/* * peaks.c * * Peak search and other image analysis * * (c) 2006-2011 Thomas White * 2011 Andrew Martin * * Part of CrystFEL - crystallography with a FEL * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include "image.h" #include "utils.h" #include "peaks.h" #include "detector.h" #include "filters.h" #include "reflist-utils.h" #include "beam-parameters.h" /* How close a peak must be to an indexed position to be considered "close" * for the purposes of double hit detection and sanity checking. */ #define PEAK_CLOSE (30.0) /* How close a peak must be to an indexed position to be considered "close" * for the purposes of integration. */ #define PEAK_REALLY_CLOSE (10.0) /* Degree of polarisation of X-ray beam */ #define POL (1.0) static int cull_peaks_in_panel(struct image *image, struct panel *p) { int i, n; int nelim = 0; n = image_feature_count(image->features); for ( i=0; ifeatures, i); if ( f == NULL ) continue; if ( f->fs < p->min_fs ) continue; if ( f->fs > p->max_fs ) continue; if ( f->ss < p->min_ss ) continue; if ( f->ss > p->max_ss ) continue; /* How many peaks are in the same column? */ ncol = 0; for ( j=0; jfeatures, j); if ( g == NULL ) continue; if ( p->badrow == 'f' ) { if ( fabs(f->ss - g->ss) < 2.0 ) ncol++; } else if ( p->badrow == 's' ) { if ( fabs(f->fs - g->fs) < 2.0 ) ncol++; } /* else do nothing */ } /* More than three? */ if ( ncol <= 3 ) continue; /* Yes? Delete them all... */ nelim = 0; for ( j=0; jfeatures, j); if ( g == NULL ) continue; if ( p->badrow == 'f' ) { if ( fabs(f->ss - g->ss) < 2.0 ) { image_remove_feature(image->features, j); nelim++; } } else if ( p->badrow == 's' ) { if ( fabs(f->fs - g->ss) < 2.0 ) { image_remove_feature(image->features, j); nelim++; } } else { ERROR("Invalid badrow direction.\n"); abort(); } } } return nelim; } /* Post-processing of the peak list to remove noise */ static int cull_peaks(struct image *image) { int nelim = 0; struct panel *p; int i; for ( i=0; idet->n_panels; i++ ) { p = &image->det->panels[i]; if ( p->badrow != '-' ) { nelim += cull_peaks_in_panel(image, p); } } return nelim; } /* Returns non-zero if peak has been vetoed. * i.e. don't use result if return value is not zero. */ int integrate_peak(struct image *image, int cfs, int css, double *pfs, double *pss, double *intensity, double *pbg, double *pmax, double *sigma, int do_polar, int centroid, int bgsub) { signed int fs, ss; double lim, out_lim, mid_lim; double lim_sq, out_lim_sq, mid_lim_sq; double total = 0.0; double fsct = 0.0; double ssct = 0.0; double noise = 0.0; int noise_counts = 0; double max = 0.0; struct panel *p = NULL; int pixel_counts = 0; double noise_mean = 0.0; double noise_meansq = 0.0; struct beam_params *beam; double aduph; beam = image->beam; if ( beam != NULL ) { aduph = image->beam->adu_per_photon; } else { aduph = 1.0; } p = find_panel(image->det, cfs, css); if ( p == NULL ) return 1; if ( p->no_index ) return 1; lim = p->integr_radius; mid_lim = 3.0 + lim; out_lim = 6.0 + lim; lim_sq = pow(lim, 2.0); mid_lim_sq = pow(mid_lim, 2.0); out_lim_sq = pow(out_lim, 2.0); for ( fs=-out_lim; fs<+out_lim; fs++ ) { for ( ss=-out_lim; ss<+out_lim; ss++ ) { double val; double tt = 0.0; double phi, pa, pb, pol; uint16_t flags; struct panel *p2; int idx; /* Outer mask radius */ if ( fs*fs + ss*ss > out_lim_sq ) continue; if ( ((fs+cfs)>=image->width) || ((fs+cfs)<0) ) continue; if ( ((ss+css)>=image->height) || ((ss+css)<0) ) continue; /* Strayed off one panel? */ p2 = find_panel(image->det, fs+cfs, ss+css); if ( p2 != p ) return 1; idx = fs+cfs+image->width*(ss+css); /* Veto this peak if we tried to integrate in a bad region */ if ( image->flags != NULL ) { flags = image->flags[idx]; /* It must have all the "good" bits to be valid */ if ( !