/* * hdf5-file.c * * Read/write HDF5 data files * * Copyright © 2012 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2009-2012 Thomas White * 2014 Valerio Mariani * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include "events.h" #include "image.h" #include "hdf5-file.h" #include "utils.h" struct hdf5_write_location { const char *location; int n_panels; int *panel_idxs; int max_ss; int max_fs; }; int split_group_and_object(const char *path, char **group, char **object) { const char *sep; const char *store; sep = path; store = sep; sep = strpbrk(sep + 1, "/"); if ( sep != NULL ) { while ( 1 ) { store = sep; sep = strpbrk(sep + 1, "/"); if ( sep == NULL ) { break; } } } if ( store == path ) { *group = NULL; *object = strdup(path); } else { *group = strndup(path, store - path); *object = strdup(store+1); } return 0; }; struct hdfile { const char *path; /* Current data path */ size_t nfs; /* Image width */ size_t nss; /* Image height */ hid_t fh; /* HDF file handle */ hid_t dh; /* Dataset handle */ int data_open; /* True if dh is initialised */ }; struct hdfile *hdfile_open(const char *filename) { struct hdfile *f; f = malloc(sizeof(struct hdfile)); if ( f == NULL ) return NULL; if ( access( filename, R_OK ) == -1 ) { ERROR("File does not exists or it cannot be read: %s\n", filename); free(f); return NULL; } f->fh = H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT); if ( f->fh < 0 ) { ERROR("Couldn't open file: %s\n", filename); free(f); return NULL; } f->data_open = 0; return f; } int hdfile_set_image(struct hdfile *f, const char *path, struct panel *p) { hsize_t *size; hsize_t *max_size; hid_t sh; int sh_dim; int di; f->dh = H5Dopen2(f->fh, path, H5P_DEFAULT); if ( f->dh < 0 ) { ERROR("Couldn't open dataset\n"); return -1; } f->data_open = 1; sh = H5Dget_space(f->dh); sh_dim = H5Sget_simple_extent_ndims(sh); if ( p == NULL ) { if ( sh_dim != 2 ) { ERROR("Dataset is not two-dimensional\n"); return -1; } } else { if ( sh_dim != p->dim_structure->num_dims ) { ERROR("Dataset dimensionality does not match " "geometry file\n"); return -1; } } size = malloc(sh_dim*sizeof(hsize_t)); max_size = malloc(sh_dim*sizeof(hsize_t)); H5Sget_simple_extent_dims(sh, size, max_size); H5Sclose(sh); if ( p == NULL ) { f->nss = size[0]; f->nfs = size[1]; } else { for ( di=0; didim_structure->num_dims; di++ ) { if ( p->dim_structure->dims[di] == HYSL_SS ) { f->nss = size[di]; } if ( p->dim_structure->dims[di] == HYSL_FS ) { f->nfs = size[di]; } } } free(size); free(max_size); return 0; } int get_peaks(struct image *image, struct hdfile *f, const char *p) { hid_t dh, sh; hsize_t size[2]; hsize_t max_size[2]; int i; float *buf; herr_t r; int tw; dh = H5Dopen2(f->fh, p, H5P_DEFAULT); if ( dh < 0 ) { ERROR("Peak list (%s) not found.\n", p); return 1; } sh = H5Dget_space(dh); if ( sh < 0 ) { H5Dclose(dh); ERROR("Couldn't get dataspace for peak list.\n"); return 1; } if ( H5Sget_simple_extent_ndims(sh) != 2 ) { ERROR("Peak list has the wrong dimensionality (%i).\n", H5Sget_simple_extent_ndims(sh)); H5Sclose(sh); H5Dclose(dh); return 1; } H5Sget_simple_extent_dims(sh, size, max_size); tw = size[1]; if ( (tw != 3) && (tw != 4) ) { H5Sclose(sh); H5Dclose(dh); ERROR("Peak list has the wrong dimensions.\n"); return 1; } buf = malloc(sizeof(float)*size[0]*size[1]); if ( buf == NULL ) { H5Sclose(sh); H5Dclose(dh); ERROR("Couldn't reserve memory for the peak list.\n"); return 1; } r = H5Dread(dh, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf); if ( r < 0 ) { ERROR("Couldn't read peak list.\n"); free(buf); return 1; } if ( image->features != NULL ) { image_feature_list_free(image->features); } image->features = image_feature_list_new(); for ( i=0; idet, fs, ss); if ( p == NULL ) continue; if ( p->no_index ) continue; /* Convert coordinates to match rearranged panels in memory */ fs = fs - p->orig_min_fs + p->min_fs; ss = ss - p->orig_min_ss + p->min_ss; image_add_feature(image->features, fs, ss, image, val, NULL); } free(buf); H5Sclose(sh); H5Dclose(dh); return 0; } static void cleanup(hid_t fh) { int n_ids, i; hid_t ids[2048]; n_ids = H5Fget_obj_ids(fh, H5F_OBJ_ALL, 2048, ids); for ( i=0; idata_open ) { H5Dclose(f->dh); } cleanup(f->fh); H5Fclose(f->fh); free(f); } /* Deprecated */ int hdf5_write(const char *filename, const void *data, int width, int height, int type) { hid_t fh, gh, sh, dh; /* File, group, dataspace and data handles */ hid_t ph; /* Property list */ herr_t r; hsize_t size[2]; fh = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); if ( fh < 0 ) { ERROR("Couldn't create file: %s\n", filename); return 1; } gh = H5Gcreate2(fh, "data", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if ( gh < 0 ) { ERROR("Couldn't create group\n"); H5Fclose(fh); return 1; } /* Note the "swap" here, according to section 3.2.5, * "C versus Fortran Dataspaces", of the HDF5 user's guide. */ size[0] = height; size[1] = width; sh = H5Screate_simple(2, size, NULL); dh = H5Dcreate2(gh, "data", type, sh, H5P_DEFAULT, ph, H5P_DEFAULT); if ( dh < 0 ) { ERROR("Couldn't create dataset\n"); H5Fclose(fh); return 1; } /* Muppet check */ H5Sget_simple_extent_dims(sh, size, NULL); r = H5Dwrite(dh, type, H5S_ALL, H5S_ALL, H5P_DEFAULT, data); if ( r < 0 ) { ERROR("Couldn't write data\n"); H5Dclose(dh); H5Fclose(fh); return 1; } H5Dclose(dh); H5Gclose(gh); H5Pclose(ph); H5Fclose(fh); return 0; } static void add_panel_to_location(struct hdf5_write_location *loc, struct panel *p, int pi) { int *new_panel_idxs; new_panel_idxs = realloc(loc->panel_idxs, (loc->n_panels+1)*sizeof(int)); if ( new_panel_idxs == NULL ) { ERROR("Error while managing write location list.\n"); return; } loc->panel_idxs = new_panel_idxs; loc->panel_idxs[loc->n_panels] = pi; loc->n_panels += 1; if ( p->orig_max_fs > loc->max_fs ) { loc->max_fs = p->orig_max_fs; } if ( p->orig_max_ss > loc->max_ss ) { loc->max_ss = p->orig_max_ss; } } static void add_panel_location(struct panel *p, const char *p_location, int pi, struct hdf5_write_location **plocations, int *pnum_locations) { int li; int num_locations = *pnum_locations; struct hdf5_write_location *locations = *plocations; int done = 0; /* Does this HDF5 path already exist in the location list? * If so, add the new panel to it (with a unique index, we hope) */ for ( li=0; liorig_max_ss; locations[num_locations].max_fs = p->orig_max_fs; locations[num_locations].location = p_location; locations[num_locations].panel_idxs = malloc(sizeof(int)); if ( locations[num_locations].panel_idxs == NULL ) { ERROR("Failed to allocate single idx (!)\n"); return; } locations[num_locations].panel_idxs[0] = pi; locations[num_locations].n_panels = 1; num_locations += 1; } *plocations = locations; *pnum_locations = num_locations; } static struct hdf5_write_location *make_location_list(struct detector *det, const char *def_location, int *pnum_locations) { int pi; struct hdf5_write_location *locations = NULL; int num_locations = 0; for ( pi=0; pin_panels; pi++ ) { struct panel p; const char *p_location; p = det->panels[pi]; if ( p.data == NULL ) { p_location = def_location; } else { p_location = p.data; } add_panel_location(&p, p_location, pi, &locations, &num_locations); } *pnum_locations = num_locations; return locations; } static void write_location(hid_t fh, struct image *image, struct hdf5_write_location *loc) { hid_t gh, sh, dh, ph; hid_t dh_dataspace; hsize_t size[2]; const char *path; int pi; char *group = NULL; char *object = NULL; path = loc->location; if ( split_group_and_object(path, &group, &object) ) { ERROR("Error while determining write locations.\n"); return; } if ( group != NULL ) { htri_t exists; hid_t gph = H5Pcreate(H5P_LINK_CREATE); H5Pset_create_intermediate_group(gph, 1); exists = H5Lexists(fh, group, H5P_DEFAULT); if ( !exists ) { gh = H5Gcreate2(fh, group, gph, H5P_DEFAULT, H5P_DEFAULT); H5Pclose(gph); if ( gh < 0 ) { ERROR("Couldn't create group\n"); H5Fclose(fh); return; } } else { gh = H5Gopen2(fh, group, H5P_DEFAULT); } } else { gh = -1; } /* Note the "swap" here, according to section 3.2.5, * "C versus Fortran Dataspaces", of the HDF5 user's guide. */ size[0] = loc->max_ss+1; size[1] = loc->max_fs+1; sh = H5Screate_simple(2, size, NULL); if ( group != NULL ) { dh = H5Dcreate2(gh, object, H5T_NATIVE_FLOAT, sh, H5P_DEFAULT, ph, H5P_DEFAULT); } else { dh = H5Dcreate2(fh, object, H5T_NATIVE_FLOAT, sh, H5P_DEFAULT, ph, H5P_DEFAULT); } if ( dh < 0 ) { ERROR("Couldn't create dataset\n"); H5Fclose(fh); return; } H5Sget_simple_extent_dims(sh, size, NULL); for ( pi=0; pin_panels; pi++ ) { hsize_t f_offset[2], f_count[2]; hsize_t m_offset[2], m_count[2]; hsize_t dimsm[2]; hid_t memspace; struct panel p; int r; p = image->det->panels[loc->panel_idxs[pi]]; f_offset[0] = p.orig_min_ss; f_offset[1] = p.orig_min_fs; f_count[0] = p.orig_max_ss - p.orig_min_ss +1; f_count[1] = p.orig_max_fs - p.orig_min_fs +1; dh_dataspace = H5Dget_space(dh); r = H5Sselect_hyperslab(dh_dataspace, H5S_SELECT_SET, f_offset, NULL, f_count, NULL); if ( r < 0 ) { ERROR("Error selecting file dataspace " "for panel %s\n", p.name); free(group); free(object); H5Pclose(ph); H5Dclose(dh); H5Sclose(dh_dataspace); H5Sclose(sh); if ( gh != -1 ) H5Gclose(gh); H5Fclose(fh); return; } m_offset[0] = p.min_ss; m_offset[1] = p.min_fs; m_count[0] = p.max_ss - p.min_ss +1; m_count[1] = p.max_fs - p.min_fs +1; dimsm[0] = image->height; dimsm[1] = image->width; memspace = H5Screate_simple(2, dimsm, NULL); r = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, m_offset, NULL, m_count, NULL); r = H5Dwrite(dh, H5T_NATIVE_FLOAT, memspace, dh_dataspace, H5P_DEFAULT, image->data); if ( r < 0 ) { ERROR("Couldn't write data\n"); free(group); free(object); H5Pclose(ph); H5Dclose(dh); H5Sclose(dh_dataspace); H5Sclose(sh); H5Sclose(memspace); if ( gh != -1 ) H5Gclose(gh); H5Fclose(fh); return; } H5Sclose(dh_dataspace); H5Sclose(memspace); } free(group); free(object); H5Pclose(ph); H5Sclose(sh); H5Dclose(dh); if ( gh != -1 ) H5Gclose(gh); } static void write_photon_energy(hid_t fh, double eV, const char *ph_en_loc) { hid_t ph, sh, dh; hsize_t size1d[1]; int r; ph = H5Pcreate(H5P_LINK_CREATE); H5Pset_create_intermediate_group(ph, 1); size1d[0] = 1; sh = H5Screate_simple(1, size1d, NULL); dh = H5Dcreate2(fh, ph_en_loc, H5T_NATIVE_DOUBLE, sh, ph, H5S_ALL, H5P_DEFAULT); if ( dh < 0 ) { ERROR("Couldn't create dataset for photon energy.\n"); return; } r = H5Dwrite(dh, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, &eV); if ( r < 0 ) { ERROR("Couldn't write photon energy.\n"); /* carry on */ } H5Pclose(ph); H5Dclose(dh); } static void write_spectrum(hid_t fh, struct sample *spectrum, int spectrum_size, int nsamples) { herr_t r; double *arr; int i; hsize_t size1d[1]; hid_t sh, dh, ph; ph = H5Pcreate(H5P_LINK_CREATE); H5Pset_create_intermediate_group(ph, 1); arr = malloc(spectrum_size*sizeof(double)); if ( arr == NULL ) { ERROR("Failed to allocate memory for spectrum.\n"); return; } for ( i=0; idet == NULL ) { ERROR("Geometry not available\n"); return 1; } fh = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); if ( fh < 0 ) { ERROR("Couldn't create file: %s\n", filename); return 1; } if ( element != NULL ) { default_location = strdup(element); } else { default_location = strdup("/data/data"); } locations = make_location_list(image->det, default_location, &num_locations); for ( li=0; libeam->photon_energy_from == NULL ) { ph_en_loc = "photon_energy_eV"; } else { ph_en_loc = image->beam->photon_energy_from; } write_photon_energy(fh, ph_lambda_to_eV(image->lambda), ph_en_loc); if ( image->spectrum_size > 0 ) { write_spectrum(fh, image->spectrum, image->spectrum_size, image->nsamples); } H5Fclose(fh); free(default_location); for ( li=0; lifh, "/processing/hitfinder/peakinfo_saturated", H5P_DEFAULT); if ( dh < 0 ) { /* This isn't an error */ return; } sh = H5Dget_space(dh); if ( sh < 0 ) { H5Dclose(dh); ERROR("Couldn't get dataspace for saturation table.\n"); return; } if ( H5Sget_simple_extent_ndims(sh) != 2 ) { H5Sclose(sh); H5Dclose(dh); return; } H5Sget_simple_extent_dims(sh, size, max_size); if ( size[1] != 3 ) { H5Sclose(sh); H5Dclose(dh); ERROR("Saturation table has the wrong dimensions.\n"); return; } buf = malloc(sizeof(float)*size[0]*size[1]); if ( buf == NULL ) { H5Sclose(sh); H5Dclose(dh); ERROR("Couldn't reserve memory for saturation table.\n"); return; } r = H5Dread(dh, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf); if ( r < 0 ) { ERROR("Couldn't read saturation table.