/* * diffraction.c * * Calculate diffraction patterns by Fourier methods * * (c) 2006-2010 Thomas White * * Part of CrystFEL - crystallography with a FEL * */ #include #include #include #include #include #include "image.h" #include "utils.h" #include "cell.h" #include "diffraction.h" #include "sfac.h" #define SAMPLING (1) static double lattice_factor(struct rvec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz, int na, int nb, int nc) { struct rvec Udotq; double f1, f2, f3; Udotq.u = ax*q.u + ay*q.v + az*q.w; Udotq.v = bx*q.u + by*q.v + bz*q.w; Udotq.w = cx*q.u + cy*q.v + cz*q.w; /* At exact Bragg condition, f1 = na */ if ( na > 1 ) { f1 = sin(M_PI*(double)na*Udotq.u) / sin(M_PI*Udotq.u); } else { f1 = 1.0; } /* At exact Bragg condition, f2 = nb */ if ( nb > 1 ) { f2 = sin(M_PI*(double)nb*Udotq.v) / sin(M_PI*Udotq.v); } else { f2 = 1.0; } /* At exact Bragg condition, f3 = nc */ if ( nc > 1 ) { f3 = sin(M_PI*(double)nc*Udotq.w) / sin(M_PI*Udotq.w); } else { f3 = 1.0; } /* At exact Bragg condition, this will multiply the molecular * part of the structure factor by the number of unit cells, * as desired (more scattering from bigger crystal!) */ return f1 * f2 * f3; } /* Look up the structure factor for the nearest Bragg condition */ static double complex molecule_factor(struct molecule *mol, struct rvec q, double ax, double ay, double az, double bx, double by, double bz, double cx, double cy, double cz) { double hd, kd, ld; signed int h, k, l; double complex r; hd = q.u * ax + q.v * ay + q.w * az; kd = q.u * bx + q.v * by + q.w * bz; ld = q.u * cx + q.v * cy + q.w * cz; h = (signed int)rint(hd); k = (signed int)rint(kd); l = (signed int)rint(ld); r = lookup_sfac(mol->reflections, h, k, l); return r; } double water_intensity(struct rvec q, double en, double beam_r, double water_r) { double complex fH, fO; double s, modq; double width; double complex ifac; /* Interatomic distances in water molecule */ const double rOH = 0.09584e-9; const double rHH = 0.1515e-9; /* Volume of water column, approximated as: * (2water_r) * (2beam_r) * smallest(2beam_r, 2water_r) * neglecting the curvature of the faces of the volume */ if ( beam_r > water_r ) { width = 2.0 * water_r; } else { width = 2.0 * beam_r; } const double water_v = 2.0*beam_r * 2.0*water_r * width; /* Number of water molecules */ const double n_water = water_v * WATER_DENSITY * (AVOGADRO / WATER_MOLAR_MASS); /* s = sin(theta)/lambda = 1/2d = |q|/2 */ modq = modulus(q.u, q.v, q.w); s = modq / 2.0; fH = get_sfac("H", s, en); fO = get_sfac("O", s, en); /* Four O-H cross terms */ ifac = 4.0*fH*fO * sin(2.0*M_PI*modq*rOH)/(2.0*M_PI*modq*rOH); /* Three H-H cross terms */ ifac += 3.0*fH*fH * sin(2.0*M_PI*modq*rHH)/(2.0*M_PI*modq*rHH); /* Three diagonal terms */ ifac += 2.0*fH*fH + fO*fO; return cabs(ifac) * n_water; } struct rvec get_q(struct image *image, unsigned int xs, unsigned int ys, unsigned int sampling, float *ttp) { struct rvec q; float twothetax, twothetay, twotheta, r; float rx = 0.0; float ry = 0.0; int p; const float k = 1.0/image->lambda; const unsigned int x = xs / sampling; const unsigned int y = ys / sampling; /* Integer part only */ for ( p=0; pdet.n_panels; p++ ) { if ( (x >= image->det.panels[p].min_x) && (x <= image->det.panels[p].max_x) && (y >= image->det.panels[p].min_y) && (y <= image->det.panels[p].max_y) ) { rx = ((float)xs - (sampling*image->det.panels[p].cx)) / (sampling * image->resolution); ry = ((float)ys - (sampling*image->det.panels[p].cy)) / (sampling * image->resolution); break; } } /* Calculate q-vector for this sub-pixel */ r = sqrt(pow(rx, 2.0) + pow(ry, 2.0)); twothetax = atan2(rx, image->camera_len); twothetay = atan2(ry, image->camera_len); twotheta = atan2(r, image->camera_len); if ( ttp != NULL ) *ttp = twotheta; q.u = k * sin(twothetax); q.v = k * sin(twothetay); q.w = k - k * cos(twotheta); return quat_rot(q, image->orientation); } void get_diffraction(struct image *image, int na, int nb, int nc, int no_sfac) { unsigned int xs, ys; double ax, ay, az; double bx, by, bz; double cx, cy, cz; double a, b, c, d; if ( image->molecule == NULL ) return; cell_get_cartesian(image->molecule->cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz); cell_get_parameters(image->molecule->cell, &a, &b, &c, &d, &d, &d); STATUS("Particle size = %i x %i x %i (=%5.2f x %5.2f x %5.2f nm)\n", na, nb, nc, na*a/1.0e-9, nb*b/1.0e-9, nc*c/1.0e-9); /* Allocate (and zero) the "diffraction array" */ image->sfacs = calloc(image->width * image->height, sizeof(double complex)); if ( !no_sfac ) { if ( image->molecule->reflections == NULL ) { get_reflections_cached(image->molecule, ph_lambda_to_en(image->lambda)); } } /* Needed later for Lorentz calculation */ image->twotheta = malloc(image->width * image->height * sizeof(double)); for ( xs=0; xswidth*SAMPLING; xs++ ) { for ( ys=0; ysheight*SAMPLING; ys++ ) { double f_lattice; double complex f_molecule; struct rvec q; float twotheta; double sw = 1.0/(SAMPLING*SAMPLING); /* Sample weight */ const unsigned int x = xs / SAMPLING; const unsigned int y = ys / SAMPLING; /* Integer part only */ q = get_q(image, xs, ys, SAMPLING, &twotheta); image->twotheta[x + image->width*y] = twotheta; f_lattice = lattice_factor(q, ax,ay,az,bx,by,bz,cx,cy,cz, na, nb, nc); if ( no_sfac ) { f_molecule = 10000.0; } else { f_molecule = molecule_factor(image->molecule, q, ax,ay,az,bx,by,bz,cx,cy,cz); } image->sfacs[x + image->width*y] += sw * f_molecule * f_lattice; } progress_bar(xs, SAMPLING*image->width-1, "Calculating lattice factors"); } }