((flags & image->det->mask_good) == image->det->mask_good) ) return 1; /* If it has any of the "bad" bits, reject */ if ( flags & image->det->mask_bad ) return 1; } val = image->data[idx]; if ( do_polar ) { tt = get_tt(image, fs+cfs, ss+css); phi = atan2(ss+css, fs+cfs); pa = pow(sin(phi)*sin(tt), 2.0); pb = pow(cos(tt), 2.0); pol = 1.0 - 2.0*POL*(1-pa) + POL*(1.0+pb); val /= pol; } if ( val > max ) max = val; /* If outside inner mask, estimate noise from this region */ if ( fs*fs + ss*ss > mid_lim_sq ) { /* Noise * noise and noise_meansq are both in photons (^2) */ noise += val / image->beam->adu_per_photon; noise_counts++; noise_meansq += pow(val, 2.0); } else if ( fs*fs + ss*ss < lim_sq ) { /* Peak */ pixel_counts++; total += val; fsct += val*(cfs+fs); ssct += val*(css+ss); } } } noise_mean = noise / noise_counts; /* photons */ /* The centroid is excitingly undefined if there is no intensity */ if ( centroid && (total != 0) ) { *pfs = ((double)fsct / total) + 0.5; *pss = ((double)ssct / total) + 0.5; } else { *pfs = (double)cfs + 0.5; *pss = (double)css + 0.5; } if ( bgsub ) { *intensity = total - aduph * pixel_counts*noise_mean; /* ADU */ } else { *intensity = total; /* ADU */ } if ( in_bad_region(image->det, *pfs, *pss) ) return 1; if ( sigma != NULL ) { /* First term is standard deviation of background per pixel * sqrt(pixel_counts) - increase of error for integrated value * sqrt(2) - increase of error for background subtraction */ *sigma = sqrt(noise_meansq/noise_counts-(noise_mean*noise_mean)) * sqrt(2.0*pixel_counts) * aduph; } if ( pbg != NULL ) { *pbg = aduph * (noise / noise_counts); } if ( pmax != NULL ) { *pmax = max; } return 0; } void estimate_resolution(RefList *list, UnitCell *cell, double *min, double *max) { Reflection *refl; RefListIterator *iter; for ( refl = first_refl(list, &iter); refl != NULL; refl = next_refl(refl, iter) ) { double one_over_d; signed int h, k, l; get_indices(refl, &h, &k, &l); one_over_d = 2.0 * resolution(cell, h, k, l); if ( one_over_d > *max ) *max = one_over_d; if ( one_over_d < *min ) *min = one_over_d; /* FIXME: Implement this */ } *min = 0.0; *max = 0.0; } static void search_peaks_in_panel(struct image *image, float threshold, float min_gradient, float min_snr, struct panel *p) { int fs, ss, stride; float *data; double d; int idx; double f_fs = 0.0; double f_ss = 0.0; double intensity = 0.0; double sigma = 0.0; double pbg = 0.0; double pmax = 0.0; int nrej_dis = 0; int nrej_pro = 0; int nrej_fra = 0; int nrej_bad = 0; int nrej_snr = 0; int nacc = 0; int ncull; const int pws = p->peak_sep/2; data = image->data; stride = image->width; for ( fs = p->min_fs+1; fs <= p->max_fs-1; fs++ ) { for ( ss = p->min_ss+1; ss <= p->max_ss-1; ss++ ) { double dx1, dx2, dy1, dy2; double dxs, dys; double grad; int mask_fs, mask_ss; int s_fs, s_ss; double max; unsigned int did_something; int r; /* Overall threshold */ if ( data[fs+stride*ss] < threshold ) continue; /* Get gradients */ dx1 = data[fs+stride*ss] - data[(fs+1)+stride*ss]; dx2 = data[(fs-1)+stride*ss] - data[fs+stride*ss]; dy1 = data[fs+stride*ss] - data[(fs+1)+stride*(ss+1)]; dy2 = data[fs+stride*(ss-1)] - data[fs+stride*ss]; /* Average gradient measurements from both sides */ dxs = ((dx1*dx1) + (dx2*dx2)) / 2; dys = ((dy1*dy1) + (dy2*dy2)) / 2; /* Calculate overall gradient */ grad = dxs + dys; if ( grad < min_gradient ) continue; mask_fs = fs; mask_ss = ss; do { max = data[mask_fs+stride*mask_ss]; did_something = 0; for ( s_ss=biggest(mask_ss-pws/2, p->min_ss); s_ss<=smallest(mask_ss+pws/2, p->max_ss); s_ss++ ) { for ( s_fs=biggest(mask_fs-pws/2, p->min_fs); s_fs<=smallest(mask_fs+pws/2, p->max_fs); s_fs++ ) { if ( data[s_fs+stride*s_ss] > max ) { max = data[s_fs+stride*s_ss]; mask_fs = s_fs; mask_ss = s_ss; did_something = 1; } } } /* Abort if drifted too far from the foot point */ if ( distance(mask_fs, mask_ss, fs, ss) > p->peak_sep/2.0 ) { break; } } while ( did_something ); /* Too far from foot point? */ if ( distance(mask_fs, mask_ss, fs, ss) > p->peak_sep/2.0 ) { nrej_dis++; continue; } /* Should be enforced by bounds used above. Muppet check. */ assert(mask_fs <= p->max_fs); assert(mask_ss <= p->max_ss); assert(mask_fs >= p->min_fs); assert(mask_ss >= p->min_ss); /* Centroid peak