\n"); free(buf); return; } for ( i=0; idata[x+image->width*y] = val / 5.0; image->data[x+1+image->width*y] = val / 5.0; image->data[x-1+image->width*y] = val / 5.0; image->data[x+image->width*(y+1)] = val / 5.0; image->data[x+image->width*(y-1)] = val / 5.0; } free(buf); H5Sclose(sh); H5Dclose(dh); } static int unpack_panels(struct image *image, struct detector *det) { int pi; image->dp = malloc(det->n_panels * sizeof(float *)); image->bad = malloc(det->n_panels * sizeof(int *)); if ( (image->dp == NULL) || (image->bad == NULL) ) { ERROR("Failed to allocate panels.\n"); return 1; } for ( pi=0; pin_panels; pi++ ) { struct panel *p; int fs, ss; p = &det->panels[pi]; image->dp[pi] = malloc(p->w*p->h*sizeof(float)); image->bad[pi] = calloc(p->w*p->h, sizeof(int)); if ( (image->dp[pi] == NULL) || (image->bad[pi] == NULL) ) { ERROR("Failed to allocate panel\n"); return 1; } for ( ss=0; ssh; ss++ ) { for ( fs=0; fsw; fs++ ) { int idx; int cfs, css; int bad = 0; cfs = fs+p->min_fs; css = ss+p->min_ss; idx = cfs + css*image->width; image->dp[pi][fs+p->w*ss] = image->data[idx]; if ( p->no_index ) bad = 1; if ( in_bad_region(det, cfs, css) ) { bad = 1; } if ( image->flags != NULL ) { int flags; flags = image->flags[idx]; /* Bad if it's missing any of the "good" bits */ if ( !((flags & image->det->mask_good) == image->det->mask_good) ) bad = 1; /* Bad if it has any of the "bad" bits. */ if ( flags & image->det->mask_bad ) bad = 1; } image->bad[pi][fs+p->w*ss] = bad; } } } return 0; } void fill_in_beam_parameters(struct beam_params *beam, struct hdfile *f, struct event *ev, struct image *image) { double eV; if ( beam->photon_energy_from == NULL ) { /* Explicit value given */ eV = beam->photon_energy; } else if ( ev != NULL ) { /* Value from HDF5 file, event-based structure */ eV = get_ev_based_value(f, beam->photon_energy_from, ev); } else { /* Value from HDF5 file, single-event structure */ eV = get_value(f, beam->photon_energy_from); } image->lambda = ph_en_to_lambda(eV_to_J(eV))*beam->photon_energy_scale; } int hdf5_read(struct hdfile *f, struct image *image, const char *element, int satcorr) { herr_t r; float *buf; int fail; if ( element == NULL ) { fail = hdfile_set_first_image(f, "/"); } else { fail = hdfile_set_image(f, element, NULL); } if ( fail ) { ERROR("Couldn't select path\n"); return 1; } image->width = f->nfs; image->height = f->nss; buf = malloc(sizeof(float)*f->nfs*f->nss); r = H5Dread(f->dh, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf); if ( r < 0 ) { ERROR("Couldn't read data\n"); free(buf); return 1; } image->data = buf; if ( satcorr ) debodge_saturation(f, image); if ( image->beam != NULL ) { fill_in_beam_parameters(image->beam, f, NULL, image); if ( image->lambda > 1000 ) { /* Error message covers a silly value in the beam file * or in the HDF5 file. */ ERROR("WARNING: Missing or nonsensical wavelength " "(%e m) for %s.\n", image->lambda, image->filename); } } return 0; } static void load_mask(struct hdfile *f, struct event *ev, char *mask, const char *pname, struct image *image, size_t p_w, size_t sum_p_h, hsize_t *f_offset, hsize_t *f_count, hsize_t *m_offset, hsize_t *m_count) { hid_t mask_dataspace, mask_dh; int exists; int check, r; hid_t memspace; hsize_t dimsm[2]; if ( ev != NULL ) { mask = retrieve_full_path(ev, mask); } exists = check_path_existence(f->fh, mask); if ( !exists ) { ERROR("Cannot find flags for panel %s\n", pname); goto err; } mask_dh = H5Dopen2(f->fh, mask, H5P_DEFAULT); if ( mask_dh <= 0 ) { ERROR("Couldn't open flags for panel %s\n", pname); goto err; } mask_dataspace = H5Dget_space(mask_dh); check = H5Sselect_hyperslab(mask_dataspace, H5S_SELECT_SET, f_offset, NULL, f_count, NULL); if ( check < 0 ) { ERROR("Error selecting mask dataspace for panel %s\n", pname); goto err; } dimsm[0] = sum_p_h; dimsm[1] = p_w; memspace = H5Screate_simple(2, dimsm, NULL); check = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, m_offset, NULL, m_count, NULL); if ( check < 0 ) { ERROR("Error selecting memory dataspace for panel %s\n", pname); goto err; } r = H5Dread(mask_dh, H5T_NATIVE_UINT16, memspace, mask_dataspace, H5P_DEFAULT, image->flags); if ( r < 0 ) { ERROR("Couldn't read flags for panel %s\n", pname); goto err; } H5Sclose(mask_dataspace); H5Dclose(mask_dh); if ( ev != NULL ) free(mask); return; err: if ( ev != NULL ) free(mask); free(image->flags); image->flags = NULL; return; } int hdf5_read2(struct hdfile *f, struct image *image, struct event *ev, int satcorr) { herr_t