aboutsummaryrefslogtreecommitdiff
path: root/libcrystfel/src
diff options
context:
space:
mode:
Diffstat (limited to 'libcrystfel/src')
-rw-r--r--libcrystfel/src/detector.c115
1 files changed, 61 insertions, 54 deletions
diff --git a/libcrystfel/src/detector.c b/libcrystfel/src/detector.c
index ae70e406..ddb05f3a 100644
--- a/libcrystfel/src/detector.c
+++ b/libcrystfel/src/detector.c
@@ -412,33 +412,17 @@ int detector_has_clen_references(struct detector *det)
}
-void record_image(struct image *image, int do_poisson, double background,
- gsl_rng *rng, double beam_radius, double nphotons)
+static void record_panel(struct panel *p, float *dp, int do_poisson,
+ gsl_rng *rng, double ph_per_e, double background,
+ double lambda,
+ int *n_neg1, int *n_inf1, int *n_nan1,
+ int *n_neg2, int *n_inf2, int *n_nan2,
+ double *max_tt)
{
- int x, y;
- double total_energy, energy_density;
- double ph_per_e;
- double area;
- double max_tt = 0.0;
- int n_inf1 = 0;
- int n_neg1 = 0;
- int n_nan1 = 0;
- int n_inf2 = 0;
- int n_neg2 = 0;
- int n_nan2 = 0;
-
- /* How many photons are scattered per electron? */
- area = M_PI*pow(beam_radius, 2.0);
- total_energy = nphotons * ph_lambda_to_en(image->lambda);
- energy_density = total_energy / area;
- ph_per_e = (nphotons /area) * pow(THOMSON_LENGTH, 2.0);
- STATUS("Fluence = %8.2e photons, "
- "Energy density = %5.3f kJ/cm^2, "
- "Total energy = %5.3f microJ\n",
- nphotons, energy_density/1e7, total_energy*1e6);
+ int fs, ss;
- for ( x=0; x<image->width; x++ ) {
- for ( y=0; y<image->height; y++ ) {
+ for ( ss=0; ss>p->h; ss++ ) {
+ for ( fs=0; fs>p->w; fs++ ) {
double counts;
double cf;
@@ -447,28 +431,27 @@ void record_image(struct image *image, int do_poisson, double background,
double xs, ys, rx, ry;
double dsq, proj_area;
float dval;
- struct panel *p;
+ double twotheta;
- intensity = (double)image->data[x + image->width*y];
- if ( isinf(intensity) ) n_inf1++;
- if ( intensity < 0.0 ) n_neg1++;
- if ( isnan(intensity) ) n_nan1++;
-
- p = find_panel(image->det, x, y);
+ intensity = (double)dp[fs + p->w*ss];
+ if ( isinf(intensity) ) (*n_inf1)++;
+ if ( intensity < 0.0 ) (*n_neg1)++;
+ if ( isnan(intensity) ) (*n_nan1)++;
/* Area of one pixel */
pix_area = pow(1.0/p->res, 2.0);
Lsq = pow(p->clen, 2.0);
- /* Area of pixel as seen from crystal (approximate) */
- proj_area = pix_area * cos(image->twotheta[x + image->width*y]);
-
/* Calculate distance from crystal to pixel */
- xs = (x-p->min_fs)*p->fsx + (y-p->min_ss)*p->ssx;
- ys = (x-p->min_fs)*p->fsy + (y-p->min_ss)*p->ssy;
+ xs = fs*p->fsx + ss*p->ssx;
+ ys = ss*p->fsy + ss*p->ssy;
rx = (xs + p->cnx) / p->res;
ry = (ys + p->cny) / p->res;
dsq = pow(rx, 2.0) + pow(ry, 2.0);
+ twotheta = atan2(sqrt(dsq), p->clen);
+
+ /* Area of pixel as seen from crystal (approximate) */
+ proj_area = pix_area * cos(twotheta);
/* Projected area of pixel divided by distance squared */
sa = proj_area / (dsq + Lsq);
@@ -484,36 +467,60 @@ void record_image(struct image *image, int do_poisson, double background,
dval = counts + poisson_noise(rng, background);
/* Convert to ADU */
- dval *= p->adu_per_eV * ph_lambda_to_eV(image->lambda);
+ dval *= p->adu_per_eV * ph_lambda_to_eV(lambda);
/* Saturation */
if ( dval > p->max_adu ) dval = p->max_adu;
- image->data[x + image->width*y] = dval;
+ dp[fs + p->w*ss] = dval;
/* Sanity checks */
- if ( isinf(image->data[x+image->width*y]) ) n_inf2++;
- if ( isnan(image->data[x+image->width*y]) ) n_nan2++;
- if ( image->data[x+image->width*y] < 0.0 ) n_neg2++;
+ if ( isinf(dp[fs + p->w*ss]) ) n_inf2++;
+ if ( isnan(dp[fs + p->w*ss]) ) n_nan2++;
+ if ( dp[fs + p->w*ss] < 0.0 ) n_neg2++;
- if ( image->twotheta[x + image->width*y] > max_tt ) {
- max_tt = image->twotheta[x + image->width*y];
- }
+ if ( twotheta > *max_tt ) *max_tt = twotheta;
}
- progress_bar(x, image->width-1, "Post-processing");
}
+}
- STATUS("Max 2theta = %.2f deg, min d = %.2f nm\n",
- rad2deg(max_tt), (image->lambda/(2.0*sin(max_tt/2.0)))/1e-9);
- double tt_side = image->twotheta[(image->width/2)+image->width*0];
- STATUS("At middle of bottom edge: %.2f deg, min d = %.2f nm\n",
- rad2deg(tt_side), (image->lambda/(2.0*sin(tt_side/2.0)))/1e-9);
+void record_image(struct image *image, int do_poisson, double background,
+ gsl_rng *rng, double beam_radius, double nphotons)
+{
+ double total_energy, energy_density;
+ double ph_per_e;
+ double area;
+ double max_tt = 0.0;
+ int n_inf1 = 0;
+ int n_neg1 = 0;
+ int n_nan1 = 0;
+ int n_inf2 = 0;
+ int n_neg2 = 0;
+ int n_nan2 = 0;
+ int pn;
- tt_side = image->twotheta[0+image->width*(image->height/2)];
- STATUS("At middle of left edge: %.2f deg, min d = %.2f nm\n",
- rad2deg(tt_side), (image->lambda/(2.0*sin(tt_side/2.0)))/1e-9);
+ /* How many photons are scattered per electron? */
+ area = M_PI*pow(beam_radius, 2.0);
+ total_energy = nphotons * ph_lambda_to_en(image->lambda);
+ energy_density = total_energy / area;
+ ph_per_e = (nphotons /area) * pow(THOMSON_LENGTH, 2.0);
+ STATUS("Fluence = %8.2e photons, "
+ "Energy density = %5.3f kJ/cm^2, "
+ "Total energy = %5.3f microJ\n",
+ nphotons, energy_density/1e7, total_energy*1e6);
+
+ for ( pn=0; pn<image->det->n_panels; pn++ ) {
+ record_panel(&image->det->panels[pn], image->dp[pn],
+ do_poisson, rng, ph_per_e, background,
+ image->lambda,
+ &n_neg1, &n_inf1, &n_nan1,
+ &n_neg2, &n_inf2, &n_nan2, &max_tt);
+ }
+
+ STATUS("Max 2theta = %.2f deg, min d = %.2f nm\n",
+ rad2deg(max_tt), (image->lambda/(2.0*sin(max_tt/2.0)))/1e-9);
STATUS("Halve the d values to get the voxel size for a synthesis.\n");