/* * diffraction.c * * Calculate diffraction patterns by Fourier methods * * (c) 2007-2009 Thomas White * * pattern_sim - Simulate diffraction patterns from small crystals * */ #include #include #include #include #include #include "image.h" #include "utils.h" #include "cell.h" #include "ewald.h" #include "diffraction.h" #include "sfac.h" /* Density of water in kg/m^3 */ #define WATER_DENSITY (1.0e6) /* Molar mass of water, in kg/mol */ #define WATER_MOLAR_MASS (18.01528e3) /* Avogadro's number */ #define AVOGADRO (6.022e23) static double lattice_factor(struct threevec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz) { struct threevec Udotq; double f1, f2, f3; int na = 4; int nb = 4; int nc = 30; Udotq.u = ax*q.u + ay*q.v + az*q.w; Udotq.v = bx*q.u + by*q.v + bz*q.w; Udotq.w = cx*q.u + cy*q.v + cz*q.w; /* At exact Bragg condition, f1 = na */ if ( na > 1 ) { f1 = sin(M_PI*(double)na*Udotq.u) / sin(M_PI*Udotq.u); } else { f1 = 1.0; } /* At exact Bragg condition, f2 = nb */ if ( nb > 1 ) { f2 = sin(M_PI*(double)nb*Udotq.v) / sin(M_PI*Udotq.v); } else { f2 = 1.0; } /* At exact Bragg condition, f3 = nc */ if ( nc > 1 ) { f3 = sin(M_PI*(double)nc*Udotq.w) / sin(M_PI*Udotq.w); } else { f3 = 1.0; } /* At exact Bragg condition, this will multiply the molecular * part of the structure factor by the number of unit cells, * as desired (more scattering from bigger crystal!) */ return f1 * f2 * f3; } /* Look up the structure factor for the nearest Bragg condition */ static double complex molecule_factor(struct molecule *mol, struct threevec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz) { double hd, kd, ld; signed int h, k, l; double complex r; hd = q.u * ax + q.v * ay + q.w * az; kd = q.u * bx + q.v * by + q.w * bz; ld = q.u * cx + q.v * cy + q.w * cz; h = (signed int)rint(hd); k = (signed int)rint(kd); l = (signed int)rint(ld); r = get_integral(mol->reflections, h, k, l); return r; } double water_intensity(struct threevec q, double en) { complex double fH, fO; double s, modq; double intensity; /* Interatomic distances in water molecule */ const double rOH = 0.09584e-9; const double rHH = 0.1515e-9; /* Dimensions of water column */ const double water_r = 0.5e-6; const double beam_r = 1.5e-6; /* Volume of water column */ const double water_v = M_PI*pow(water_r, 2.0) * 2.0 * beam_r; /* Number of water molecules */ const double n_water = water_v * WATER_DENSITY * (AVOGADRO / WATER_MOLAR_MASS); /* s = sin(theta)/lambda = 1/2d = |q|/2 */ modq = modulus(q.u, q.v, q.w); s = modq / 2.0; fH = get_sfac("H", s, en); fO = get_sfac("O", s, en); /* Four O-H cross terms */ intensity = 4.0*fH*fO * sin(modq*rOH)/(modq*rOH); /* Three H-H cross terms */ intensity += 3.0*fH*fH * sin(modq*rHH)/(modq*rHH); /* Three diagonal terms */ intensity += 2.0*fH*fH + fO*fO; return intensity * n_water; } void get_diffraction(struct image *image) { int x, y; double ax, ay, az; double bx, by, bz; double cx, cy, cz; /* Generate the array of reciprocal space vectors in image->qvecs */ get_ewald(image); if ( image->molecule == NULL ) { image->molecule = load_molecule(); if ( image->molecule == NULL ) return; } cell_get_cartesian(image->molecule->cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); image->sfacs = malloc(image->width * image->height * sizeof(double complex)); if ( image->molecule->reflections == NULL ) { get_reflections_cached(image->molecule, image->xray_energy); } progress_bar(0, image->width-1); for ( x=0; xwidth; x++ ) { for ( y=0; yheight; y++ ) { double f_lattice; double complex f_molecule; struct threevec q; double complex val; q = image->qvecs[x + image->width*y]; f_lattice = lattice_factor(q, ax,ay,az,bx,by,bz,cx,cy,cz); f_molecule = molecule_factor(image->molecule, q, ax,ay,az,bx,by,bz,cx,cy,cz); val = f_molecule * f_lattice; image->sfacs[x + image->width*y] = val; } progress_bar(x, image->width-1); } }