diff options
Diffstat (limited to 'libcrystfel')
-rw-r--r-- | libcrystfel/Makefile.am | 5 | ||||
-rw-r--r-- | libcrystfel/src/cell-utils.c | 1205 | ||||
-rw-r--r-- | libcrystfel/src/cell-utils.h | 69 | ||||
-rw-r--r-- | libcrystfel/src/cell.c | 838 | ||||
-rw-r--r-- | libcrystfel/src/cell.h | 54 | ||||
-rw-r--r-- | libcrystfel/src/geometry.c | 1 | ||||
-rw-r--r-- | libcrystfel/src/index.c | 1 | ||||
-rw-r--r-- | libcrystfel/src/mosflm.c | 107 | ||||
-rw-r--r-- | libcrystfel/src/peaks.c | 1 | ||||
-rw-r--r-- | libcrystfel/src/reax.c | 6 | ||||
-rw-r--r-- | libcrystfel/src/reflist-utils.c | 1 | ||||
-rw-r--r-- | libcrystfel/src/symmetry.c | 4 |
12 files changed, 1671 insertions, 621 deletions
diff --git a/libcrystfel/Makefile.am b/libcrystfel/Makefile.am index d55f6e74..28d483ac 100644 --- a/libcrystfel/Makefile.am +++ b/libcrystfel/Makefile.am @@ -7,7 +7,8 @@ libcrystfel_la_SOURCES = src/reflist.c src/utils.c src/cell.c src/detector.c \ src/beam-parameters.c src/geometry.c src/statistics.c \ src/symmetry.c src/stream.c src/peaks.c \ src/reflist-utils.c src/filters.c \ - src/render.c src/index.c src/dirax.c src/mosflm.c + src/render.c src/index.c src/dirax.c src/mosflm.c \ + src/cell-utils.c if HAVE_FFTW libcrystfel_la_SOURCES += src/reax.c @@ -22,7 +23,7 @@ libcrystfel_la_include_HEADERS = src/beam-parameters.h src/hdf5-file.h \ src/geometry.h src/peaks.h src/stream.h \ src/render.h src/index.h src/image.h \ src/filters.h src/dirax.h src/mosflm.h \ - src/index-priv.h src/reax.h + src/index-priv.h src/reax.h src/cell-utils.h INCLUDES = "-I$(top_srcdir)/data" AM_CPPFLAGS = -DDATADIR=\""$(datadir)"\" -I$(top_builddir)/lib -Wall diff --git a/libcrystfel/src/cell-utils.c b/libcrystfel/src/cell-utils.c new file mode 100644 index 00000000..3aaae90e --- /dev/null +++ b/libcrystfel/src/cell-utils.c @@ -0,0 +1,1205 @@ +/* + * cell-utils.c + * + * Unit Cell utility functions + * + * Copyright © 2012 Deutsches Elektronen-Synchrotron DESY, + * a research centre of the Helmholtz Association. + * Copyright © 2012 Lorenzo Galli + * + * Authors: + * 2009-2012 Thomas White <taw@physics.org> + * 2012 Lorenzo Galli + * + * This file is part of CrystFEL. + * + * CrystFEL is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * CrystFEL is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with CrystFEL. If not, see <http://www.gnu.org/licenses/>. + * + */ + +#ifdef HAVE_CONFIG_H +#include <config.h> +#endif + +#include <math.h> +#include <stdlib.h> +#include <stdio.h> +#include <string.h> +#include <gsl/gsl_matrix.h> +#include <gsl/gsl_blas.h> +#include <gsl/gsl_linalg.h> +#include <assert.h> + +#include "cell.h" +#include "cell-utils.h" +#include "utils.h" +#include "image.h" + + +/** + * SECTION:cell-utils + * @short_description: Unit cell utilities + * @title: Unit cell utilities + * @section_id: + * @see_also: + * @include: "cell-utils.h" + * @Image: + * + * There are some utility functions associated with the core %UnitCell. + **/ + + +/* Weighting factor of lengths relative to angles */ +#define LWEIGHT (10.0e-9) + + +/** + * cell_rotate: + * @in: A %UnitCell to rotate + * @quat: A %quaternion + * + * Rotate a %UnitCell using a %quaternion. + * + * Returns: a newly allocated rotated copy of @in. + * + */ +UnitCell *cell_rotate(UnitCell *in, struct quaternion quat) +{ + struct rvec a, b, c; + struct rvec an, bn, cn; + UnitCell *out = cell_new_from_cell(in); + + cell_get_cartesian(in, &a.u, &a.v, &a.w, + &b.u, &b.v, &b.w, + &c.u, &c.v, &c.w); + + an = quat_rot(a, quat); + bn = quat_rot(b, quat); + cn = quat_rot(c, quat); + + cell_set_cartesian(out, an.u, an.v, an.w, + bn.u, bn.v, bn.w, + cn.u, cn.v, cn.w); + + return out; +} + + +const char *str_lattice(LatticeType l) +{ + switch ( l ) + { + case L_TRICLINIC : return "triclinic"; + case L_MONOCLINIC : return "monoclinic"; + case L_ORTHORHOMBIC : return "orthorhombic"; + case L_TETRAGONAL : return "tetragonal"; + case L_RHOMBOHEDRAL : return "rhombohedral"; + case L_HEXAGONAL : return "hexagonal"; + case L_CUBIC : return "cubic"; + } + + return "unknown lattice"; +} + + +int right_handed(UnitCell *cell) +{ + double asx, asy, asz; + double bsx, bsy, bsz; + double csx, csy, csz; + struct rvec aCb; + double aCb_dot_c; + int rh_reciprocal; + int rh_direct; + + if ( cell_get_reciprocal(cell, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz) ) { + ERROR("Couldn't get reciprocal cell.\n"); + return 0; + } + + /* "a" cross "b" */ + aCb.u = asy*bsz - asz*bsy; + aCb.v = - (asx*bsz - asz*bsx); + aCb.w = asx*bsy - asy*bsx; + + /* "a cross b" dot "c" */ + aCb_dot_c = aCb.u*csx + aCb.v*csy + aCb.w*csz; + + rh_reciprocal = aCb_dot_c > 0.0; + + if ( cell_get_cartesian(cell, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz) ) { + ERROR("Couldn't get direct cell.\n"); + return 0; + } + + /* "a" cross "b" */ + aCb.u = asy*bsz - asz*bsy; + aCb.v = - (asx*bsz - asz*bsx); + aCb.w = asx*bsy - asy*bsx; + + /* "a cross b" dot "c" */ + aCb_dot_c = aCb.u*csx + aCb.v*csy + aCb.w*csz; + + rh_direct = aCb_dot_c > 0.0; + + assert(rh_reciprocal == rh_direct); + + return rh_direct; +} + + +void cell_print(UnitCell *cell) +{ + double asx, asy, asz; + double bsx, bsy, bsz; + double csx, csy, csz; + double a, b, c, alpha, beta, gamma; + double ax, ay, az, bx, by, bz, cx, cy, cz; + LatticeType lt; + char cen; + + lt = cell_get_lattice_type(cell); + cen = cell_get_centering(cell); + + STATUS("%s %c", str_lattice(lt), cen); + + if ( (lt==L_MONOCLINIC) || (lt==L_TETRAGONAL) || ( lt==L_HEXAGONAL) + || ( (lt==L_ORTHORHOMBIC) && (cen=='A') ) + || ( (lt==L_ORTHORHOMBIC) && (cen=='B') ) + || ( (lt==L_ORTHORHOMBIC) && (cen=='C') ) ) + { + STATUS(", unique axis %c", cell_get_unique_axis(cell)); + } + + if ( right_handed(cell) ) { + STATUS(", right handed"); + } else { + STATUS(", left handed"); + } + + STATUS(", point group '%s'.\n", cell_get_pointgroup(cell)); + + cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma); + + STATUS(" a b c alpha beta gamma\n"); + STATUS("%5.2f %5.2f %5.2f nm %6.2f %6.2f %6.2f deg\n", + a*1e9, b*1e9, c*1e9, + rad2deg(alpha), rad2deg(beta), rad2deg(gamma)); + + cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); + + STATUS("a = %10.3e %10.3e %10.3e m\n", ax, ay, az); + STATUS("b = %10.3e %10.3e %10.3e m\n", bx, by, bz); + STATUS("c = %10.3e %10.3e %10.3e m\n", cx, cy, cz); + + cell_get_reciprocal(cell, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz); + + STATUS("astar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", + asx, asy, asz, modulus(asx, asy, asz)); + STATUS("bstar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", + bsx, bsy, bsz, modulus(bsx, bsy, bsz)); + STATUS("cstar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", + csx, csy, csz, modulus(csx, csy, csz)); + + STATUS("Cell representation is %s.\n", cell_rep(cell)); +} + + +int bravais_lattice(UnitCell *cell) +{ + LatticeType lattice = cell_get_lattice_type(cell); + char centering = cell_get_centering(cell); + char ua = cell_get_unique_axis(cell); + + switch ( centering ) + { + case 'P' : + return 1; + + case 'A' : + case 'B' : + case 'C' : + if ( lattice == L_MONOCLINIC ) { + if ( (ua=='a') && (centering=='A') ) return 1; + if ( (ua=='b') && (centering=='B') ) return 1; + if ( (ua=='c') && (centering=='C') ) return 1; + } else if ( lattice == L_ORTHORHOMBIC) { + return 1; + } + return 0; + + case 'I' : + if ( (lattice == L_ORTHORHOMBIC) + || (lattice == L_TETRAGONAL) + || (lattice == L_CUBIC) ) + { + return 1; + } + return 0; + + case 'F' : + if ( (lattice == L_ORTHORHOMBIC) || (lattice == L_CUBIC) ) { + return 1; + } + return 0; + + case 'H' : + /* "Hexagonal H" is not a Bravais lattice, but rather something + * invented by the PDB to make life difficult for programmers. + * Accepting it as Bravais seems to be the least painful way to + * handle it correctly. Yuk. */ + if ( ua != 'c' ) return 0; + if ( lattice == L_HEXAGONAL ) return 1; + return 0; + + case 'R' : + if ( lattice == L_RHOMBOHEDRAL ) return 1; + return 0; + + default : + return 0; + } +} + + +static UnitCellTransformation *uncentering_transformation(UnitCell *in, + char *new_centering, + LatticeType *new_latt) +{ + UnitCellTransformation *t; + const double OT = 1.0/3.0; + const double TT = 2.0/3.0; + const double H = 0.5; + LatticeType lt; + char ua, cen; + + lt = cell_get_lattice_type(in); + ua = cell_get_unique_axis(in); + cen = cell_get_centering(in); + + t = tfn_identity(); + if ( t == NULL ) return NULL; + + if ( ua == 'a' ) { + tfn_combine(t, tfn_vector(0,0,1), + tfn_vector(0,1,0), + tfn_vector(-1,0,0)); + } + + if ( ua == 'b' ) { + tfn_combine(t, tfn_vector(1,0,0), + tfn_vector(0,0,1), + tfn_vector(0,-1,0)); + } + + switch ( cen ) { + + case 'P' : + *new_latt = lt; + *new_centering = 'P'; + break; + + case 'R' : + *new_latt = L_RHOMBOHEDRAL; + *new_centering = 'R'; + break; + + case 'I' : + tfn_combine(t, tfn_vector(-H,H,H), + tfn_vector(H,-H,H), + tfn_vector(H,H,-H)); + if ( lt == L_CUBIC ) { + *new_latt = L_RHOMBOHEDRAL; + *new_centering = 'R'; + } else { + /* Tetragonal or orthorhombic */ + *new_latt = L_TRICLINIC; + *new_centering = 'P'; + } + break; + + case 'F' : + tfn_combine(t, tfn_vector(0,H,H), + tfn_vector(H,0,H), + tfn_vector(H,H,0)); + if ( lt == L_CUBIC ) { + *new_latt = L_RHOMBOHEDRAL; + *new_centering = 'R'; + } else { + assert(lt == L_ORTHORHOMBIC); + *new_latt = L_TRICLINIC; + *new_centering = 'P'; + } + break; + + case 'A' : + case 'B' : + case 'C' : + tfn_combine(t, tfn_vector(H,H,0), + tfn_vector(-H,H,0), + tfn_vector(0,0,1)); + *new_latt = L_MONOCLINIC; + *new_centering = 'P'; + break; + + case 'H' : + /* Obverse setting */ + tfn_combine(t, tfn_vector(TT,OT,OT), + tfn_vector(-OT,OT,OT), + tfn_vector(-OT,-TT,OT)); + assert(lt == L_HEXAGONAL); + *new_latt = L_RHOMBOHEDRAL; + *new_centering = 'R'; + break; + + default : + ERROR("Invalid centering '%c'\n", cell_get_centering(in)); + return NULL; + + } + + /* Reverse the axis permutation, but only if this was not an H->R + * transformation */ + if ( !((cen=='H') && (*new_latt == L_RHOMBOHEDRAL)) ) { + if ( ua == 'a' ) { + tfn_combine(t, tfn_vector(0,0,-1), + tfn_vector(0,1,0), + tfn_vector(1,0,0)); + } + + if ( ua == 'b' ) { + tfn_combine(t, tfn_vector(1,0,0), + tfn_vector(0,0,-1), + tfn_vector(0,1,0)); + } + } + + return t; +} + + +/** + * uncenter_cell: + * @in: A %UnitCell + * @t: Location at which to store the transformation which was used. + * + * Turns any cell into a primitive one, e.g. for comparison purposes. The + * transformation which was used is stored at @t, which can be NULL if the + * transformation is not required. + * + * Returns: a primitive version of @in in a conventional (unique axis c) + * setting. + * + */ +UnitCell *uncenter_cell(UnitCell *in, UnitCellTransformation **t) +{ + UnitCellTransformation *tt; + char new_centering; + LatticeType new_latt; + UnitCell *out; + + if ( !bravais_lattice(in) ) { + ERROR("Cannot uncenter: not a Bravais lattice.\n"); + cell_print(in); + return NULL; + } + + tt = uncentering_transformation(in, &new_centering, &new_latt); + if ( tt == NULL ) return NULL; + + if ( t != NULL ) *t = tt; + + out = cell_transform(in, tt); + if ( out == NULL ) return NULL; + + cell_set_lattice_type(out, new_latt); + cell_set_centering(out, new_centering); + + return out; +} + + +#define MAX_CAND (1024) + +static int right_handed_vec(struct rvec a, struct rvec b, struct rvec c) +{ + struct rvec aCb; + double aCb_dot_c; + + /* "a" cross "b" */ + aCb.u = a.v*b.w - a.w*b.v; + aCb.v = - (a.u*b.w - a.w*b.u); + aCb.w = a.u*b.v - a.v*b.u; + + /* "a cross b" dot "c" */ + aCb_dot_c = aCb.u*c.u + aCb.v*c.v + aCb.w*c.w; + + if ( aCb_dot_c > 0.0 ) return 1; + return 0; +} + + +struct cvec { + struct rvec vec; + float na; + float nb; + float nc; + float fom; +}; + + +static int same_vector(struct cvec a, struct cvec b) +{ + if ( a.na != b.na ) return 0; + if ( a.nb != b.nb ) return 0; + if ( a.nc != b.nc ) return 0; + return 1; +} + + +/* Attempt to make 'cell' fit into 'template' somehow */ +UnitCell *match_cell(UnitCell *cell_in, UnitCell *template_in, int verbose, + const float *tols, int reduce) +{ + signed int n1l, n2l, n3l; + double asx, asy, asz; + double bsx, bsy, bsz; + double csx, csy, csz; + int i, j; + double lengths[3]; + double angles[3]; + struct cvec *cand[3]; + UnitCell *new_cell = NULL; + float best_fom = +999999999.9; /* Large number.. */ + int ncand[3] = {0,0,0}; + signed int ilow, ihigh; + float angtol = deg2rad(tols[3]); + UnitCell *cell; + UnitCell *template; + UnitCellTransformation *uncentering; + UnitCell *new_cell_trans; + + /* "Un-center" the template unit cell to make the comparison easier */ + template = uncenter_cell(template_in, &uncentering); + + /* The candidate cell is also uncentered, because it might be centered + * if it came from (e.g.) MOSFLM */ + cell = uncenter_cell(cell_in, NULL); + + if ( cell_get_reciprocal(template, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz) ) { + ERROR("Couldn't get reciprocal cell for template.\n"); + return NULL; + } + + lengths[0] = modulus(asx, asy, asz); + lengths[1] = modulus(bsx, bsy, bsz); + lengths[2] = modulus(csx, csy, csz); + + angles[0] = angle_between(bsx, bsy, bsz, csx, csy, csz); + angles[1] = angle_between(asx, asy, asz, csx, csy, csz); + angles[2] = angle_between(asx, asy, asz, bsx, bsy, bsz); + + cand[0] = malloc(MAX_CAND*sizeof(struct cvec)); + cand[1] = malloc(MAX_CAND*sizeof(struct cvec)); + cand[2] = malloc(MAX_CAND*sizeof(struct cvec)); + + if ( cell_get_reciprocal(cell, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz) ) { + ERROR("Couldn't get reciprocal cell.\n"); + return NULL; + } + + if ( reduce ) { + ilow = -2; ihigh = 4; + } else { + ilow = 0; ihigh = 1; + } + + /* Negative values mean 1/n, positive means n, zero means zero */ + for ( n1l=ilow; n1l<=ihigh; n1l++ ) { + for ( n2l=ilow; n2l<=ihigh; n2l++ ) { + for ( n3l=ilow; n3l<=ihigh; n3l++ ) { + + float n1, n2, n3; + signed int b1, b2, b3; + + n1 = (n1l>=0) ? (n1l) : (1.0/n1l); + n2 = (n2l>=0) ? (n2l) : (1.0/n2l); + n3 = (n3l>=0) ? (n3l) : (1.0/n3l); + + if ( !reduce ) { + if ( n1l + n2l + n3l > 1 ) continue; + } + + /* 'bit' values can be +1 or -1 */ + for ( b1=-1; b1<=1; b1+=2 ) { + for ( b2=-1; b2<=1; b2+=2 ) { + for ( b3=-1; b3<=1; b3+=2 ) { + + double tx, ty, tz; + double tlen; + int i; + + n1 *= b1; n2 *= b2; n3 *= b3; + + tx = n1*asx + n2*bsx + n3*csx; + ty = n1*asy + n2*bsy + n3*csy; + tz = n1*asz + n2*bsz + n3*csz; + tlen = modulus(tx, ty, tz); + + /* Test modulus for agreement with moduli of template */ + for ( i=0; i<3; i++ ) { + + if ( !within_tolerance(lengths[i], tlen, + tols[i]) ) + { + continue; + } + + if ( ncand[i] == MAX_CAND ) { + ERROR("Too many cell candidates - "); + ERROR("consider tightening the unit "); + ERROR("cell tolerances.\n"); + } else { + + double fom; + + fom = fabs(lengths[i] - tlen); + + cand[i][ncand[i]].vec.u = tx; + cand[i][ncand[i]].vec.v = ty; + cand[i][ncand[i]].vec.w = tz; + cand[i][ncand[i]].na = n1; + cand[i][ncand[i]].nb = n2; + cand[i][ncand[i]].nc = n3; + cand[i][ncand[i]].fom = fom; + + ncand[i]++; + + } + } + + } + } + } + + } + } + } + + if ( verbose ) { + STATUS("Candidates: %i %i %i\n", ncand[0], ncand[1], ncand[2]); + } + + for ( i=0; i<ncand[0]; i++ ) { + for ( j=0; j<ncand[1]; j++ ) { + + double ang; + int k; + float fom1; + + if ( same_vector(cand[0][i], cand[1][j]) ) continue; + + /* Measure the angle between the ith candidate for axis 0 + * and the jth candidate for axis 1 */ + ang = angle_between(cand[0][i].vec.u, cand[0][i].vec.v, + cand[0][i].vec.w, cand[1][j].vec.u, + cand[1][j].vec.v, cand[1][j].vec.w); + + /* Angle between axes 0 and 1 should be angle 2 */ + if ( fabs(ang - angles[2]) > angtol ) continue; + + fom1 = fabs(ang - angles[2]); + + for ( k=0; k<ncand[2]; k++ ) { + + float fom2, fom3; + + if ( same_vector(cand[1][j], cand[2][k]) ) continue; + + /* Measure the angle between the current candidate for + * axis 0 and the kth candidate for axis 2 */ + ang = angle_between(cand[0][i].vec.u, cand[0][i].vec.v, + cand[0][i].vec.w, cand[2][k].vec.u, + cand[2][k].vec.v, cand[2][k].vec.w); + + /* ... it should be angle 1 ... */ + if ( fabs(ang - angles[1]) > angtol ) continue; + + fom2 = fom1 + fabs(ang - angles[1]); + + /* Finally, the angle between the current candidate for + * axis 1 and the kth candidate for axis 2 */ + ang = angle_between(cand[1][j].vec.u, cand[1][j].vec.v, + cand[1][j].vec.w, cand[2][k].vec.u, + cand[2][k].vec.v, cand[2][k].vec.w); + + /* ... it should be angle 0 ... */ + if ( fabs(ang - angles[0]) > angtol ) continue; + + /* Unit cell must be right-handed */ + if ( !right_handed_vec(cand[0][i].vec, cand[1][j].vec, + cand[2][k].vec) ) continue; + + fom3 = fom2 + fabs(ang - angles[0]); + fom3 += LWEIGHT * (cand[0][i].fom + cand[1][j].fom + + cand[2][k].fom); + + if ( fom3 < best_fom ) { + if ( new_cell != NULL ) free(new_cell); + new_cell = cell_new_from_reciprocal_axes( + cand[0][i].vec, cand[1][j].vec, + cand[2][k].vec); + best_fom = fom3; + } + + } + + } + } + + free(cand[0]); + free(cand[1]); + free(cand[2]); + + /* Reverse the de-centering transformation */ + new_cell_trans = cell_transform_inverse(new_cell, uncentering); + cell_free(new_cell); + cell_set_lattice_type(new_cell, cell_get_lattice_type(template_in)); + cell_set_centering(new_cell, cell_get_centering(template_in)); + cell_set_unique_axis(new_cell, cell_get_unique_axis(template_in)); + + return new_cell_trans; +} + + +UnitCell *match_cell_ab(UnitCell *cell_in, UnitCell *template_in) +{ + double ax, ay, az; + double bx, by, bz; + double cx, cy, cz; + int i; + double lengths[3]; + int used[3]; + struct rvec real_a, real_b, real_c; + struct rvec params[3]; + double alen, blen; + float ltl = 5.0; /* percent */ + int have_real_a; + int have_real_b; + int have_real_c; + UnitCell *cell; + UnitCell *template; + UnitCellTransformation *to_given_cell; + UnitCell *new_cell; + UnitCell *new_cell_trans; + + /* "Un-center" the template unit cell to make the comparison easier */ + template = uncenter_cell(template_in, &to_given_cell); + + /* The candidate cell is also uncentered, because it might be centered + * if it came from (e.g.) MOSFLM */ + cell = uncenter_cell(cell_in, NULL); + + /* Get the lengths to match */ + if ( cell_get_cartesian(template, &ax, &ay, &az, + &bx, &by, &bz, + &cx, &cy, &cz) ) + { + ERROR("Couldn't get cell for template.\n"); + return NULL; + } + alen = modulus(ax, ay, az); + blen = modulus(bx, by, bz); + + /* Get the lengths from the cell and turn them into anonymous vectors */ + if ( cell_get_cartesian(cell, &ax, &ay, &az, + &bx, &by, &bz, + &cx, &cy, &cz) ) + { + ERROR("Couldn't get cell.\n"); + return NULL; + } + lengths[0] = modulus(ax, ay, az); + lengths[1] = modulus(bx, by, bz); + lengths[2] = modulus(cx, cy, cz); + used[0] = 0; used[1] = 0; used[2] = 0; + params[0].u = ax; params[0].v = ay; params[0].w = az; + params[1].u = bx; params[1].v = by; params[1].w = bz; + params[2].u = cx; params[2].v = cy; params[2].w = cz; + + real_a.u = 0.0; real_a.v = 0.0; real_a.w = 0.0; + real_b.u = 0.0; real_b.v = 0.0; real_b.w = 0.0; + real_c.u = 0.0; real_c.v = 0.0; real_c.w = 0.0; + + /* Check each vector against a and b */ + have_real_a = 0; + have_real_b = 0; + for ( i=0; i<3; i++ ) { + if ( within_tolerance(lengths[i], alen, ltl) + && !used[i] && !have_real_a ) + { + used[i] = 1; + memcpy(&real_a, ¶ms[i], sizeof(struct rvec)); + have_real_a = 1; + } + if ( within_tolerance(lengths[i], blen, ltl) + && !used[i] && !have_real_b ) + { + used[i] = 1; + memcpy(&real_b, ¶ms[i], sizeof(struct rvec)); + have_real_b = 1; + } + } + + /* Have we matched both a and b? */ + if ( !(have_real_a && have_real_b) ) return NULL; + + /* "c" is "the other one" */ + have_real_c = 0; + for ( i=0; i<3; i++ ) { + if ( !used[i] ) { + memcpy(&real_c, ¶ms[i], sizeof(struct rvec)); + have_real_c = 1; + } + } + + if ( !have_real_c ) { + ERROR("Huh? Couldn't find the third vector.\n"); + ERROR("Matches: %i %i %i\n", used[0], used[1], used[2]); + return NULL; + } + + /* Flip c if not right-handed */ + if ( !right_handed_vec(real_a, real_b, real_c) ) { + real_c.u = -real_c.u; + real_c.v = -real_c.v; + real_c.w = -real_c.w; + } + + new_cell = cell_new_from_direct_axes(real_a, real_b, real_c); + + /* Reverse the de-centering transformation */ + new_cell_trans = cell_transform_inverse(new_cell, to_given_cell); + cell_free(new_cell); + cell_set_lattice_type(new_cell, cell_get_lattice_type(template_in)); + cell_set_centering(new_cell, cell_get_centering(template_in)); + cell_set_unique_axis(new_cell, cell_get_unique_axis(template_in)); + + return new_cell_trans; +} + + +/* Return sin(theta)/lambda = 1/2d. Multiply by two if you want 1/d */ +double resolution(UnitCell *cell, signed int h, signed int k, signed int l) +{ + double a, b, c, alpha, beta, gamma; + + cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma); + + const double Vsq = a*a*b*b*c*c*(1 - cos(alpha)*cos(alpha) + - cos(beta)*cos(beta) + - cos(gamma)*cos(gamma) + + 2*cos(alpha)*cos(beta)*cos(gamma) ); + + const double S11 = b*b*c*c*sin(alpha)*sin(alpha); + const double S22 = a*a*c*c*sin(beta)*sin(beta); + const double S33 = a*a*b*b*sin(gamma)*sin(gamma); + const double S12 = a*b*c*c*(cos(alpha)*cos(beta) - cos(gamma)); + const double S23 = a*a*b*c*(cos(beta)*cos(gamma) - cos(alpha)); + const double S13 = a*b*b*c*(cos(gamma)*cos(alpha) - cos(beta)); + + const double brackets = S11*h*h + S22*k*k + S33*l*l + + 2*S12*h*k + 2*S23*k*l + 2*S13*h*l; + const double oneoverdsq = brackets / Vsq; + const double oneoverd = sqrt(oneoverdsq); + + return oneoverd / 2; +} + + +static void determine_lattice(UnitCell *cell, + const char *as, const char *bs, const char *cs, + const char *als, const char *bes, const char *gas) +{ + int n_right; + + /* Rhombohedral or cubic? */ + if ( (strcmp(as, bs) == 0) && (strcmp(as, cs) == 0) ) { + + if ( (strcmp(als, " 90.00") == 0) + && (strcmp(bes, " 90.00") == 0) + && (strcmp(gas, " 90.00") == 0) ) + { + /* Cubic. Unique axis irrelevant. */ + cell_set_lattice_type(cell, L_CUBIC); + return; + } + + if ( (strcmp(als, bes) == 0) && (strcmp(als, gas) == 0) ) { + /* Rhombohedral. Unique axis irrelevant. */ + cell_set_lattice_type(cell, L_RHOMBOHEDRAL); + return; + } + + } + + if ( (strcmp(als, " 90.00") == 0) + && (strcmp(bes, " 90.00") == 0) + && (strcmp(gas, " 90.00") == 0) ) + { + if ( strcmp(bs, cs) == 0 ) { + /* Tetragonal, unique axis a */ + cell_set_lattice_type(cell, L_TETRAGONAL); + cell_set_unique_axis(cell, 'a'); + return; + } + + if ( strcmp(as, cs) == 0 ) { + /* Tetragonal, unique axis b */ + cell_set_lattice_type(cell, L_TETRAGONAL); + cell_set_unique_axis(cell, 'b'); + return; + } + + if ( strcmp(as, bs) == 0 ) { + /* Tetragonal, unique axis c */ + cell_set_lattice_type(cell, L_TETRAGONAL); + cell_set_unique_axis(cell, 'c'); + return; + } + + /* Orthorhombic. Unique axis irrelevant, but point group + * can have different orientations. */ + cell_set_lattice_type(cell, L_ORTHORHOMBIC); + return; + } + + n_right = 0; + if ( strcmp(als, " 90.00") == 0 ) n_right++; + if ( strcmp(bes, " 90.00") == 0 ) n_right++; + if ( strcmp(gas, " 90.00") == 0 ) n_right++; + + /* Hexgonal or monoclinic? */ + if ( n_right == 2 ) { + + if ( (strcmp(als, " 120.00") == 0) + && (strcmp(bs, cs) == 0) ) + { + /* Hexagonal, unique axis a */ + cell_set_lattice_type(cell, L_HEXAGONAL); + cell_set_unique_axis(cell, 'a'); + return; + } + + if ( (strcmp(bes, " 120.00") == 0) + && (strcmp(as, cs) == 0) ) + { + /* Hexagonal, unique axis b */ + cell_set_lattice_type(cell, L_HEXAGONAL); + cell_set_unique_axis(cell, 'b'); + return; + } + + if ( (strcmp(gas, " 120.00") == 0) + && (strcmp(as, bs) == 0) ) + { + /* Hexagonal, unique axis c */ + cell_set_lattice_type(cell, L_HEXAGONAL); + cell_set_unique_axis(cell, 'c'); + return; + } + + if ( strcmp(als, " 90.00") != 0 ) { + /* Monoclinic, unique axis a */ + cell_set_lattice_type(cell, L_MONOCLINIC); + cell_set_unique_axis(cell, 'a'); + return; + } + + if ( strcmp(bes, " 90.00") != 0 ) { + /* Monoclinic, unique axis b */ + cell_set_lattice_type(cell, L_MONOCLINIC); + cell_set_unique_axis(cell, 'b'); + return; + } + + if ( strcmp(gas, " 90.00") != 0 ) { + /* Monoclinic, unique axis c */ + cell_set_lattice_type(cell, L_MONOCLINIC); + cell_set_unique_axis(cell, 'c'); + return; + } + } + + /* Triclinic, unique axis irrelevant. */ + cell_set_lattice_type(cell, L_TRICLINIC); +} + + +UnitCell *load_cell_from_pdb(const char *filename) +{ + FILE *fh; + char *rval; + UnitCell *cell = NULL; + + fh = fopen(filename, "r"); + if ( fh == NULL ) { + ERROR("Couldn't open '%s'\n", filename); + return NULL; + } + + do { + + char line[1024]; + + rval = fgets(line, 1023, fh); + + if ( strncmp(line, "CRYST1", 6) == 0 ) { + + float a, b, c, al, be, ga; + char as[10], bs[10], cs[10]; + char als[8], bes[8], gas[8]; + int r; + + memcpy(as, line+6, 9); as[9] = '\0'; + memcpy(bs, line+15, 9); bs[9] = '\0'; + memcpy(cs, line+24, 9); cs[9] = '\0'; + memcpy(als, line+33, 7); als[7] = '\0'; + memcpy(bes, line+40, 7); bes[7] = '\0'; + memcpy(gas, line+47, 7); gas[7] = '\0'; + + r = sscanf(as, "%f", &a); + r += sscanf(bs, "%f", &b); + r += sscanf(cs, "%f", &c); + r += sscanf(als, "%f", &al); + r += sscanf(bes, "%f", &be); + r += sscanf(gas, "%f", &ga); + + if ( r != 6 ) { + STATUS("Couldn't understand CRYST1 line.