r; float *buf; int sum_p_h; int p_w; int pi; if ( image->det == NULL ) { ERROR("Geometry not available\n"); return 1; } p_w = image->det->panels[0].w; sum_p_h = 0; for ( pi=0; pidet->n_panels; pi++ ) { if ( image->det->panels[pi].w != p_w ) { ERROR("Panels must have the same width."); return 1; } sum_p_h += image->det->panels[pi].h; } buf = malloc(sizeof(float)*p_w*sum_p_h); if ( buf == NULL ) { ERROR("Failed to allocate memory for image\n"); return 1; } image->width = p_w; image->height = sum_p_h; image->flags = calloc(p_w*sum_p_h,sizeof(uint16_t)); if ( image->flags == NULL ) { ERROR("Failed to allocate memory for flags\n"); return 1; } for ( pi=0; pidet->n_panels; pi++ ) { int data_width, data_height; hsize_t *f_offset, *f_count; int hsi; struct dim_structure *hsd; hsize_t m_offset[2], m_count[2]; hsize_t dimsm[2]; herr_t check; hid_t dataspace, memspace; int fail; struct panel *p; p = &image->det->panels[pi]; if ( ev != NULL ) { int exists; char *panel_full_path; panel_full_path = retrieve_full_path(ev, p->data); exists = check_path_existence(f->fh, panel_full_path); if ( !exists ) { ERROR("Cannot find data for panel %s\n", p->name); return 1; } fail = hdfile_set_image(f, panel_full_path, p); free(panel_full_path); } else { if ( p->data == NULL ) { fail = hdfile_set_first_image(f, "/"); } else { int exists; exists = check_path_existence(f->fh, p->data); if ( !exists ) { ERROR("Cannot find data for panel %s\n", p->name); return 1; } fail = hdfile_set_image(f, p->data, p); } } if ( fail ) { ERROR("Couldn't select path for panel %s\n", p->name); return 1; } data_width = f->nfs; data_height = f->nss; if ( (data_width < p->w ) || (data_height < p->h) ) { ERROR("Data size doesn't match panel geometry size" " - rejecting image.\n"); ERROR("Panel name: %s. Data size: %i,%i. " "Geometry size: %i,%i\n", p->name, data_width, data_height, p->w, p->h); return 1; } hsd = image->det->panels[pi].dim_structure; f_offset = malloc(hsd->num_dims*sizeof(hsize_t)); f_count = malloc(hsd->num_dims*sizeof(hsize_t)); for ( hsi=0; hsinum_dims; hsi++ ) { if ( hsd->dims[hsi] == HYSL_FS ) { f_offset[hsi] = p->orig_min_fs; f_count[hsi] = p->orig_max_fs - p->orig_min_fs+1; } else if ( hsd->dims[hsi] == HYSL_SS ) { f_offset[hsi] = p->orig_min_ss; f_count[hsi] = p->orig_max_ss - p->orig_min_ss+1; } else if (hsd->dims[hsi] == HYSL_PLACEHOLDER ) { f_offset[hsi] = ev->dim_entries[0]; f_count[hsi] = 1; } else { f_offset[hsi] = hsd->dims[hsi]; f_count[hsi] = 1; } } dataspace = H5Dget_space(f->dh); check = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, f_offset, NULL, f_count, NULL); if ( check < 0 ) { ERROR("Error selecting file dataspace for panel %s\n", p->name); free(buf); return 1; } m_offset[0] = p->min_ss; m_offset[1] = p->min_fs; m_count[0] = p->max_ss - p->min_ss +1; m_count[1] = p->max_fs - p->min_fs +1; dimsm[0] = sum_p_h; dimsm[1] = p_w; memspace = H5Screate_simple(2, dimsm, NULL); check = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, m_offset, NULL, m_count, NULL); if ( check < 0 ) { ERROR("Error selecting memory dataspace for panel %s\n", p->name); free(buf); return 1; } r = H5Dread(f->dh, H5T_NATIVE_FLOAT, memspace, dataspace, H5P_DEFAULT, buf); if ( r < 0 ) { ERROR("Couldn't read data for panel %s\n", p->name); free(buf); return 1; } H5Dclose(f->dh); f->data_open = 0; H5Sclose(dataspace); H5Sclose(memspace); if ( p->mask != NULL ) { load_mask(f, ev, p->mask, p->name, image, p_w, sum_p_h, f_offset, f_count, m_offset, m_count); } free(f_offset); free(f_count); } image->data = buf; if ( satcorr ) debodge_saturation(f, image); fill_in_values(image->det, f, ev); unpack_panels(image, image->det); if ( image->beam != NULL ) { fill_in_beam_parameters(image->beam, f, ev, image); if ( (image->lambda > 1.0) || (image->lambda < 1e-20) ) { ERROR("WARNING: Nonsensical wavelength (%e m) value " "for file: %s, event: %s.