/* * geometry.c * * Geometry of diffraction * * Copyright © 2012 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2010-2012 Thomas White * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include "utils.h" #include "cell.h" #include "image.h" #include "peaks.h" #include "beam-parameters.h" #include "reflist.h" #include "reflist-utils.h" #include "symmetry.h" static signed int locate_peak(double x, double y, double z, double k, struct detector *det, double *xdap, double *ydap) { int i; signed int found = -1; const double den = k + z; *xdap = -1; *ydap = -1; for ( i=0; in_panels; i++ ) { double xd, yd; double fs, ss, plx, ply; struct panel *p; p = &det->panels[i]; /* Coordinates of peak relative to central beam, in m */ xd = p->clen * x / den; yd = p->clen * y / den; /* Convert to pixels */ xd *= p->res; yd *= p->res; /* Convert to relative to the panel corner */ plx = xd - p->cnx; ply = yd - p->cny; fs = p->xfs*plx + p->yfs*ply; ss = p->xss*plx + p->yss*ply; fs += p->min_fs; ss += p->min_ss; /* Now, is this on this panel? */ if ( fs < p->min_fs ) continue; if ( fs > p->max_fs ) continue; if ( ss < p->min_ss ) continue; if ( ss > p->max_ss ) continue; /* If peak appears on multiple panels, reject it */ if ( found != -1 ) return -1; /* Woohoo! */ found = i; *xdap = fs; *ydap = ss; } return found; } static double excitation_error(double xl, double yl, double zl, double ds, double k, double divergence, double tt) { double al; double r; double delta; al = M_PI_2 - asin(-zl/ds); r = ( ds * sin(al) / sin(tt) ) - k; delta = sqrt(2.0 * pow(ds, 2.0) * (1.0-cos(divergence))); if ( divergence > 0.0 ) { r += delta; } else { r -= delta; } return r; } static double partiality(double r1, double r2, double r) { double q1, q2; double p1, p2; /* Calculate degrees of penetration */ q1 = (r1 + r)/(2.0*r); q2 = (r2 + r)/(2.0*r); /* Convert to partiality */ p1 = 3.0*pow(q1,2.0) - 2.0*pow(q1,3.0); p2 = 3.0*pow(q2,2.0) - 2.0*pow(q2,3.0); return p2 - p1; } static Reflection *check_reflection(struct image *image, signed int h, signed int k, signed int l, double asx, double asy, double asz, double bsx, double bsy, double bsz, double csx, double csy, double csz) { const int output = 0; double xl, yl, zl; double ds, ds_sq; double rlow, rhigh; /* "Excitation error" */ signed int p; /* Panel number */ double xda, yda; /* Position on detector */ int close, inside; double part; /* Partiality */ int clamp_low = 0; int clamp_high = 0; double bandwidth = image->bw; double divergence = image->div; double lambda = image->lambda; double klow, kcen, khigh; /* Wavenumber */ Reflection *refl; double tt, psi; /* "low" gives the largest Ewald sphere, * "high" gives the smallest Ewald sphere. */ klow = 1.0/(lambda - lambda*bandwidth/2.0); kcen = 1.0/lambda; khigh = 1.0/(lambda + lambda*bandwidth/2.0); /* Get the coordinates of the reciprocal lattice point */ xl = h*asx + k*bsx + l*csx; yl = h*asy + k*bsy + l*csy; zl = h*asz + k*bsz + l*csz; ds_sq = modulus_squared(xl, yl, zl); /* d*^2 */ ds = sqrt(ds_sq); /* Simple (fast) check to reject reflection if it's "in front" */ psi = atan2(zl, sqrt(xl*xl + yl*yl)); if ( psi - atan2(image->profile_radius, ds) > divergence ) return NULL; tt = angle_between(0.0, 0.0, 1.0, xl, yl, zl+kcen); if ( tt > deg2rad(90.0) ) return NULL; /* Calculate excitation errors */ rlow = excitation_error(xl, yl, zl, ds, klow, -divergence/2.0, tt); rhigh = excitation_error(xl, yl, zl, ds, khigh, +divergence/2.0, tt); /* Is the reciprocal lattice point close to either extreme of * the sphere, maybe just outside the "Ewald volume"? */ close = (fabs(rlow) < image->profile_radius) || (fabs(rhigh) < image->profile_radius); /* Is the reciprocal lattice point somewhere between the * extremes of the sphere, i.e. inside the "Ewald volume"? */ inside = signbit(rlow) ^ signbit(rhigh); /* Can't be both inside and close */ if ( inside ) close = 0; /* Neither? Skip it. */ if ( !