\n"); + continue; + } + + cell = cell_new_from_parameters(a*1e-10, + b*1e-10, c*1e-10, + deg2rad(al), + deg2rad(be), + deg2rad(ga)); + + determine_lattice(cell, as, bs, cs, als, bes, gas); + + if ( strlen(line) > 65 ) { + cell_set_centering(cell, line[55]); + } else { + cell_set_pointgroup(cell, "1"); + ERROR("CRYST1 line without centering.\n"); + } + + break; /* Done */ + } + + } while ( rval != NULL ); + + fclose(fh); + + validate_cell(cell); + + return cell; +} + + +/* Force the linker to bring in CBLAS to make GSL happy */ +void cell_fudge_gslcblas() +{ + STATUS("%p\n", cblas_sgemm); +} + + +UnitCell *rotate_cell(UnitCell *in, double omega, double phi, double rot) +{ + UnitCell *out; + double asx, asy, asz; + double bsx, bsy, bsz; + double csx, csy, csz; + double xnew, ynew, znew; + + cell_get_reciprocal(in, &asx, &asy, &asz, &bsx, &bsy, + &bsz, &csx, &csy, &csz); + + /* Rotate by "omega" about +z (parallel to c* and c unless triclinic) */ + xnew = asx*cos(omega) + asy*sin(omega); + ynew = -asx*sin(omega) + asy*cos(omega); + znew = asz; + asx = xnew; asy = ynew; asz = znew; + xnew = bsx*cos(omega) + bsy*sin(omega); + ynew = -bsx*sin(omega) + bsy*cos(omega); + znew = bsz; + bsx = xnew; bsy = ynew; bsz = znew; + xnew = csx*cos(omega) + csy*sin(omega); + ynew = -csx*sin(omega) + csy*cos(omega); + znew = csz; + csx = xnew; csy = ynew; csz = znew; + + /* Rotate by "phi" about +x (not parallel to anything specific) */ + xnew = asx; + ynew = asy*cos(phi) + asz*sin(phi); + znew = -asy*sin(phi) + asz*cos(phi); + asx = xnew; asy = ynew; asz = znew; + xnew = bsx; + ynew = bsy*cos(phi) + bsz*sin(phi); + znew = -bsy*sin(phi) + bsz*cos(phi); + bsx = xnew; bsy = ynew; bsz = znew; + xnew = csx; + ynew = csy*cos(phi) + csz*sin(phi); + znew = -csy*sin(phi) + csz*cos(phi); + csx = xnew; csy = ynew; csz = znew; + + /* Rotate by "rot" about the new +z (in-plane rotation) */ + xnew = asx*cos(rot) + asy*sin(rot); + ynew = -asx*sin(rot) + asy*cos(rot); + znew = asz; + asx = xnew; asy = ynew; asz = znew; + xnew = bsx*cos(rot) + bsy*sin(rot); + ynew = -bsx*sin(rot) + bsy*cos(rot); + znew = bsz; + bsx = xnew; bsy = ynew; bsz = znew; + xnew = csx*cos(rot) + csy*sin(rot); + ynew = -csx*sin(rot) + csy*cos(rot); + znew = csz; + csx = xnew; csy = ynew; csz = znew; + + out = cell_new_from_cell(in); + cell_set_reciprocal(out, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz); + + return out; +} + + +int cell_is_sensible(UnitCell *cell) +{ + double a, b, c, al, be, ga; + + cell_get_parameters(cell, &a, &b, &c, &al, &be, &ga); + if ( al + be + ga >= 2.0*M_PI ) return 0; + if ( al + be - ga >= 2.0*M_PI ) return 0; + if ( al - be + ga >= 2.0*M_PI ) return 0; + if ( - al + be + ga >= 2.0*M_PI ) return 0; + if ( al + be + ga <= 0.0 ) return 0; + if ( al + be - ga <= 0.0 ) return 0; + if ( al - be + ga <= 0.0 ) return 0; + if ( - al + be + ga <= 0.0 ) return 0; + if ( isnan(al) ) return 0; + if ( isnan(be) ) return 0; + if ( isnan(ga) ) return 0; + return 1; +} + + +/** + * validate_cell: + * @cell: A %UnitCell to validate + * + * Perform some checks for crystallographic validity @cell, such as that the + * lattice is a conventional Bravais lattice. + * Warnings are printied if any of the checks are failed. + * + * Returns: true if cell is invalid. + * + */ +int validate_cell(UnitCell *cell) +{ + int err = 0; + char cen, ua; + + if ( !cell_is_sensible(cell) ) { + ERROR("Warning: Unit cell parameters are not sensible.\n"); + err = 1; + } + + if ( !bravais_lattice(cell) ) { + ERROR("Warning: Unit cell is not a conventional Bravais" + " lattice.\n"); + err = 1; + } + + if ( !right_handed(cell) ) { + ERROR("Warning: Unit cell is not right handed.\n"); + err = 1; + } + + cen = cell_get_centering(cell); + ua = cell_get_unique_axis(cell); + if ( (cen == 'A') && (ua != 'a') ) { + ERROR("Warning: centering doesn't match unique axis.\n"); + err = 1; + } + if ( (cen == 'B') && (ua != 'b') ) { + ERROR("Warning: centering doesn't match unique axis.\n"); + err = 1; + } + if ( (cen == 'C') && (ua != 'c') ) { + ERROR("Warning: centering doesn't match unique axis.\n"); + err = 1; + } + + return err; +} + + +/** + * forbidden_reflection: + * @cell: A %UnitCell + * @h: h index to check + * @k: k index to check + * @l: l index to check + * + * Returns: true if this reflection is forbidden. + * + */ +int forbidden_reflection(UnitCell *cell, + signed int h, signed int k, signed int l) +{ + char cen; + + cen = cell_get_centering(cell); + + /* Reflection conditions here must match the transformation matrices + * in uncentering_transformation(). tests/centering_check verifies + * this (amongst other things). */ + + if ( cen == 'P' ) return 0; + if ( cen == 'R' ) return 0; + + if ( cen == 'A' ) return (k+l) % 2; + if ( cen == 'B' ) return (h+l) % 2; + if ( cen == 'C' ) return (h+k) % 2; + + if ( cen == 'I' ) return (h+k+l) % 2; + if ( cen == 'F' ) return ((h+k) % 2) || ((h+l) % 2) || ((k+l) % 2); + + /* Obverse setting */ + if ( cen == 'H' ) return (-h+k+l) % 3; + + return 0; +} diff --git a/libcrystfel/src/cell-utils.h b/libcrystfel/src/cell-utils.h new file mode 100644 index 00000000..f92ab22d --- /dev/null +++ b/libcrystfel/src/cell-utils.h @@ -0,0 +1,69 @@ +/* + * cell-utils.h + * + * Unit Cell utility functions + * + * Copyright © 2012 Deutsches Elektronen-Synchrotron DESY, + * a research centre of the Helmholtz Association. + * Copyright © 2012 Lorenzo Galli + * + * Authors: + * 2009-2012 Thomas White <taw@physics.org> + * 2012 Lorenzo Galli + * + * This file is part of CrystFEL. + * + * CrystFEL is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * CrystFEL is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with CrystFEL. If not, see <http://www.gnu.org/licenses/>. + * + */ + +#ifndef CELL_UTILS_H +#define CELL_UTILS_H + +#ifdef HAVE_CONFIG_H +#include <config.h> +#endif + +extern double resolution(UnitCell *cell, + signed int h, signed int k, signed int l); + +extern UnitCell *cell_rotate(UnitCell *in, struct quaternion quat); +extern UnitCell *rotate_cell(UnitCell *in, double omega, double phi, + double rot); + +extern void cell_print(UnitCell *cell); + +extern UnitCell *match_cell(UnitCell *cell, UnitCell *tempcell, int verbose, + const float *ltl, int reduce); + +extern UnitCell *match_cell_ab(UnitCell *cell, UnitCell *tempcell); + +extern UnitCell *load_cell_from_pdb(const char *filename); + +extern int cell_is_sensible(UnitCell *cell); + +extern int validate_cell(UnitCell *cell); + +extern UnitCell *uncenter_cell(UnitCell *in, UnitCellTransformation **tr); + +extern int bravais_lattice(UnitCell *cell); + +extern int right_handed(UnitCell *cell); + +extern const char *str_lattice(LatticeType l); + +extern int forbidden_reflection(UnitCell *cell, + signed int h, signed int k, signed int l); + +#endif /* CELL_UTILS_H */ diff --git a/libcrystfel/src/cell.c b/libcrystfel/src/cell.c index 3d2a28bf..e7c9dace 100644 --- a/libcrystfel/src/cell.c +++ b/libcrystfel/src/cell.c @@ -1,7 +1,7 @@ /* * cell.c * - * Unit Cell Calculations + * A class representing a unit cell * * Copyright © 2012 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. @@ -60,10 +60,6 @@ */ - -/* Weighting factor of lengths relative to angles */ -#define LWEIGHT (10.0e-9) - typedef enum { CELL_REP_CRYST, CELL_REP_CART, @@ -92,8 +88,10 @@ struct _unitcell { double ays; double bys; double cys; double azs; double bzs; double czs; - char *pointgroup; - char *spacegroup; + char *pointgroup; + LatticeType lattice_type; + char centering; + char unique_axis; }; @@ -125,7 +123,9 @@ UnitCell *cell_new() cell->rep = CELL_REP_CRYST; cell->pointgroup = strdup("1"); - cell->spacegroup = strdup("P 1"); + cell->lattice_type = L_TRICLINIC; + cell->centering = 'P'; + cell->unique_axis = 'c'; return cell; } @@ -142,7 +142,6 @@ void cell_free(UnitCell *cell) { if ( cell == NULL ) return; free(cell->pointgroup); - free(cell->spacegroup); free(cell); } @@ -261,7 +260,9 @@ UnitCell *cell_new_from_cell(UnitCell *orig) cell_get_cartesian(orig, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); cell_set_cartesian(new, ax, ay, az, bx, by, bz, cx, cy, cz); cell_set_pointgroup(new, orig->pointgroup); - cell_set_spacegroup(new, orig->spacegroup); + cell_set_lattice_type(new, orig->lattice_type); + cell_set_centering(new, orig->centering); + cell_set_unique_axis(new, orig->unique_axis); return new; } @@ -282,17 +283,28 @@ void cell_set_reciprocal(UnitCell *cell, } -void cell_set_spacegroup(UnitCell *cell, const char *sym) +void cell_set_pointgroup(UnitCell *cell, const char *sym) { - free(cell->spacegroup); - cell->spacegroup = strdup(sym); + free(cell->pointgroup); + cell->pointgroup = strdup(sym); } -void cell_set_pointgroup(UnitCell *cell, const char *sym) +void cell_set_centering(UnitCell *cell, char centering) { - free(cell->pointgroup); - cell->pointgroup = strdup(sym); + cell->centering = centering; +} + + +void cell_set_lattice_type(UnitCell *cell, LatticeType lattice_type) +{ + cell->lattice_type = lattice_type; +} + + +void cell_set_unique_axis(UnitCell *cell, char unique_axis) +{ + cell->unique_axis = unique_axis; } @@ -555,18 +567,25 @@ const char *cell_get_pointgroup(UnitCell *cell) } -const char *cell_get_spacegroup(UnitCell *cell) +char cell_get_centering(UnitCell *cell) { - return cell->spacegroup; + return cell->centering; } +LatticeType cell_get_lattice_type(UnitCell *cell) +{ + return cell->lattice_type; +} +char cell_get_unique_axis(UnitCell *cell) +{ + return cell->unique_axis; +} -/********************************* Utilities **********************************/ -static const char *cell_rep(UnitCell *cell) +const char *cell_rep(UnitCell *cell) { switch ( cell->rep ) { @@ -585,614 +604,307 @@ static const char *cell_rep(UnitCell *cell) } +struct _unitcelltransformation +{ + gsl_matrix *m; +}; + + /** - * cell_rotate: - * @in: A %UnitCell to rotate - * @quat: A %quaternion + * tfn_inverse: + * @t: A %UnitCellTransformation. * - * Rotate a %UnitCell using a %quaternion. + * Calculates the inverse of @t. That is, if you apply cell_transform() to a + * %UnitCell using @t, and then apply cell_transform() to the result using + * tfn_inverse(@t) instead of @t, you will recover the same lattice vectors + * (but note that the lattice type, centering and unique axis information will + * be lost). * - * Returns: a newly allocated rotated copy of @in. + * Returns: The inverse of @t. * */ -UnitCell *cell_rotate(UnitCell *in, struct quaternion quat) -{ - struct rvec a, b, c; - struct rvec an, bn, cn; - UnitCell *out = cell_new_from_cell(in); - - cell_get_cartesian(in, &a.u, &a.v, &a.w, - &b.u, &b.v, &b.w, - &c.u, &c.v, &c.w); - - an = quat_rot(a, quat); - bn = quat_rot(b, quat); - cn = quat_rot(c, quat); - - cell_set_cartesian(out, an.u, an.v, an.w, - bn.u, bn.v, bn.w, - cn.u, cn.v, cn.w); - - return out; -} - - -void cell_print(UnitCell *cell) +UnitCellTransformation *tfn_inverse(UnitCellTransformation *t) { - double asx, asy, asz; - double bsx, bsy, bsz; - double csx, csy, csz; - double a, b, c, alpha, beta, gamma; - double ax, ay, az, bx, by, bz, cx, cy, cz; - - cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma); - - STATUS(" a b c alpha beta gamma\n"); - STATUS("%5.2f %5.2f %5.2f nm %6.2f %6.2f %6.2f deg\n", - a*1e9, b*1e9, c*1e9, - rad2deg(alpha), rad2deg(beta), rad2deg(gamma)); - - cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); - - STATUS("a = %10.3e %10.3e %10.3e m\n", ax, ay, az); - STATUS("b = %10.3e %10.3e %10.3e m\n", bx, by, bz); - STATUS("c = %10.3e %10.3e %10.3e m\n", cx, cy, cz); - - cell_get_reciprocal(cell, &asx, &asy, &asz, - &bsx, &bsy, &bsz, - &csx, &csy, &csz); - - STATUS("astar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", - asx, asy, asz, modulus(asx, asy, asz)); - STATUS("bstar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", - bsx, bsy, bsz, modulus(bsx, bsy, bsz)); - STATUS("cstar = %10.3e %10.3e %10.3e m^-1 (modulus = %10.3e m^-1)\n", - csx, csy, csz, modulus(csx, csy, csz)); - - STATUS("Point group: %s\n", cell_get_pointgroup(cell)); - STATUS("Cell representation is %s.\n", cell_rep(cell)); -} - - -#define MAX_CAND (1024) - -static int right_handed(struct rvec a, struct rvec b, struct rvec c) -{ - struct rvec aCb; - double aCb_dot_c; - - /* "a" cross "b" */ - aCb.u = a.v*b.w - a.w*b.v; - aCb.v = - (a.u*b.w - a.w*b.u); - aCb.w = a.u*b.v - a.v*b.u; - - /* "a cross b" dot "c" */ - aCb_dot_c = aCb.u*c.u + aCb.v*c.v + aCb.w*c.w; - - if ( aCb_dot_c > 0.0 ) return 1; - return 0; -} - - -struct cvec { - struct rvec vec; - float na; - float nb; - float nc; - float fom; -}; - - -static int same_vector(struct cvec a, struct cvec b) -{ - if ( a.na != b.na ) return 0; - if ( a.nb != b.nb ) return 0; - if ( a.nc != b.nc ) return 0; - return 1; -} + int s; + gsl_matrix *m; + gsl_matrix *inv; + gsl_permutation *perm; + UnitCellTransformation *out; + m = gsl_matrix_alloc(3, 3); + if ( m == NULL ) return NULL; -/* Attempt to make 'cell' fit into 'template' somehow */ -UnitCell *match_cell(UnitCell *cell, UnitCell *template, int verbose, - const float *tols, int reduce) -{ - signed int n1l, n2l, n3l; - double asx, asy, asz; - double bsx, bsy, bsz; - double csx, csy, csz; - int i, j; - double lengths[3]; - double angles[3]; - struct cvec *cand[3]; - UnitCell *new_cell = NULL; - float best_fom = +999999999.9; /* Large number.. */ - int ncand[3] = {0,0,0}; - signed int ilow, ihigh; - float angtol = deg2rad(tols[3]); - - if ( cell_get_reciprocal(template, &asx, &asy, &asz, - &bsx, &bsy, &bsz, - &csx, &csy, &csz) ) { - ERROR("Couldn't get reciprocal cell for template.\n"); + out = tfn_identity(); + if ( out == NULL ) { + gsl_matrix_free(m); return NULL; } - lengths[0] = modulus(asx, asy, asz); - lengths[1] = modulus(bsx, bsy, bsz); - lengths[2] = modulus(csx, csy, csz); - - angles[0] = angle_between(bsx, bsy, bsz, csx, csy, csz); - angles[1] = angle_between(asx, asy, asz, csx, csy, csz); - angles[2] = angle_between(asx, asy, asz, bsx, bsy, bsz); + gsl_matrix_memcpy(m, t->m); - cand[0] = malloc(MAX_CAND*sizeof(struct cvec)); - cand[1] = malloc(MAX_CAND*sizeof(struct cvec)); - cand[2] = malloc(MAX_CAND*sizeof(struct cvec)); - - if ( cell_get_reciprocal(cell, &asx, &asy, &asz, - &bsx, &bsy, &bsz, - &csx, &csy, &csz) ) { - ERROR("Couldn't get reciprocal cell.\n"); + perm = gsl_permutation_alloc(m->size1); + if ( perm == NULL ) { + ERROR("Couldn't allocate permutation\n"); return NULL; } - - if ( reduce ) { - ilow = -2; ihigh = 4; - } else { - ilow = 0; ihigh = 1; - } - - /* Negative values mean 1/n, positive means n, zero means zero */ - for ( n1l=ilow; n1l<=ihigh; n1l++ ) { - for ( n2l=ilow; n2l<=ihigh; n2l++ ) { - for ( n3l=ilow; n3l<=ihigh; n3l++ ) { - - float n1, n2, n3; - signed int b1, b2, b3; - - n1 = (n1l>=0) ? (n1l) : (1.0/n1l); - n2 = (n2l>=0) ? (n2l) : (1.0/n2l); - n3 = (n3l>=0) ? (n3l) : (1.0/n3l); - - if ( !reduce ) { - if ( n1l + n2l + n3l > 1 ) continue; - } - - /* 'bit' values can be +1 or -1 */ - for ( b1=-1; b1<=1; b1+=2 ) { - for ( b2=-1; b2<=1; b2+=2 ) { - for ( b3=-1; b3<=1; b3+=2 ) { - - double tx, ty, tz; - double tlen; - int i; - - n1 *= b1; n2 *= b2; n3 *= b3; - - tx = n1*asx + n2*bsx + n3*csx; - ty = n1*asy + n2*bsy + n3*csy; - tz = n1*asz + n2*bsz + n3*csz; - tlen = modulus(tx, ty, tz); - - /* Test modulus for agreement with moduli of template */ - for ( i=0; i<3; i++ ) { - - if ( !within_tolerance(lengths[i], tlen, - tols[i]) ) - { - continue; - } - - if ( ncand[i] == MAX_CAND ) { - ERROR("Too many cell candidates - "); - ERROR("consider tightening the unit "); - ERROR("cell tolerances.