 0, 1, nb[0]); + intmat_set(t, 1, 1, nb[1]); + intmat_set(t, 2, 1, nb[2]); + intmat_set(t, 0, 2, nc[0]); + intmat_set(t, 1, 2, nc[1]); + intmat_set(t, 2, 2, nc[2]); + + det = intmat_det(t); + if ( det == -1 ) { + ERROR("Warning: mirrored SymOpList.\n"); + } else if ( det != 1 ) { + ERROR("Invalid transformation for SymOpList.\n"); + return; + } + + inv = intmat_inverse(t); + if ( inv == NULL ) { + ERROR("Failed to invert matrix.\n"); + return; + } + + n = num_ops(s); + for ( i=0; i<n; i++ ) { + + IntegerMatrix *m, *r, *f; + + m = intmat_new(3, 3); + if ( m == NULL ) { + ERROR("Failed to allocate matrix.\n"); + return; + } + + intmat_set(m, 0, 0, s->ops[i].h[0]); + intmat_set(m, 1, 0, s->ops[i].h[1]); + intmat_set(m, 2, 0, s->ops[i].h[2]); + intmat_set(m, 0, 1, s->ops[i].k[0]); + intmat_set(m, 1, 1, s->ops[i].k[1]); + intmat_set(m, 2, 1, s->ops[i].k[2]); + intmat_set(m, 0, 2, s->ops[i].l[0]); + intmat_set(m, 1, 2, s->ops[i].l[1]); + intmat_set(m, 2, 2, s->ops[i].l[2]); + + r = intmat_intmat_mult(m, t); + if ( r == NULL ) { + ERROR("Matrix multiplication failed.\n"); + return; + } + intmat_free(m); + + f = intmat_intmat_mult(inv, r); + if ( f == NULL ) { + ERROR("Matrix multiplication failed.\n"); + return; + } + intmat_free(r); + + s->ops[i].h[0] = intmat_get(f, 0, 0); + s->ops[i].h[1] = intmat_get(f, 1, 0); + s->ops[i].h[2] = intmat_get(f, 2, 0); + s->ops[i].k[0] = intmat_get(f, 0, 1); + s->ops[i].k[1] = intmat_get(f, 1, 1); + s->ops[i].k[2] = intmat_get(f, 2, 1); + s->ops[i].l[0] = intmat_get(f, 0, 2); + s->ops[i].l[1] = intmat_get(f, 1, 2); + s->ops[i].l[2] = intmat_get(f, 2, 2); + intmat_free(f); + + } + + intmat_free(t); + intmat_free(inv); +} + + /********************************* Triclinic **********************************/ static SymOpList *make_1bar() @@ -390,15 +485,6 @@ static SymOpList *make_2m() } -static SymOpList *make_2_uab() -{ - SymOpList *new = new_symoplist(); - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,-1), 2); /* 2 // k */ - new->name = strdup("2_uab"); - return expand_ops(new); -} - - static SymOpList *make_2() { SymOpList *new = new_symoplist(); @@ -531,17 +617,6 @@ static SymOpList *make_4mmm() } -static SymOpList *make_4mmm_uaa() -{ - SymOpList *new = new_symoplist(); - add_symop(new, v(1,0,0,0), v(0,0,0,1), v(0,-1,0,0), 4); /* 4 // h */ - add_symop(new, v(1,0,0,0), v(0,-1,0,0), v(0,0,0,1), 2); /* m -| k */ - add_symop(new, v(-1,0,0,0), v(0,1,0,0), v(0,0,0,1), 2); /* m -| h */ - new->name = strdup("4/mmm_uaa"); - return expand_ops(new); -} - - /************************** Trigonal (Rhombohedral) ***************************/ static SymOpList *make_3_R() @@ -817,21 +892,7 @@ static SymOpList *make_m3barm() } -/** - * get_pointgroup: - * @sym: A string representation of a point group - * - * This function parses @sym and returns the corresponding %SymOpList. - * In the string representation of the point group, use a preceding minus sign - * for any character which would have a "bar". Trigonal groups must be suffixed - * with either "_H" or "_R" for a hexagonal or rhombohedral lattice - * respectively. - * - * Examples: -1 1 2/m 2 m mmm 222 mm2 4/m 4 -4 4/mmm 422 -42m -4m2 4mm - * 3_R -3_R 32_R 3m_R -3m_R 3_H -3_H 321_H 312_H 3m1_H 31m_H -3m1_H -31m_H - * 6/m 6 -6 6/mmm 622 -62m -6m2 6mm 23 m-3 432 -43m m-3m. - **/ -SymOpList *get_pointgroup(const char *sym) +static SymOpList *getpg_old(const char *sym) { /* Triclinic */ if ( strcmp(sym, "-1") == 0 ) return make_1bar(); @@ -840,7 +901,6 @@ SymOpList *get_pointgroup(const char *sym) /* Monoclinic */ if ( strcmp(sym, "2/m") == 0 ) return make_2m(); if ( strcmp(sym, "2") == 0 ) return make_2(); - if ( strcmp(sym, "2_uab") == 0 ) return make_2_uab(); if ( strcmp(sym, "m") == 0 ) return make_m(); /* Orthorhombic */ @@ -853,7 +913,6 @@ SymOpList *get_pointgroup(const char *sym) if ( strcmp(sym, "4") == 0 ) return make_4(); if ( strcmp(sym, "-4") == 0 ) return make_4bar(); if ( strcmp(sym, "4/mmm") == 0 ) return make_4mmm(); - if ( strcmp(sym, "4/mmm_uaa") == 0 ) return make_4mmm_uaa(); if ( strcmp(sym, "422") == 0 ) return make_422(); if ( strcmp(sym, "-42m") == 0 ) return make_4bar2m(); if ( strcmp(sym, "-4m2") == 0 ) return make_4barm2(); @@ -898,6 +957,136 @@ SymOpList *get_pointgroup(const char *sym) } +static int char_count(const char *a, char b) +{ + size_t i; + int n; + + i = 0; n = 0; + do { + if ( a[i] == b ) n++; + if ( a[i] == '\0' ) return n; + i++; + } while ( 1 ); +} + + +static SymOpList *getpg_old_ua(const char *sym, size_t s) +{ + char ua; + char *pg_type; + SymOpList *pg; + + if ( strncmp(sym+s, "ua", 2) == 0 ) { + ua = sym[s+2]; + } else { + ERROR("Unrecognised point group '%s'\n", sym); + return NULL; + } + + pg_type = strndup(sym, s-1); + if ( pg_type == NULL ) { + ERROR("Couldn't allocate string.\n"); + return NULL; + } + + pg = getpg_old(pg_type); + if ( pg == NULL ) { + ERROR("Unrecognised point group type '%s'\n", + pg_type); + return NULL; + } + free(pg_type); + + switch ( ua ) { + + case 'a' : + transform_ops(pg, v(0,0,0,1), + v(0,1,0,0), + v(-1,0,0,0)); + break; + + case 'b' : + transform_ops(pg, v(1,0,0,0), + v(0,0,0,1), + v(0,-1,0,0)); + break; + + case 'c' : + /* No transformation needed */ + break; + + default : + ERROR("Bad unique axis '%c'\n", ua); + free_symoplist(pg); + return NULL; + + } + + return pg; +} + + +/** + * get_pointgroup: + * @sym: A string representation of a point group + * + * This function parses @sym and returns the corresponding %SymOpList. + * In the string representation of the point group, use a preceding minus sign + * for any character which would have a "bar". Trigonal groups must be suffixed + * with either "_H" or "_R" for a hexagonal or rhombohedral lattice + * respectively. + * + * Examples: -1 1 2/m 2 m mmm 222 mm2 4/m 4 -4 4/mmm 422 -42m -4m2 4mm + * 3_R -3_R 32_R 3m_R -3m_R 3_H -3_H 321_H 312_H 3m1_H 31m_H -3m1_H -31m_H + * 6/m 6 -6 6/mmm 622 -62m -6m2 6mm 23 m-3 432 -43m m-3m. + **/ +SymOpList *get_pointgroup(const char *sym) +{ + int n_space, n_underscore; + + n_space = char_count(sym, ' '); + n_underscore = char_count(sym, '_'); + + if ( n_space == 0 ) { + + /* No spaces nor underscores -> old system */ + if ( n_underscore == 0 ) return getpg_old(sym); + + /* No spaces and 1 underscore -> old system + lattice or UA */ + if ( n_underscore == 1 ) { + + const char *s; + + s = strchr(sym, '_'); + assert(s != NULL); + s++; + + /* Old system with H/R lattice? */ + if ( (s[0] == 'H') || (s[0] == 'R') ) { + return getpg_old(sym); + } + + /* Old system with unique axis */ + return getpg_old_ua(sym, s-sym); + + } + + } + + if ( n_space > 4 ) { + ERROR("Unrecognised point group '%s'\n", sym); + return NULL; + } + + /* 1-4 spaces -> new system, possibly with UA and/or lattice */ + + /* FIXME: Implementation */ + + return NULL; +} + + static void do_op(const struct sym_op *op, signed int h, signed int k, signed int l, signed int *he, signed int *ke, signed int *le) |