(close || inside) ) return NULL; /* If the "lower" Ewald sphere is a long way away, use the * position at which the Ewald sphere would just touch the * reflection. */ if ( rlow < -image->profile_radius ) { rlow = -image->profile_radius; clamp_low = -1; } if ( rlow > +image->profile_radius ) { rlow = +image->profile_radius; clamp_low = +1; } /* Likewise the "higher" Ewald sphere */ if ( rhigh < -image->profile_radius ) { rhigh = -image->profile_radius; clamp_high = -1; } if ( rhigh > +image->profile_radius ) { rhigh = +image->profile_radius; clamp_high = +1; } assert(clamp_low <= clamp_high); /* The six possible combinations of clamp_{low,high} (including * zero) correspond to the six situations in Table 3 of Rossmann * et al. (1979). */ /* Calculate partiality */ part = partiality(rlow, rhigh, image->profile_radius); /* Locate peak on detector. */ p = locate_peak(xl, yl, zl, kcen, image->det, &xda, &yda); if ( p == -1 ) return NULL; /* Add peak to list */ refl = reflection_new(h, k, l); set_detector_pos(refl, 0.0, xda, yda); set_partial(refl, rlow, rhigh, part, clamp_low, clamp_high); set_symmetric_indices(refl, h, k, l); set_redundancy(refl, 1); if ( output ) { printf("%3i %3i %3i %6f (at %5.2f,%5.2f) %5.2f\n", h, k, l, 0.0, xda, yda, part); } return refl; } RefList *find_intersections(struct image *image, UnitCell *cell) { double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; RefList *reflections; int hmax, kmax, lmax; double mres; signed int h, k, l; reflections = reflist_new(); /* Cell angle check from Foadi and Evans (2011) */ if ( !cell_is_sensible(cell) ) { ERROR("Invalid unit cell parameters given to" " find_intersections()\n"); cell_print(cell); return NULL; } cell_get_reciprocal(cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); /* We add a horrific 20% fudge factor because bandwidth, divergence * and so on mean reflections appear beyond the largest q */ mres = 1.2 * largest_q(image); hmax = mres / modulus(asx, asy, asz); kmax = mres / modulus(bsx, bsy, bsz); lmax = mres / modulus(csx, csy, csz); if ( (hmax >= 256) || (kmax >= 256) || (lmax >= 256) ) { ERROR("Unit cell is stupidly large.\n"); cell_print(cell); if ( hmax >= 256 ) hmax = 255; if ( kmax >= 256 ) kmax = 255; if ( lmax >= 256 ) lmax = 255; } for ( h=-hmax; h<=hmax; h++ ) { for ( k=-kmax; k<=kmax; k++ ) { for ( l=-lmax; l<=lmax; l++ ) { Reflection *refl; refl = check_reflection(image, h, k, l, asx,asy,asz,bsx,bsy,bsz,csx,csy,csz); if ( refl != NULL ) { refl = add_refl_to_list(refl, reflections); } } } } return reflections; } /* Calculate partialities and apply them to the image's reflections */ void update_partialities(struct image *image) { Reflection *refl; RefListIterator *iter; RefList *predicted; double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; cell_get_reciprocal(image->indexed_cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); /* Scratch list to give check_reflection() something to add to */ predicted = reflist_new(); for ( refl = first_refl(image->reflections, &iter); refl != NULL; refl = next_refl(refl, iter) ) { Reflection *vals; double r1, r2, p, x, y; signed int h, k, l; int clamp1, clamp2; get_symmetric_indices(refl, &h, &k, &l); vals = check_reflection(image, h, k, l, asx,asy,asz,bsx,bsy,bsz,csx,csy,csz); if ( vals == NULL ) { set_redundancy(refl, 0); continue; } set_redundancy(refl, 1); /* Transfer partiality stuff */ get_partial(vals, &r1, &r2, &p, &clamp1, &clamp2); set_partial(refl, r1, r2, p, clamp1, clamp2); /* Transfer detector location */ get_detector_pos(vals, &x, &y); set_detector_pos(refl, 0.0, x, y); reflection_free(vals); } reflist_free(predicted); }