diff options
Diffstat (limited to 'libcrystfel/src/utils.c')
-rw-r--r-- | libcrystfel/src/utils.c | 276 |
1 files changed, 138 insertions, 138 deletions
diff --git a/libcrystfel/src/utils.c b/libcrystfel/src/utils.c index 461da0cd..90d81a71 100644 --- a/libcrystfel/src/utils.c +++ b/libcrystfel/src/utils.c @@ -387,144 +387,6 @@ int poisson_noise(gsl_rng *rng, double expected) } -/** - * SECTION:quaternion - * @short_description: Simple quaternion handling - * @title: Quaternion - * @section_id: - * @see_also: - * @include: "utils.h" - * @Image: - * - * There is a simple quaternion structure in CrystFEL. At the moment, it is - * only used when simulating patterns, as an argument to cell_rotate() to - * orient the unit cell. - */ - -/** - * quaternion_modulus: - * @q: A %quaternion - * - * If a quaternion represents a pure rotation, its modulus should be unity. - * - * Returns: the modulus of the given quaternion. - **/ -double quaternion_modulus(struct quaternion q) -{ - return sqrt(q.w*q.w + q.x*q.x + q.y*q.y + q.z*q.z); -} - - -/** - * normalise_quaternion: - * @q: A %quaternion - * - * Rescales the quaternion such that its modulus is unity. - * - * Returns: the normalised version of @q - **/ -struct quaternion normalise_quaternion(struct quaternion q) -{ - double mod; - struct quaternion r; - - mod = quaternion_modulus(q); - - r.w = q.w / mod; - r.x = q.x / mod; - r.y = q.y / mod; - r.z = q.z / mod; - - return r; -} - - -/** - * random_quaternion: - * @rng: A GSL random number generator to use - * - * Returns: a randomly generated, normalised, quaternion. - **/ -struct quaternion random_quaternion(gsl_rng *rng) -{ - struct quaternion q; - - q.w = 2.0*gsl_rng_uniform(rng) - 1.0; - q.x = 2.0*gsl_rng_uniform(rng) - 1.0; - q.y = 2.0*gsl_rng_uniform(rng) - 1.0; - q.z = 2.0*gsl_rng_uniform(rng) - 1.0; - q = normalise_quaternion(q); - - return q; -} - - -/** - * quaternion_valid: - * @q: A %quaternion - * - * Checks if the given quaternion is normalised. - * - * This function performs a nasty floating point comparison of the form - * <code>(modulus > 0.999) && (modulus < 1.001)</code>, and so should not be - * relied upon to spot anything other than the most obvious input error. - * - * Returns: 1 if the quaternion is normalised, 0 if not. - **/ -int quaternion_valid(struct quaternion q) -{ - double qmod; - - qmod = quaternion_modulus(q); - - /* Modulus = 1 to within some tolerance? - * Nasty allowance for floating-point accuracy follows... */ - if ( (qmod > 0.999) && (qmod < 1.001) ) return 1; - - return 0; -} - - -/** - * quat_rot - * @q: A vector (in the form of a "struct rvec") - * @z: A %quaternion - * - * Rotates a vector according to a quaternion. - * - * Returns: A rotated version of @p. - **/ -struct rvec quat_rot(struct rvec q, struct quaternion z) -{ - struct rvec res; - double t01, t02, t03, t11, t12, t13, t22, t23, t33; - - t01 = z.w*z.x; - t02 = z.w*z.y; - t03 = z.w*z.z; - t11 = z.x*z.x; - t12 = z.x*z.y; - t13 = z.x*z.z; - t22 = z.y*z.y; - t23 = z.y*z.z; - t33 = z.z*z.z; - - res.u = (1.0 - 2.0 * (t22 + t33)) * q.u - + (2.0 * (t12 + t03)) * q.v - + (2.0 * (t13 - t02)) * q.w; - - res.v = (2.0 * (t12 - t03)) * q.u - + (1.0 - 2.0 * (t11 + t33)) * q.v - + (2.0 * (t01 + t23)) * q.w; - - res.w = (2.0 * (t02 + t13)) * q.u - + (2.0 * (t23 - t01)) * q.v - + (1.0 - 2.0 * (t11 + t22)) * q.w; - - return res; -} - - /* Return non-zero if c is in delims */ static int assplode_isdelim(const char c, const char *delims) { @@ -691,3 +553,141 @@ void utils_fudge_gslcblas() { STATUS("%p\n", cblas_sgemm); } + + +/** + * SECTION:quaternion + * @short_description: Simple quaternion handling + * @title: Quaternion + * @section_id: + * @see_also: + * @include: "utils.h" + * @Image: + * + * There is a simple quaternion structure in CrystFEL. At the moment, it is + * only used when simulating patterns, as an argument to cell_rotate() to + * orient the unit cell. + */ + +/** + * quaternion_modulus: + * @q: A %quaternion + * + * If a quaternion represents a pure rotation, its modulus should be unity. + * + * Returns: the modulus of the given quaternion. + **/ +double quaternion_modulus(struct quaternion q) +{ + return sqrt(q.w*q.w + q.x*q.x + q.y*q.y + q.z*q.z); +} + + +/** + * normalise_quaternion: + * @q: A %quaternion + * + * Rescales the quaternion such that its modulus is unity. + * + * Returns: the normalised version of @q + **/ +struct quaternion normalise_quaternion(struct quaternion q) +{ + double mod; + struct quaternion r; + + mod = quaternion_modulus(q); + + r.w = q.w / mod; + r.x = q.x / mod; + r.y = q.y / mod; + r.z = q.z / mod; + + return r; +} + + +/** + * random_quaternion: + * @rng: A GSL random number generator to use + * + * Returns: a randomly generated, normalised, quaternion. + **/ +struct quaternion random_quaternion(gsl_rng *rng) +{ + struct quaternion q; + + q.w = 2.0*gsl_rng_uniform(rng) - 1.0; + q.x = 2.0*gsl_rng_uniform(rng) - 1.0; + q.y = 2.0*gsl_rng_uniform(rng) - 1.0; + q.z = 2.0*gsl_rng_uniform(rng) - 1.0; + q = normalise_quaternion(q); + + return q; +} + + +/** + * quaternion_valid: + * @q: A %quaternion + * + * Checks if the given quaternion is normalised. + * + * This function performs a nasty floating point comparison of the form + * <code>(modulus > 0.999) && (modulus < 1.001)</code>, and so should not be + * relied upon to spot anything other than the most obvious input error. + * + * Returns: 1 if the quaternion is normalised, 0 if not. + **/ +int quaternion_valid(struct quaternion q) +{ + double qmod; + + qmod = quaternion_modulus(q); + + /* Modulus = 1 to within some tolerance? + * Nasty allowance for floating-point accuracy follows... */ + if ( (qmod > 0.999) && (qmod < 1.001) ) return 1; + + return 0; +} + + +/** + * quat_rot + * @q: A vector (in the form of a "struct rvec") + * @z: A %quaternion + * + * Rotates a vector according to a quaternion. + * + * Returns: A rotated version of @p. + **/ +struct rvec quat_rot(struct rvec q, struct quaternion z) +{ + struct rvec res; + double t01, t02, t03, t11, t12, t13, t22, t23, t33; + + t01 = z.w*z.x; + t02 = z.w*z.y; + t03 = z.w*z.z; + t11 = z.x*z.x; + t12 = z.x*z.y; + t13 = z.x*z.z; + t22 = z.y*z.y; + t23 = z.y*z.z; + t33 = z.z*z.z; + + res.u = (1.0 - 2.0 * (t22 + t33)) * q.u + + (2.0 * (t12 + t03)) * q.v + + (2.0 * (t13 - t02)) * q.w; + + res.v = (2.0 * (t12 - t03)) * q.u + + (1.0 - 2.0 * (t11 + t33)) * q.v + + (2.0 * (t01 + t23)) * q.w; + + res.w = (2.0 * (t02 + t13)) * q.u + + (2.0 * (t23 - t01)) * q.v + + (1.0 - 2.0 * (t11 + t22)) * q.w; + + return res; +} |