\n", image->lambda, image->filename, get_event_string(image->event)); } } return 0; } static int looks_like_image(hid_t h) { hid_t sh; hsize_t size[2]; hsize_t max_size[2]; sh = H5Dget_space(h); if ( sh < 0 ) return 0; if ( H5Sget_simple_extent_ndims(sh) != 2 ) { return 0; } H5Sget_simple_extent_dims(sh, size, max_size); if ( ( size[0] > 64 ) && ( size[1] > 64 ) ) return 1; return 0; } int hdfile_is_scalar(struct hdfile *f, const char *name, int verbose) { hid_t dh; hid_t sh; hsize_t size[3]; hid_t type; int ndims; int i; int check; check = check_path_existence(f->fh, name); if ( check == 0 ) { ERROR("No such scalar field '%s'\n", name); return 0; } dh = H5Dopen2(f->fh, name, H5P_DEFAULT); type = H5Dget_type(dh); /* Get the dimensionality. We have to cope with scalars expressed as * arrays with all dimensions 1, as well as zero-d arrays. */ sh = H5Dget_space(dh); ndims = H5Sget_simple_extent_ndims(sh); if ( ndims > 3 ) { if ( verbose ) { ERROR("Too many dimensions (%i).\n", ndims); } H5Tclose(type); H5Dclose(dh); return 0; } /* Check that the size in all dimensions is 1 */ H5Sget_simple_extent_dims(sh, size, NULL); for ( i=0; ifh, name); if ( check == 0 ) { ERROR("No such float field '%s'\n", name); return 1; } dh = H5Dopen2(f->fh, name, H5P_DEFAULT); type = H5Dget_type(dh); class = H5Tget_class(type); if ( class != H5T_FLOAT ) { ERROR("Not a floating point value.\n"); H5Tclose(type); H5Dclose(dh); return 1; } r = H5Dread(dh, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, &buf); if ( r < 0 ) { ERROR("Couldn't read value.\n"); H5Tclose(type); H5Dclose(dh); return 1; } *val = buf; return 0; } static int get_ev_based_f_value(struct hdfile *f, const char *name, struct event *ev, double *val) { hid_t dh; hid_t type; hid_t class; hid_t sh; hid_t ms; hsize_t *f_offset = NULL; hsize_t *f_count = NULL; hsize_t m_offset[1]; hsize_t m_count[1]; hsize_t msdims[1]; hsize_t size[3]; herr_t r; herr_t check; double buf; int check_pe; int dim_flag; int ndims; int i; char *subst_name = NULL; if ( ev->path_length != 0 ) { subst_name = partial_event_substitution(ev, name); } else { subst_name = strdup(name); } check_pe = check_path_existence(f->fh, subst_name); if ( check_pe == 0 ) { ERROR("No such event-based float field '%s'\n", subst_name); return 1; } dh = H5Dopen2(f->fh, name, H5P_DEFAULT); type = H5Dget_type(dh); class = H5Tget_class(type); if ( class != H5T_FLOAT ) { ERROR("Not a floating point value.\n"); H5Tclose(type); H5Dclose(dh); return 1; } /* Get the dimensionality. We have to cope with scalars expressed as * arrays with all dimensions 1, as well as zero-d arrays. */ sh = H5Dget_space(dh); ndims = H5Sget_simple_extent_ndims(sh); if ( ndims > 3 ) { H5Tclose(type); H5Dclose(dh); return 1; } H5Sget_simple_extent_dims(sh, size, NULL); m_offset[0] = 0; m_count[0] = 1; msdims[0] = 1; ms = H5Screate_simple(1,msdims,NULL); /* Check that the size in all dimensions is 1 */ /* or that one of the dimensions has the same */ /* size as the hyperplane events */ dim_flag = 0; for ( i=0; i ev->dim_entries[0] ) { dim_flag = 1; } else { H5Tclose(type); H5Dclose(dh); return 1; } } } if ( dim_flag == 0 ) { r = H5Dread(dh, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, &buf); if ( r < 0 ) { ERROR("Couldn't read value.\n"); H5Tclose(type); H5Dclose(dh); return 1; } } else { f_offset = malloc(ndims*sizeof(hsize_t)); f_count = malloc(ndims*sizeof(hsize_t)); for ( i=0; idim_entries[0]; f_count[i] = 1; } else { f_offset[i] = 0; f_count[i] = 0; } } check = H5Sselect_hyperslab(sh, H5S_SELECT_SET, f_offset, NULL, f_count, NULL); if ( check <0 ) { ERROR("Error selecting dataspace for float value"); free(f_offset); free(f_count); return 1; } ms = H5Screate_simple(1,msdims,NULL); check = H5Sselect_hyperslab(ms, H5S_SELECT_SET, m_offset, NULL, m_count, NULL); if ( check < 0 ) { ERROR("Error selecting memory dataspace for float value"); free(f_offset); free(f_count); return 1; } r = H5Dread(dh, H5T_NATIVE_DOUBLE, ms, sh, H5P_DEFAULT, &buf); if ( r < 0 ) { ERROR("Couldn't read value.\n"); H5Tclose(type); H5Dclose(dh); return 1; } } free(subst_name); *val = buf; return 0; } static int get_i_value(struct hdfile *f, const char *name, int *val) { hid_t dh; hid_t type; hid_t class; herr_t r; int buf; int check; if ( !hdfile_is_scalar(f, name, 1) ) return 1; check = check_path_existence(f->fh, name); if ( check == 0 ) { ERROR("No such integer field '%s'\n", name); return 1; } dh = H5Dopen2(f->fh, name, H5P_DEFAULT); type = H5Dget_type(dh); class = H5Tget_class(type); if ( class != H5T_INTEGER ) { ERROR("Not an integer value.