\n"); - } else { - - double fom; - - fom = fabs(lengths[i] - tlen); - - cand[i][ncand[i]].vec.u = tx; - cand[i][ncand[i]].vec.v = ty; - cand[i][ncand[i]].vec.w = tz; - cand[i][ncand[i]].na = n1; - cand[i][ncand[i]].nb = n2; - cand[i][ncand[i]].nc = n3; - cand[i][ncand[i]].fom = fom; - - ncand[i]++; - - } - - } - - } - } - } - - } - } - } - - if ( verbose ) { - STATUS("Candidates: %i %i %i\n", ncand[0], ncand[1], ncand[2]); + inv = gsl_matrix_alloc(m->size1, m->size2); + if ( inv == NULL ) { + ERROR("Couldn't allocate inverse\n"); + gsl_permutation_free(perm); + return NULL; } - - for ( i=0; i<ncand[0]; i++ ) { - for ( j=0; j<ncand[1]; j++ ) { - - double ang; - int k; - float fom1; - - if ( same_vector(cand[0][i], cand[1][j]) ) continue; - - /* Measure the angle between the ith candidate for axis 0 - * and the jth candidate for axis 1 */ - ang = angle_between(cand[0][i].vec.u, cand[0][i].vec.v, - cand[0][i].vec.w, cand[1][j].vec.u, - cand[1][j].vec.v, cand[1][j].vec.w); - - /* Angle between axes 0 and 1 should be angle 2 */ - if ( fabs(ang - angles[2]) > angtol ) continue; - - fom1 = fabs(ang - angles[2]); - - for ( k=0; k<ncand[2]; k++ ) { - - float fom2, fom3; - - if ( same_vector(cand[1][j], cand[2][k]) ) continue; - - /* Measure the angle between the current candidate for - * axis 0 and the kth candidate for axis 2 */ - ang = angle_between(cand[0][i].vec.u, cand[0][i].vec.v, - cand[0][i].vec.w, cand[2][k].vec.u, - cand[2][k].vec.v, cand[2][k].vec.w); - - /* ... it should be angle 1 ... */ - if ( fabs(ang - angles[1]) > angtol ) continue; - - fom2 = fom1 + fabs(ang - angles[1]); - - /* Finally, the angle between the current candidate for - * axis 1 and the kth candidate for axis 2 */ - ang = angle_between(cand[1][j].vec.u, cand[1][j].vec.v, - cand[1][j].vec.w, cand[2][k].vec.u, - cand[2][k].vec.v, cand[2][k].vec.w); - - /* ... it should be angle 0 ... */ - if ( fabs(ang - angles[0]) > angtol ) continue; - - /* Unit cell must be right-handed */ - if ( !right_handed(cand[0][i].vec, cand[1][j].vec, - cand[2][k].vec) ) continue; - - fom3 = fom2 + fabs(ang - angles[0]); - fom3 += LWEIGHT * (cand[0][i].fom + cand[1][j].fom - + cand[2][k].fom); - - if ( fom3 < best_fom ) { - if ( new_cell != NULL ) free(new_cell); - new_cell = cell_new_from_reciprocal_axes( - cand[0][i].vec, cand[1][j].vec, - cand[2][k].vec); - best_fom = fom3; - } - - } - + if ( gsl_linalg_LU_decomp(m, perm, &s) ) { + ERROR("Couldn't decompose matrix\n"); + gsl_permutation_free(perm); + return NULL; } + if ( gsl_linalg_LU_invert(m, perm, inv) ) { + ERROR("Couldn't invert matrix\n"); + gsl_permutation_free(perm); + return NULL; } + gsl_permutation_free(perm); - free(cand[0]); - free(cand[1]); - free(cand[2]); - - return new_cell; + gsl_matrix_free(out->m); + gsl_matrix_free(m); + out->m = inv; + return out; } - -UnitCell *match_cell_ab(UnitCell *cell, UnitCell *template) +/** + * cell_transform: + * @cell: A %UnitCell. + * @t: A %UnitCellTransformation. + * + * Applies @t to @cell. Note that the lattice type, centering and unique axis + * information will not be preserved. + * + * Returns: Transformed copy of @cell. + * + */ +UnitCell *cell_transform(UnitCell *cell, UnitCellTransformation *t) { + UnitCell *out; double ax, ay, az; double bx, by, bz; double cx, cy, cz; - int i; - double lengths[3]; - int used[3]; - struct rvec real_a, real_b, real_c; - struct rvec params[3]; - double alen, blen; - float ltl = 5.0; /* percent */ - int have_real_a; - int have_real_b; - int have_real_c; - - /* Get the lengths to match */ - if ( cell_get_cartesian(template, &ax, &ay, &az, - &bx, &by, &bz, - &cx, &cy, &cz) ) - { - ERROR("Couldn't get cell for template.\n"); - return NULL; - } - alen = modulus(ax, ay, az); - blen = modulus(bx, by, bz); - - /* Get the lengths from the cell and turn them into anonymous vectors */ - if ( cell_get_cartesian(cell, &ax, &ay, &az, - &bx, &by, &bz, - &cx, &cy, &cz) ) - { - ERROR("Couldn't get cell.\n"); - return NULL; - } - lengths[0] = modulus(ax, ay, az); - lengths[1] = modulus(bx, by, bz); - lengths[2] = modulus(cx, cy, cz); - used[0] = 0; used[1] = 0; used[2] = 0; - params[0].u = ax; params[0].v = ay; params[0].w = az; - params[1].u = bx; params[1].v = by; params[1].w = bz; - params[2].u = cx; params[2].v = cy; params[2].w = cz; - - real_a.u = 0.0; real_a.v = 0.0; real_a.w = 0.0; - real_b.u = 0.0; real_b.v = 0.0; real_b.w = 0.0; - real_c.u = 0.0; real_c.v = 0.0; real_c.w = 0.0; - - /* Check each vector against a and b */ - have_real_a = 0; - have_real_b = 0; - for ( i=0; i<3; i++ ) { - if ( within_tolerance(lengths[i], alen, ltl) - && !used[i] && !have_real_a ) - { - used[i] = 1; - memcpy(&real_a, ¶ms[i], sizeof(struct rvec)); - have_real_a = 1; - } - if ( within_tolerance(lengths[i], blen, ltl) - && !used[i] && !have_real_b ) - { - used[i] = 1; - memcpy(&real_b, ¶ms[i], sizeof(struct rvec)); - have_real_b = 1; - } - } + gsl_matrix *m; + gsl_matrix *a; - /* Have we matched both a and b? */ - if ( !(have_real_a && have_real_b) ) return NULL; + if ( t == NULL ) return NULL; - /* "c" is "the other one" */ - have_real_c = 0; - for ( i=0; i<3; i++ ) { - if ( !used[i] ) { - memcpy(&real_c, ¶ms[i], sizeof(struct rvec)); - have_real_c = 1; - } - } + out = cell_new_from_cell(cell); + if ( out == NULL ) return NULL; - if ( !have_real_c ) { - ERROR("Huh? Couldn't find the third vector.\n"); - ERROR("Matches: %i %i %i\n", used[0], used[1], used[2]); - return NULL; - } + cell_get_cartesian(out, &ax, &ay, &az, + &bx, &by, &bz, + &cx, &cy, &cz); - /* Flip c if not right-handed */ - if ( !right_handed(real_a, real_b, real_c) ) { - real_c.u = -real_c.u; - real_c.v = -real_c.v; - real_c.w = -real_c.w; + m = gsl_matrix_alloc(3,3); + a = gsl_matrix_calloc(3,3); + if ( (m == NULL) || (a == NULL) ) { + cell_free(out); + return NULL; } - return cell_new_from_direct_axes(real_a, real_b, real_c); -} - - -/* Return sin(theta)/lambda = 1/2d. Multiply by two if you want 1/d */ -double resolution(UnitCell *cell, signed int h, signed int k, signed int l) -{ - double a, b, c, alpha, beta, gamma; - - cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma); + gsl_matrix_set(m, 0, 0, ax); + gsl_matrix_set(m, 0, 1, ay); + gsl_matrix_set(m, 0, 2, az); + gsl_matrix_set(m, 1, 0, bx); + gsl_matrix_set(m, 1, 1, by); + gsl_matrix_set(m, 1, 2, bz); + gsl_matrix_set(m, 2, 0, cx); + gsl_matrix_set(m, 2, 1, cy); + gsl_matrix_set(m, 2, 2, cz); - const double Vsq = a*a*b*b*c*c*(1 - cos(alpha)*cos(alpha) - - cos(beta)*cos(beta) - - cos(gamma)*cos(gamma) - + 2*cos(alpha)*cos(beta)*cos(gamma) ); + gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, t->m, m, 1.0, a); - const double S11 = b*b*c*c*sin(alpha)*sin(alpha); - const double S22 = a*a*c*c*sin(beta)*sin(beta); - const double S33 = a*a*b*b*sin(gamma)*sin(gamma); - const double S12 = a*b*c*c*(cos(alpha)*cos(beta) - cos(gamma)); - const double S23 = a*a*b*c*(cos(beta)*cos(gamma) - cos(alpha)); - const double S13 = a*b*b*c*(cos(gamma)*cos(alpha) - cos(beta)); + cell_set_cartesian(out, gsl_matrix_get(a, 0, 0), + gsl_matrix_get(a, 0, 1), + gsl_matrix_get(a, 0, 2), + gsl_matrix_get(a, 1, 0), + gsl_matrix_get(a, 1, 1), + gsl_matrix_get(a, 1, 2), + gsl_matrix_get(a, 2, 0), + gsl_matrix_get(a, 2, 1), + gsl_matrix_get(a, 2, 2)); - const double brackets = S11*h*h + S22*k*k + S33*l*l - + 2*S12*h*k + 2*S23*k*l + 2*S13*h*l; - const double oneoverdsq = brackets / Vsq; - const double oneoverd = sqrt(oneoverdsq); + gsl_matrix_free(a); + gsl_matrix_free(m); - return oneoverd / 2; + return out; } -static void cell_set_pointgroup_from_pdb(UnitCell *cell, const char *sym) +/** + * cell_transform_inverse: + * @cell: A %UnitCell. + * @t: A %UnitCellTransformation. + * + * Applies the inverse of @t to @cell. + * + * Returns: Transformed copy of @cell. + * + */ +UnitCell *cell_transform_inverse(UnitCell *cell, UnitCellTransformation *t) { - char *new = NULL; - - if ( strcmp(sym, "P 1") == 0 ) new = "1"; - if ( strcmp(sym, "P 63") == 0 ) new = "6"; - if ( strcmp(sym, "P 21 21 21") == 0 ) new = "222"; - if ( strcmp(sym, "P 2 2 2") == 0 ) new = "222"; - if ( strcmp(sym, "P 43 21 2") == 0 ) new = "422"; - - if ( new != NULL ) { - cell_set_pointgroup(cell, new); - } else { - ERROR("Can't determine point group for '%s'\n", sym); - } + UnitCellTransformation *inv; + UnitCell *out; + + inv = tfn_inverse(t); + out = cell_transform(cell, inv); + tfn_free(inv); + return out; } -UnitCell *load_cell_from_pdb(const char *filename) +/** + * tfn_identity: + * + * Returns: A %UnitCellTransformation corresponding to an identity operation. + * + */ +UnitCellTransformation *tfn_identity() { - FILE *fh; - char *rval; - UnitCell *cell = NULL; + UnitCellTransformation *tfn; + + tfn = calloc(1, sizeof(UnitCellTransformation)); + if ( tfn == NULL ) return NULL; - fh = fopen(filename, "r"); - if ( fh == NULL ) { - ERROR("Couldn't open '%s'\n", filename); + tfn->m = gsl_matrix_alloc(3, 3); + if ( tfn->m == NULL ) { + free(tfn); return NULL; } - do { + gsl_matrix_set_identity(tfn->m); - char line[1024]; - - rval = fgets(line, 1023, fh); - - if ( strncmp(line, "CRYST1", 6) == 0 ) { - - float a, b, c, al, be, ga; - char as[10], bs[10], cs[10]; - char als[8], bes[8], gas[8]; - char *sym; - int r; - - memcpy(as, line+6, 9); as[9] = '\0'; - memcpy(bs, line+15, 9); bs[9] = '\0'; - memcpy(cs, line+24, 9); cs[9] = '\0'; - memcpy(als, line+33, 7); als[7] = '\0'; - memcpy(bes, line+40, 7); bes[7] = '\0'; - memcpy(gas, line+47, 7); gas[7] = '\0'; - - r = sscanf(as, "%f", &a); - r += sscanf(bs, "%f", &b); - r += sscanf(cs, "%f", &c); - r += sscanf(als, "%f", &al); - r += sscanf(bes, "%f", &be); - r += sscanf(gas, "%f", &ga); - - if ( r != 6 ) { - STATUS("Couldn't understand CRYST1 line.