/* * diffraction.c * * Calculate diffraction patterns by Fourier methods * * (c) 2006-2010 Thomas White * * Part of CrystFEL - crystallography with a FEL * */ #include #include #include #include #include #include #include "image.h" #include "utils.h" #include "cell.h" #include "diffraction.h" #include "sfac.h" #include "beam-parameters.h" #define SAMPLING (4) #define BWSAMPLING (10) static double lattice_factor(struct rvec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, int na, int nb, int nc) { struct rvec Udotq; double f1, f2, f3; Udotq.u = ax*q.u + ay*q.v + az*q.w; Udotq.v = bx*q.u + by*q.v + bz*q.w; Udotq.w = cx*q.u + cy*q.v + cz*q.w; /* At exact Bragg condition, f1 = na */ if ( na > 1 ) { f1 = sin(M_PI*(double)na*Udotq.u) / sin(M_PI*Udotq.u); } else { f1 = 1.0; } /* At exact Bragg condition, f2 = nb */ if ( nb > 1 ) { f2 = sin(M_PI*(double)nb*Udotq.v) / sin(M_PI*Udotq.v); } else { f2 = 1.0; } /* At exact Bragg condition, f3 = nc */ if ( nc > 1 ) { f3 = sin(M_PI*(double)nc*Udotq.w) / sin(M_PI*Udotq.w); } else { f3 = 1.0; } /* At exact Bragg condition, this will multiply the molecular * part of the structure factor by the number of unit cells, * as desired (more scattering from bigger crystal!) */ return f1 * f2 * f3; } static double interpolate_linear(const double *ref, float hd, signed int k, signed int l) { signed int h; double val1, val2; float f; h = (signed int)hd; if ( hd < 0.0 ) h -= 1; f = hd - (float)h; assert(f >= 0.0); val1 = lookup_intensity(ref, h, k, l); val2 = lookup_intensity(ref, h+1, k, l); val1 = val1; val2 = val2; return (1.0-f)*val1 + f*val2; } static double interpolate_bilinear(const double *ref, float hd, float kd, signed int l) { signed int k; double val1, val2; float f; k = (signed int)kd; if ( kd < 0.0 ) k -= 1; f = kd - (float)k; assert(f >= 0.0); val1 = interpolate_linear(ref, hd, k, l); val2 = interpolate_linear(ref, hd, k+1, l); return (1.0-f)*val1 + f*val2; } static double interpolate_intensity(const double *ref, float hd, float kd, float ld) { signed int l; double val1, val2; float f; l = (signed int)ld; if ( ld < 0.0 ) l -= 1; f = ld - (float)l; assert(f >= 0.0); val1 = interpolate_bilinear(ref, hd, kd, l); val2 = interpolate_bilinear(ref, hd, kd, l+1); return (1.0-f)*val1 + f*val2; } static double complex interpolate_phased_linear(const double *ref, const double *phases, float hd, signed int k, signed int l) { signed int h; double val1, val2; float f; double ph1, ph2; double re1, re2, im1, im2; double re, im; h = (signed int)hd; if ( hd < 0.0 ) h -= 1; f = hd - (float)h; assert(f >= 0.0); val1 = lookup_intensity(ref, h, k, l); val2 = lookup_intensity(ref, h+1, k, l); ph1 = lookup_phase(phases, h, k, l); ph2 = lookup_phase(phases, h+1, k, l); val1 = val1; val2 = val2; /* Calculate real and imaginary parts */ re1 = val1 * cos(ph1); im1 = val1 * sin(ph1); re2 = val2 * cos(ph2); im2 = val2 * sin(ph2); re = (1.0-f)*re1 + f*re2; im = (1.0-f)*im1 + f*im2; return re + im*I; } static double complex interpolate_phased_bilinear(const double *ref, const double *phases, float hd, float kd, signed int l) { signed int k; double complex val1, val2; float f; k = (signed int)kd; if ( kd < 0.0 ) k -= 1; f = kd - (float)k; assert(f >= 0.0); val1 = interpolate_phased_linear(ref, phases, hd, k, l); val2 = interpolate_phased_linear(ref, phases, hd, k+1, l); return (1.0-f)*val1 + f*val2; } static double interpolate_phased_intensity(const double *ref, const double *phases, float hd, float kd, float ld) { signed int l; double complex val1, val2; float f; l = (signed int)ld; if ( ld < 0.0 ) l -= 1; f = ld - (float)l; assert(f >= 0.0); val1 = interpolate_phased_bilinear(ref, phases, hd, kd, l); val2 = interpolate_phased_bilinear(ref, phases, hd, kd, l+1); return