\n"); H5Tclose(type); H5Dclose(dh); return 1; } r = H5Dread(dh, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &buf); if ( r < 0 ) { ERROR("Couldn't read value.\n"); H5Tclose(type); H5Dclose(dh); return 1; } *val = buf; return 0; } double get_value(struct hdfile *f, const char *name) { double val = 0.0; get_f_value(f, name, &val); return val; } double get_ev_based_value(struct hdfile *f, const char *name, struct event *ev) { double val = -1; get_ev_based_f_value(f, name, ev, &val); return val; } struct copy_hdf5_field { char **fields; int n_fields; int max_fields; }; struct copy_hdf5_field *new_copy_hdf5_field_list() { struct copy_hdf5_field *n; n = calloc(1, sizeof(struct copy_hdf5_field)); if ( n == NULL ) return NULL; n->max_fields = 32; n->fields = malloc(n->max_fields*sizeof(char *)); if ( n->fields == NULL ) { free(n); return NULL; } return n; } void free_copy_hdf5_field_list(struct copy_hdf5_field *n) { int i; for ( i=0; in_fields; i++ ) { free(n->fields[i]); } free(n->fields); free(n); } void add_copy_hdf5_field(struct copy_hdf5_field *copyme, const char *name) { int i; /* Already on the list? Don't re-add if so. */ for ( i=0; in_fields; i++ ) { if ( strcmp(copyme->fields[i], name) == 0 ) return; } /* Need more space? */ if ( copyme->n_fields == copyme->max_fields ) { char **nfields; int nmax = copyme->max_fields + 32; nfields = realloc(copyme->fields, nmax*sizeof(char *)); if ( nfields == NULL ) { ERROR("Failed to allocate space for new HDF5 field.\n"); return; } copyme->max_fields = nmax; copyme->fields = nfields; } copyme->fields[copyme->n_fields] = strdup(name); if ( copyme->fields[copyme->n_fields] == NULL ) { ERROR("Failed to add field for copying '%s'\n", name); return; } copyme->n_fields++; } void copy_hdf5_fields(struct hdfile *f, const struct copy_hdf5_field *copyme, FILE *fh, struct event *ev) { int i; if ( copyme == NULL ) return; for ( i=0; in_fields; i++ ) { char *val; char *field; field = copyme->fields[i]; val = hdfile_get_string_value(f, field, ev); if ( field[0] == '/' ) { fprintf(fh, "hdf5%s = %s\n", field, val); } else { fprintf(fh, "hdf5/%s = %s\n", field, val); } free(val); } } char *hdfile_get_string_value(struct hdfile *f, const char *name, struct event *ev) { hid_t dh; hsize_t size; hid_t type; hid_t class; int buf_i; double buf_f; char *tmp; dh = H5Dopen2(f->fh, name, H5P_DEFAULT); if ( dh < 0 ) return NULL; type = H5Dget_type(dh); class = H5Tget_class(type); if ( class == H5T_STRING ) { herr_t r; char *tmp; hid_t sh; size = H5Tget_size(type); tmp = malloc(size+1); sh = H5Screate(H5S_SCALAR); r = H5Dread(dh, type, sh, sh, H5P_DEFAULT, tmp); if ( r < 0 ) goto fail; /* Two possibilities: * String is already zero-terminated * String is not terminated. * Make sure things are done properly... */ tmp[size] = '\0'; chomp(tmp); return tmp; } switch ( class ) { case H5T_FLOAT : if ( ev != NULL ) { if ( get_ev_based_f_value(f, name, ev, &buf_f) ) goto fail; } else { if ( get_f_value(f, name, &buf_f) ) goto fail; } tmp = malloc(256); snprintf(tmp, 255, "%f", buf_f); return tmp; case H5T_INTEGER : if ( get_i_value(f, name, &buf_i) ) goto fail; tmp = malloc(256); snprintf(tmp, 255, "%d", buf_i); return tmp; default : goto fail; } fail: H5Tclose(type); H5Dclose(dh); return NULL; } char **hdfile_read_group(struct hdfile *f, int *n, const char *parent, int **p_is_group, int **p_is_image) { hid_t gh; hsize_t num; char **res; int i; int *is_group; int *is_image; H5G_info_t ginfo; gh = H5Gopen2(f->fh, parent, H5P_DEFAULT); if ( gh < 0 ) { *n = 0; return NULL; } if ( H5Gget_info(gh, &ginfo) < 0 ) { /* Whoopsie */ *n = 0; return NULL; } num = ginfo.nlinks; *n = num; if ( num == 0 ) return NULL; res = malloc(num*sizeof(char *)); is_image = malloc(num*sizeof(int)); is_group = malloc(num*sizeof(int)); *p_is_image = is_image; *p_is_group = is_group; for ( i=0; i 1 ) { snprintf(res[i], 255, "%s/%s", parent, buf); } else { snprintf(res[i], 255, "%s%s", parent, buf); } /* ick */ is_image[i] = 0; is_group[i] = 0; dh = H5Oopen(gh, buf, H5P_DEFAULT); if ( dh < 0 ) continue; type = H5Iget_type(dh); if ( type == H5I_GROUP ) { is_group[i] = 1; } else if ( type == H5I_DATASET ) { is_image[i] = looks_like_image(dh); } H5Oclose(dh); } H5Gclose(gh); return res; } int hdfile_set_first_image(struct