\n"); - continue; - } + return tfn; +} - cell = cell_new_from_parameters(a*1e-10, - b*1e-10, c*1e-10, - deg2rad(al), - deg2rad(be), - deg2rad(ga)); - if ( strlen(line) > 65 ) { - sym = strndup(line+55, 10); - notrail(sym); - cell_set_pointgroup_from_pdb(cell, sym); - cell_set_spacegroup(cell, sym); - free(sym); - } else { - cell_set_pointgroup_from_pdb(cell, "P 1"); - cell_set_spacegroup(cell, "P 1"); - ERROR("CRYST1 line without space group.\n"); - } +/** + * tfn_combine: + * @t: A %UnitCellTransformation + * @na: Pointer to three doubles representing naa, nab, nac + * @nb: Pointer to three doubles representing nba, nbb, nbc + * @nc: Pointer to three doubles representing nca, ncb, ncc + * + * Updates @t such that it represents its previous transformation followed by + * a new transformation, corresponding to letting a = naa*a + nab*b + nac*c. + * Likewise, a = nba*a + nbb*b + nbc*c and c = nca*a + ncb*b + ncc*c. + * + */ +void tfn_combine(UnitCellTransformation *t, double *na, double *nb, double *nc) +{ + gsl_matrix *a; + gsl_matrix *n; - break; /* Done */ - } + n = gsl_matrix_alloc(3, 3); + a = gsl_matrix_calloc(3, 3); + if ( (n == NULL) || (a == NULL) ) { + return; + } + gsl_matrix_set(n, 0, 0, na[0]); + gsl_matrix_set(n, 0, 1, na[1]); + gsl_matrix_set(n, 0, 2, na[2]); + gsl_matrix_set(n, 1, 0, nb[0]); + gsl_matrix_set(n, 1, 1, nb[1]); + gsl_matrix_set(n, 1, 2, nb[2]); + gsl_matrix_set(n, 2, 0, nc[0]); + gsl_matrix_set(n, 2, 1, nc[1]); + gsl_matrix_set(n, 2, 2, nc[2]); - } while ( rval != NULL ); + free(na); + free(nb); + free(nc); - fclose(fh); + gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, n, t->m, 1.0, a); - return cell; + gsl_matrix_free(t->m); + t->m = a; + gsl_matrix_free(n); } -/* Force the linker to bring in CBLAS to make GSL happy */ -void cell_fudge_gslcblas() +/** + * tfn_vector: + * @a: Amount of "a" to include in new vector + * @b: Amount of "b" to include in new vector + * @c: Amount of "c" to include in new vector + * + * This is a convenience function to use when sending vectors to tfn_combine(): + * tfn_combine(tfn, tfn_vector(1,0,0), + * tfn_vector(0,2,0), + * tfn_vector(0,0,1)); + * + */ +double *tfn_vector(double a, double b, double c) { - STATUS("%p\n", cblas_sgemm); + double *vec = malloc(3*sizeof(double)); + if ( vec == NULL ) return NULL; + vec[0] = a; vec[1] = b; vec[2] = c; + return vec; } -UnitCell *rotate_cell(UnitCell *in, double omega, double phi, double rot) +/** + * tfn_print: + * @t: A %UnitCellTransformation + * + * Prints information about @t to stderr. + * + */ +void tfn_print(UnitCellTransformation *t) { - UnitCell *out; - double asx, asy, asz; - double bsx, bsy, bsz; - double csx, csy, csz; - double xnew, ynew, znew; - - cell_get_reciprocal(in, &asx, &asy, &asz, &bsx, &bsy, - &bsz, &csx, &csy, &csz); - - /* Rotate by "omega" about +z (parallel to c* and c unless triclinic) */ - xnew = asx*cos(omega) + asy*sin(omega); - ynew = -asx*sin(omega) + asy*cos(omega); - znew = asz; - asx = xnew; asy = ynew; asz = znew; - xnew = bsx*cos(omega) + bsy*sin(omega); - ynew = -bsx*sin(omega) + bsy*cos(omega); - znew = bsz; - bsx = xnew; bsy = ynew; bsz = znew; - xnew = csx*cos(omega) + csy*sin(omega); - ynew = -csx*sin(omega) + csy*cos(omega); - znew = csz; - csx = xnew; csy = ynew; csz = znew; - - /* Rotate by "phi" about +x (not parallel to anything specific) */ - xnew = asx; - ynew = asy*cos(phi) + asz*sin(phi); - znew = -asy*sin(phi) + asz*cos(phi); - asx = xnew; asy = ynew; asz = znew; - xnew = bsx; - ynew = bsy*cos(phi) + bsz*sin(phi); - znew = -bsy*sin(phi) + bsz*cos(phi); - bsx = xnew; bsy = ynew; bsz = znew; - xnew = csx; - ynew = csy*cos(phi) + csz*sin(phi); - znew = -csy*sin(phi) + csz*cos(phi); - csx = xnew; csy = ynew; csz = znew; - - /* Rotate by "rot" about the new +z (in-plane rotation) */ - xnew = asx*cos(rot) + asy*sin(rot); - ynew = -asx*sin(rot) + asy*cos(rot); - znew = asz; - asx = xnew; asy = ynew; asz = znew; - xnew = bsx*cos(rot) + bsy*sin(rot); - ynew = -bsx*sin(rot) + bsy*cos(rot); - znew = bsz; - bsx = xnew; bsy = ynew; bsz = znew; - xnew = csx*cos(rot) + csy*sin(rot); - ynew = -csx*sin(rot) + csy*cos(rot); - znew = csz; - csx = xnew; csy = ynew; csz = znew; - - out = cell_new_from_cell(in); - cell_set_reciprocal(out, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz); + gsl_permutation *perm; + gsl_matrix *lu; + int s; - return out; + STATUS("New a = %+.2fa %+.2fb %+.2fc\n", gsl_matrix_get(t->m, 0, 0), + gsl_matrix_get(t->m, 0, 1), + gsl_matrix_get(t->m, 0, 2)); + STATUS("New b = %+.2fa %+.2fb %+.2fc\n", gsl_matrix_get(t->m, 1, 0), + gsl_matrix_get(t->m, 1, 1), + gsl_matrix_get(t->m, 1, 2)); + STATUS("New c = %+.2fa %+.2fb %+.2fc\n", gsl_matrix_get(t->m, 2, 0), + gsl_matrix_get(t->m, 2, 1), + gsl_matrix_get(t->m, 2, 2)); + lu = gsl_matrix_alloc(3, 3); + if ( lu == NULL ) { + ERROR("Couldn't allocate LU decomposition.\n"); + return; + } + + gsl_matrix_memcpy(lu, t->m); + + perm = gsl_permutation_alloc(t->m->size1); + if ( perm == NULL ) { + ERROR("Couldn't allocate permutation.\n"); + gsl_matrix_free(lu); + return; + } + if ( gsl_linalg_LU_decomp(lu, perm, &s) ) { + ERROR("LU decomposition failed.\n"); + gsl_permutation_free(perm); + gsl_matrix_free(lu); + return; + } + + STATUS("Transformation determinant = %.2f\n", gsl_linalg_LU_det(lu, s)); } -int cell_is_sensible(UnitCell *cell) +/** + * tfn_free: + * @t: A %UnitCellTransformation + * + * Frees all resources associated with @t. + * + */ +void tfn_free(UnitCellTransformation *t) { - double a, b, c, al, be, ga; - - cell_get_parameters(cell, &a, &b, &c, &al, &be, &ga); - if ( al + be + ga >= 2.0*M_PI ) return 0; - if ( al + be - ga >= 2.0*M_PI ) return 0; - if ( al - be + ga >= 2.0*M_PI ) return 0; - if ( - al + be + ga >= 2.0*M_PI ) return 0; - if ( al + be + ga <= 0.0 ) return 0; - if ( al + be - ga <= 0.0 ) return 0; - if ( al - be + ga <= 0.0 ) return 0; - if ( - al + be + ga <= 0.0 ) return 0; - if ( isnan(al) ) return 0; - if ( isnan(be) ) return 0; - if ( isnan(ga) ) return 0; - return 1; + gsl_matrix_free(t->m); + free(t); } diff --git a/libcrystfel/src/cell.h b/libcrystfel/src/cell.h index bd2719dd..c7b8f8d6 100644 --- a/libcrystfel/src/cell.h +++ b/libcrystfel/src/cell.h @@ -1,7 +1,7 @@ /* * cell.h * - * Unit Cell Calculations + * A class representing a unit cell * * Copyright © 2012 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. @@ -48,6 +48,17 @@ struct rvec double w; }; +typedef enum +{ + L_TRICLINIC, + L_MONOCLINIC, + L_ORTHORHOMBIC, + L_TETRAGONAL, + L_RHOMBOHEDRAL, + L_HEXAGONAL, + L_CUBIC +} LatticeType; + /** * UnitCell: @@ -57,6 +68,15 @@ struct rvec **/ typedef struct _unitcell UnitCell; + +/** + * UnitCellTransformation: + * + * This opaque data structure represents a tranformation of a unit cell, such + * as a rotation or a centering operation. + **/ +typedef struct _unitcelltransformation UnitCellTransformation; + extern UnitCell *cell_new(void); extern UnitCell *cell_new_from_cell(UnitCell *orig); extern void cell_free(UnitCell *cell); @@ -82,7 +102,6 @@ extern void cell_set_parameters(UnitCell *cell, double a, double b, double c, extern void cell_set_cartesian_a(UnitCell *cell, double ax, double ay, double az); extern void cell_set_cartesian_b(UnitCell *cell, double bx, double by, double bz); extern void cell_set_cartesian_c(UnitCell *cell, double cx, double cy, double cz); -extern void cell_set_spacegroup(UnitCell *cell, const char *sym); extern void cell_set_pointgroup(UnitCell *cell, const char *sym); @@ -106,24 +125,27 @@ extern void cell_set_reciprocal(UnitCell *cell, extern const char *cell_get_pointgroup(UnitCell *cell); -extern const char *cell_get_spacegroup(UnitCell *cell); - -extern double resolution(UnitCell *cell, - signed int h, signed int k, signed int l); - -extern UnitCell *cell_rotate(UnitCell *in, struct quaternion quat); -extern UnitCell *rotate_cell(UnitCell *in, double omega, double phi, - double