and get better coordinates. * Don't bother doing polarisation/SA correction, because the * intensity of this peak is only an estimate at this stage. */ r = integrate_peak(image, mask_fs, mask_ss, &f_fs, &f_ss, &intensity, &pbg, &pmax, &sigma, 0, 1, 1); if ( r ) { /* Bad region - don't detect peak */ nrej_bad++; continue; } /* It is possible for the centroid to fall outside the image */ if ( (f_fs < p->min_fs) || (f_fs > p->max_fs) || (f_ss < p->min_ss) || (f_ss > p->max_ss) ) { nrej_fra++; continue; } if ( fabs(intensity)/sigma < min_snr ) { nrej_snr++; continue; } /* Check for a nearby feature */ image_feature_closest(image->features, f_fs, f_ss, &d, &idx); if ( d < p->peak_sep/2.0 ) { nrej_pro++; continue; } /* Add using "better" coordinates */ image_add_feature(image->features, f_fs, f_ss, image, intensity, NULL); nacc++; } } if ( image->det != NULL ) { ncull = cull_peaks(image); nacc -= ncull; } else { STATUS("Not culling peaks because I don't have a " "detector geometry file.\n"); ncull = 0; } // STATUS("%i accepted, %i box, %i proximity, %i outside panel, " // "%i in bad regions, %i with SNR < %g, %i badrow culled.\n", // nacc, nrej_dis, nrej_pro, nrej_fra, nrej_bad, // nrej_snr, min_snr, ncull); } void search_peaks(struct image *image, float threshold, float min_gradient, float min_snr) { int i; if ( image->features != NULL ) { image_feature_list_free(image->features); } image->features = image_feature_list_new(); for ( i=0; idet->n_panels; i++ ) { struct panel *p = &image->det->panels[i]; if ( p->no_index ) continue; search_peaks_in_panel(image, threshold, min_gradient, min_snr, p); } } int peak_sanity_check(struct image *image) { int i; int n_feat = 0; int n_sane = 0; double ax, ay, az; double bx, by, bz; double cx, cy, cz; double min_dist = 0.25; /* Round towards nearest */ fesetround(1); /* Cell basis vectors for this image */ cell_get_cartesian(image->indexed_cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); /* Loop over peaks, checking proximity to nearest reflection */ for ( i=0; ifeatures); i++ ) { struct imagefeature *f; struct rvec q; double h,k,l,hd,kd,ld; /* Assume all image "features" are genuine peaks */ f = image_get_feature(image->features, i); if ( f == NULL ) continue; n_feat++; /* Reciprocal space position of found peak */ q = get_q(image, f->fs, f->ss, NULL, 1.0/image->lambda); /* Decimal and fractional Miller indices of nearest * reciprocal lattice point */ hd = q.u * ax + q.v * ay + q.w * az; kd = q.u * bx + q.v * by + q.w * bz; ld = q.u * cx + q.v * cy + q.w * cz; h = lrint(hd); k = lrint(kd); l = lrint(ld); /* Check distance */ if ( (fabs(h - hd) < min_dist) && (fabs(k - kd) < min_dist) && (fabs(l - ld) < min_dist) ) { n_sane++; continue; } } /* return 0 means fail test, return 1 means pass test */ // printf("%d out of %d peaks are \"sane\"\n",n_sane,n_feat); if ( (float)n_sane / (float)n_feat < 0.5 ) return 0; return 1; } /* Integrate the list of predicted reflections in "image" */ void integrate_reflections(struct image *image, int polar, int use_closer, int bgsub, double min_snr) { Reflection *refl; RefListIterator *iter; for ( refl = first_refl(image->reflections, &iter); refl != NULL; refl = next_refl(refl, iter) ) { double fs, ss, intensity; double d; int idx; double bg, max; double sigma; double pfs, pss; int r; get_detector_pos(refl, &pfs, &pss); /* Is there a really close feature which was detected? */ if ( use_closer ) { struct imagefeature *f; if ( image->features != NULL ) { f = image_feature_closest(image->features, pfs, pss, &d, &idx); } else { f = NULL; } if ( (f != NULL) && (d < PEAK_REALLY_CLOSE) ) { pfs = f->fs; pss = f->ss; } } r = integrate_peak(image, pfs, pss, &fs, &ss, &intensity, &bg, &max, &sigma, polar, 0, bgsub); /* I/sigma(I) cutoff */ if ( intensity/sigma < min_snr ) r = 0; /* Record intensity and set redundancy to 1 on success */ if ( r == 0 ) { set_int(refl, intensity); set_esd_intensity(refl, sigma); set_redundancy(refl, 1); } else { set_redundancy(refl, 0); } } }