cabs((1.0-f)*val1 + f*val2); } /* Look up the structure factor for the nearest Bragg condition */ static double molecule_factor(const double *intensities,const double *phases, struct rvec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, GradientMethod m) { float hd, kd, ld; signed int h, k, l; double r; hd = q.u * ax + q.v * ay + q.w * az; kd = q.u * bx + q.v * by + q.w * bz; ld = q.u * cx + q.v * cy + q.w * cz; switch ( m ) { case GRADIENT_MOSAIC : h = (signed int)rint(hd); k = (signed int)rint(kd); l = (signed int)rint(ld); r = lookup_intensity(intensities, h, k, l); break; case GRADIENT_INTERPOLATE : r = interpolate_intensity(intensities, hd, kd, ld); break; case GRADIENT_PHASED : r = interpolate_phased_intensity(intensities, phases, hd, kd, ld); break; default: ERROR("This gradient method not implemented yet.\n"); exit(1); } return r; } double water_diffraction(struct rvec q, double en, double beam_r, double water_r) { double complex fH, fO; double s, modq; double width; double complex ifac; /* Interatomic distances in water molecule */ const double rOH = 0.09584e-9; const double rHH = 0.1515e-9; /* Volume of water column, approximated as: * (2water_r) * (2beam_r) * smallest(2beam_r, 2water_r) * neglecting the curvature of the faces of the volume */ if ( beam_r > water_r ) { width = 2.0 * water_r; } else { width = 2.0 * beam_r; } const double water_v = 2.0*beam_r * 2.0*water_r * width; /* Number of water molecules */ const double n_water = water_v * WATER_DENSITY * (AVOGADRO / WATER_MOLAR_MASS); /* s = sin(theta)/lambda = 1/2d = |q|/2 */ modq = modulus(q.u, q.v, q.w); s = modq / 2.0; fH = get_sfac("H", s, en); fO = get_sfac("O", s, en); /* Four O-H cross terms */ ifac = 4.0*fH*fO * sin(2.0*M_PI*modq*rOH)/(2.0*M_PI*modq*rOH); /* Three H-H cross terms */ ifac += 3.0*fH*fH * sin(2.0*M_PI*modq*rHH)/(2.0*M_PI*modq*rHH); /* Three diagonal terms */ ifac += 2.0*fH*fH + fO*fO; return cabs(ifac) * n_water; } void get_diffraction(struct image *image, int na, int nb, int nc, const double *intensities, const double *phases, UnitCell *cell, int do_water, GradientMethod m) { unsigned int xs, ys; double ax, ay, az; double bx, by, bz; double cx, cy, cz; float klow, khigh, bwstep; cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); /* Allocate (and zero) the "diffraction array" */ image->data = calloc(image->width * image->height, sizeof(float)); /* Needed later for Lorentz calculation */ image->twotheta = malloc(image->width * image->height * sizeof(double)); klow = 1.0/(image->lambda + image->beam->bandwidth/2.0); khigh = 1.0/(image->lambda - image->beam->bandwidth/2.0); bwstep = (khigh-klow) / BWSAMPLING; for ( xs=0; xswidth*SAMPLING; xs++ ) { for ( ys=0; ysheight*SAMPLING; ys++ ) { struct rvec q; float twotheta; double sw = 1.0/(SAMPLING*SAMPLING); /* Sample weight */ const unsigned int x = xs / SAMPLING; const unsigned int y = ys / SAMPLING; /* Integer part only */ int kstep; for ( kstep=0; ksteptwotheta[x + image->width*y] = twotheta; f_lattice = lattice_factor(q, ax, ay, az, bx, by, bz, cx, cy, cz, na, nb, nc); if ( intensities == NULL ) { I_molecule = 1.0e10; } else { I_molecule = molecule_factor(intensities, phases, q, ax,ay,az, bx,by,bz,cx,cy,cz, m); } I_lattice = pow(f_lattice, 2.0); intensity = sw * kw * I_lattice * I_molecule; image->data[x + image->width*y] += intensity; } if ( do_water ) { /* Bandwidth not simulated for water */ struct rvec q; q = get_q(image, x, y, 1, NULL, 1.0/image->lambda); /* Add intensity contribution from water */ image->data[x + image->width*y] += water_diffraction(q, ph_lambda_to_en(image->lambda), image->beam->beam_radius, image->beam->water_radius) * sw; } } progress_bar(xs, SAMPLING*image->width-1, "Calculating diffraction"); } }