rot); +extern LatticeType cell_get_lattice_type(UnitCell *cell); +extern void cell_set_lattice_type(UnitCell *cell, LatticeType lattice_type); -extern void cell_print(UnitCell *cell); +extern char cell_get_centering(UnitCell *cell); +extern void cell_set_centering(UnitCell *cell, char centering); -extern UnitCell *match_cell(UnitCell *cell, UnitCell *tempcell, int verbose, - const float *ltl, int reduce); +extern char cell_get_unique_axis(UnitCell *cell); +extern void cell_set_unique_axis(UnitCell *cell, char unique_axis); -extern UnitCell *match_cell_ab(UnitCell *cell, UnitCell *tempcell); +extern const char *cell_rep(UnitCell *cell); -extern UnitCell *load_cell_from_pdb(const char *filename); +extern UnitCell *cell_transform(UnitCell *cell, UnitCellTransformation *t); +extern UnitCell *cell_transform_inverse(UnitCell *cell, + UnitCellTransformation *t); -extern int cell_is_sensible(UnitCell *cell); +extern UnitCellTransformation *tfn_identity(void); +extern void tfn_combine(UnitCellTransformation *t, + double *na, double *nb, double *nc); +extern void tfn_print(UnitCellTransformation *t); +extern UnitCellTransformation *tfn_inverse(UnitCellTransformation *t); +extern double *tfn_vector(double a, double b, double c); +extern void tfn_free(UnitCellTransformation *t); #endif /* CELL_H */ diff --git a/libcrystfel/src/geometry.c b/libcrystfel/src/geometry.c index 24669aef..091b4fed 100644 --- a/libcrystfel/src/geometry.c +++ b/libcrystfel/src/geometry.c @@ -36,6 +36,7 @@ #include "utils.h" #include "cell.h" +#include "cell-utils.h" #include "image.h" #include "peaks.h" #include "beam-parameters.h" diff --git a/libcrystfel/src/index.c b/libcrystfel/src/index.c index 102a5312..7d912902 100644 --- a/libcrystfel/src/index.c +++ b/libcrystfel/src/index.c @@ -49,6 +49,7 @@ #include "index-priv.h" #include "reax.h" #include "geometry.h" +#include "cell-utils.h" /* Base class constructor for unspecialised indexing private data */ diff --git a/libcrystfel/src/mosflm.c b/libcrystfel/src/mosflm.c index ed118aa4..63166919 100644 --- a/libcrystfel/src/mosflm.c +++ b/libcrystfel/src/mosflm.c @@ -272,14 +272,74 @@ static void mosflm_sendline(const char *line, struct mosflm_data *mosflm) } +/* Turn what we know about the unit cell into something which we can give to + * MOSFLM to make it give us only indexing results compatible with the cell. */ +static const char *spacegroup_for_lattice(UnitCell *cell) +{ + LatticeType latt; + char centering; + char ua; + char *g = NULL; + char *result; + + latt = cell_get_lattice_type(cell); + centering = cell_get_centering(cell); + ua = cell_get_unique_axis(cell); + + switch ( latt ) + { + case L_TRICLINIC : + g = "1"; + break; + + case L_MONOCLINIC : + /* "2 1 1", "1 2 1" or "1 1 2" depending on unique axis */ + if ( ua == 'a' ) g = "2 1 1"; + if ( ua == 'b' ) g = "1 2 1"; + if ( ua == 'c' ) g = "1 1 2"; + break; + + case L_ORTHORHOMBIC : + g = "2 2 2"; + break; + + case L_TETRAGONAL : + /* "4 1 1", "1 4 1" or "1 1 4" depending on unique axis */ + if ( ua == 'a' ) g = "4 1 1"; + if ( ua == 'b' ) g = "1 4 1"; + if ( ua == 'c' ) g = "1 1 4"; + break; + + case L_RHOMBOHEDRAL : + g = "3"; + break; + + case L_HEXAGONAL : + /* "6 1 1", "1 6 1" or "1 1 6" depending on unique axis */ + if ( ua == 'a' ) g = "6 1 1"; + if ( ua == 'b' ) g = "1 6 1"; + if ( ua == 'c' ) g = "6"; + break; + + case L_CUBIC : + g = "2 3"; + break; + } + assert(g != NULL); + + result = malloc(32); + if ( result == NULL ) return NULL; + + snprintf(result, 31, "%c%s", centering, g); + + return result; +} + + static void mosflm_send_next(struct image *image, struct mosflm_data *mosflm) { char tmp[256]; - char symm[32]; - const char *sg; double wavelength; - double a, b, c, alpha, beta, gamma; - int i, j; switch ( mosflm->step ) { @@ -291,29 +351,8 @@ static void mosflm_send_next(struct image *image, struct mosflm_data *mosflm) case 2 : if ( mosflm->target_cell != NULL ) { - cell_get_parameters(mosflm->target_cell, &a, &b, &c, - &alpha, &beta, &gamma); - snprintf(tmp, 255, - "CELL %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f\n", - a*1e10, b*1e10, c*1e10, - rad2deg(alpha), rad2deg(beta), rad2deg(gamma)); - mosflm_sendline(tmp, mosflm); - } else { - mosflm_sendline("# Do nothing\n", mosflm); - } - break; - - case 3 : - if ( mosflm->target_cell != NULL ) { - sg = cell_get_spacegroup(mosflm->target_cell); - /* Remove white space from space group */ - j = 0; - for ( i=0; i<strlen(sg); i++ ) { - if (sg[i] != ' ') { - symm[j++] = sg[i]; - } - } - symm[j] = '\0'; + const char *symm; + symm = spacegroup_for_lattice(mosflm->target_cell); snprintf(tmp, 255, "SYMM %s\n", symm); mosflm_sendline(tmp, mosflm); } else { @@ -321,31 +360,31 @@ static void mosflm_send_next(struct image *image, struct mosflm_data *mosflm) } break; - case 4 : + case 3 : mosflm_sendline("DISTANCE 67.8\n", mosflm); break; - case 5 : + case 4 : mosflm_sendline("BEAM 0.0 0.0\n", mosflm); break; - case 6 : + case 5 : wavelength = image->lambda*1e10; snprintf(tmp, 255, "WAVELENGTH %10.5f\n", wavelength); mosflm_sendline(tmp, mosflm); break; - case 7 : + case 6 : snprintf(tmp, 255, "NEWMAT %s\n", mosflm->newmatfile); mosflm_sendline(tmp, mosflm); break; - case 8 : + case 7 : snprintf(tmp, 255, "IMAGE %s phi 0 0\n", mosflm->imagefile); mosflm_sendline(tmp, mosflm); break; - case 9 : + case 8 : snprintf(tmp, 255, "AUTOINDEX DPS FILE %s" " IMAGE 1 MAXCELL 1000 REFINE\n", mosflm->sptfile); @@ -357,7 +396,7 @@ static void mosflm_send_next(struct image *image, struct mosflm_data *mosflm) mosflm_sendline(tmp, mosflm); break; - case 10 : + case 9 : mosflm_sendline("GO\n", mosflm); mosflm->finished_ok = 1; break; diff --git a/libcrystfel/src/peaks.c b/libcrystfel/src/peaks.c index b87eb56e..f7f6c650 100644 --- a/libcrystfel/src/peaks.c +++ b/libcrystfel/src/peaks.c @@ -51,6 +51,7 @@ #include "filters.h" #include "reflist-utils.h" #include "beam-parameters.h" +#include "cell-utils.h" /* Degree of polarisation of X-ray beam */ diff --git a/libcrystfel/src/reax.c b/libcrystfel/src/reax.c index 5cfa908a..7529d12f 100644 --- a/libcrystfel/src/reax.c +++ b/libcrystfel/src/reax.c @@ -41,12 +41,12 @@ #include <gsl/gsl_vector.h> #include <gsl/gsl_linalg.h> #include <gsl/gsl_eigen.h> -#include <gsl/gsl_blas.h> #include "image.h" #include "utils.h" #include "peaks.h" #include "cell.h" +#include "cell-utils.h" #include "index.h" #include "index-priv.h" @@ -744,7 +744,7 @@ static double max_feature_resolution(ImageFeatureList *flist) } -static int right_handed(struct rvec a, struct rvec b, struct rvec c) +static int right_handed_vec(struct rvec a, struct rvec b, struct rvec c) { struct rvec aCb; double aCb_dot_c; @@ -957,7 +957,7 @@ static void assemble_cells_from_candidates(struct image *image, bi.u = vj.x; bi.v = vj.y; bi.w = vj.z; ci.u = vk.x; ci.v = vk.y; ci.w = vk.z; - if ( !right_handed(ai, bi, ci) ) continue; + if ( !right_handed_vec(ai, bi, ci) ) continue; /* We have three vectors with the right angles */ cnew = cell_new_from_direct_axes(ai, bi, ci); diff --git a/libcrystfel/src/reflist-utils.c b/libcrystfel/src/reflist-utils.c index 2e6715f2..f2292929 100644 --- a/libcrystfel/src/reflist-utils.c +++ b/libcrystfel/src/reflist-utils.c @@ -35,6 +35,7 @@ #include "reflist.h" #include "cell.h" +#include "cell-utils.h" #include "utils.h" #include "reflist-utils.h" #include "symmetry.h" diff --git a/libcrystfel/src/symmetry.c b/libcrystfel/src/symmetry.c index 0352e441..52a9aae6 100644 --- a/libcrystfel/src/symmetry.c +++ b/libcrystfel/src/symmetry.c @@ -68,7 +68,6 @@ struct _symoplist int n_ops; int max_ops; char *name; - int *divisors; int num_equivs; }; @@ -84,7 +83,6 @@ struct _symopmask static void alloc_ops(SymOpList *ops) { ops->ops = realloc(ops->ops, ops->max_ops*sizeof(struct sym_op)); - ops->divisors = realloc(ops->divisors, ops->max_ops*sizeof(int)); } @@ -127,7 +125,6 @@ static SymOpList *new_symoplist() new->max_ops = 16; new->n_ops = 0; new->ops = NULL; - new->divisors = NULL; new->name = NULL; new->num_equivs = 1; alloc_ops(new); @@ -259,6 +256,7 @@ int num_equivs(const SymOpList *ops, const SymOpMask *m) static signed int *v(signed int h, signed int k, signed int i, signed int l) { signed int *vec = malloc(3*sizeof(signed int)); + if ( vec == NULL ) return NULL; /* Convert back to 3-index form now */ vec[0] = h-i; vec[1] = k-i; vec[2] = l; return vec; |