hdfile *f, const char *group) { char **names; int *is_group; int *is_image; int n, i, j; names = hdfile_read_group(f, &n, group, &is_group, &is_image); if ( n == 0 ) return 1; for ( i=0; itop_level ) { int fail_push; fail_push = push_path_entry_to_event(pp->curr_event, name); if ( fail_push ) { return -1; } substituted_path = event_path_placeholder_subst(name, pp->path); } else { substituted_path = strdup(pp->path); } if ( pp->top_level == 1 ) { pp->top_level = 0; } truncated_path = strdup(substituted_path); ph_loc = strstr(substituted_path,"%"); if ( ph_loc != NULL) { strncpy(&truncated_path[ph_loc-substituted_path],"\0",1); } herrt_iterate = 0; herrt_info = 0; check = check_path_existence(pp->hdfile->fh, truncated_path); if ( check == 0 ) { pop_path_entry_from_event(pp->curr_event); return 0; } else { herrt_info = H5Oget_info_by_name(pp->hdfile->fh, truncated_path, &object_info, H5P_DEFAULT); if ( herrt_info < 0 ) { free(truncated_path); free(substituted_path); return -1; } if ( pp->curr_event->path_length == pp->path_dim && object_info.type == H5O_TYPE_DATASET ) { int fail_append; fail_append = append_event_to_event_list(pp->ev_list, pp->curr_event); if ( fail_append ) { free(truncated_path); free(substituted_path); return -1; } pop_path_entry_from_event(pp->curr_event); return 0; } else { pp->path = substituted_path; if ( object_info.type == H5O_TYPE_GROUP ) { herrt_iterate = H5Literate_by_name(pp->hdfile->fh, truncated_path, H5_INDEX_NAME, H5_ITER_NATIVE, NULL, (H5L_iterate_t)parse_file_event_structure, (void *)pp, H5P_DEFAULT); } } } pop_path_entry_from_event(pp->curr_event); free(truncated_path); free(substituted_path); return herrt_iterate; } struct event_list *fill_event_list(struct hdfile *hdfile, struct detector *det) { int pi; int evi; herr_t check; struct event_list *master_el; struct event_list *master_el_with_dims; master_el = initialize_event_list(); if ( det->path_dim != 0 ) { for ( pi=0; pin_panels; pi++ ) { struct parse_params pparams; struct event *empty_event; struct event_list *panel_ev_list; int ei; empty_event = initialize_event(); panel_ev_list = initialize_event_list(); pparams.path = det->panels[pi].data; pparams.hdfile = hdfile; pparams.path_dim = det->path_dim; pparams.curr_event = empty_event; pparams.top_level = 1; pparams.ev_list = panel_ev_list; check = parse_file_event_structure(hdfile->fh, NULL, NULL, (void *)&pparams); if ( check < 0 ) { free_event(empty_event); free_event_list(panel_ev_list); return NULL; } for ( ei=0; einum_events; ei++ ) { int fail_add; fail_add = add_non_existing_event_to_event_list(master_el, panel_ev_list->events[ei]); if ( fail_add ) { free_event(empty_event); free_event_list(panel_ev_list); return NULL; } } free_event(empty_event); free_event_list(panel_ev_list); } } if ( det->dim_dim > 0 ) { if ( master_el->num_events == 0 ) { struct event *empty_ev; empty_ev = initialize_event(); append_event_to_event_list(master_el, empty_ev); free(empty_ev); } master_el_with_dims = initialize_event_list(); for (evi=0; evinum_events; evi++ ) { int global_path_dim = -1; int pai; int mlwd; for ( pai=0; pain_panels; pai++ ) { char *full_panel_path; hid_t dh; hid_t sh; int dims; hsize_t *size; hsize_t *max_size; int hsdi; int panel_path_dim = 0; full_panel_path = retrieve_full_path(master_el->events[evi], det->panels[pai].data); dh = H5Dopen2(hdfile->fh, full_panel_path, H5P_DEFAULT); sh = H5Dget_space(dh); dims = H5Sget_simple_extent_ndims(sh); size = malloc(dims*sizeof(hsize_t)); max_size = malloc(dims*sizeof(hsize_t)); dims = H5Sget_simple_extent_dims(sh, size, max_size); for ( hsdi=0; hsdipanels[pai].dim_structure->num_dims; hsdi++ ) { if (det->panels[pai].dim_structure->dims[hsdi] == HYSL_PLACEHOLDER ) { panel_path_dim = size[hsdi]; break; } } if ( global_path_dim == -1 ) { global_path_dim = panel_path_dim; } else if ( panel_path_dim != global_path_dim ) { ERROR("Data blocks paths for panels must have the same " "number of placeholders"); free(size); free(max_size); return NULL; } } for ( mlwd=0; mlwdevents[evi]); push_dim_entry_to_event(mlwd_ev, mlwd); append_event_to_event_list(master_el_with_dims, mlwd_ev); free(mlwd_ev); } } free_event_list(master_el); return master_el_with_dims; } return master_el; }