/* * ewald.c * * Calculate q-vector arrays * * (c) 2006-2010 Thomas White * * Part of CrystFEL - crystallography with a FEL * */ #include #include #include #include "image.h" #include "utils.h" #include "cell.h" #include "ewald.h" #include "detector.h" #define SAMPLING (4) #define BWSAMPLING (10) #define BANDWIDTH (0.05) static struct rvec quat_rot(struct rvec q, struct quaternion z) { struct rvec res; double t01, t02, t03, t11, t12, t13, t22, t23, t33; t01 = z.w*z.x; t02 = z.w*z.y; t03 = z.w*z.z; t11 = z.x*z.x; t12 = z.x*z.y; t13 = z.x*z.z; t22 = z.y*z.y; t23 = z.y*z.z; t33 = z.z*z.z; res.u = (1.0 - 2.0 * (t22 + t33)) * q.u + (2.0 * (t12 + t03)) * q.v + (2.0 * (t13 - t02)) * q.w; res.v = (2.0 * (t12 - t03)) * q.u + (1.0 - 2.0 * (t11 + t33)) * q.v + (2.0 * (t01 + t23)) * q.w; res.w = (2.0 * (t02 + t13)) * q.u + (2.0 * (t23 - t01)) * q.v + (1.0 - 2.0 * (t11 + t22)) * q.w; return res; } static void add_sphere(struct image *image, double k, int soffs) { int x, y; for ( x=0; xwidth; x++ ) { for ( y=0; yheight; y++ ) { double rx = 0.0; double ry = 0.0; double r; double twothetax, twothetay, twotheta; double qx, qy, qz; struct rvec q1, q2, q3, q4; int p, sx, sy, i; /* Calculate q vectors for Ewald sphere */ for ( p=0; pdet.n_panels; p++ ) { if ( (x >= image->det.panels[p].min_x) && (x <= image->det.panels[p].max_x) && (y >= image->det.panels[p].min_y) && (y <= image->det.panels[p].max_y) ) { rx = ((double)x - image->det.panels[p].cx) / image->resolution; ry = ((double)y - image->det.panels[p].cy) / image->resolution; break; } } /* Bottom left corner */ r = sqrt(pow(rx, 2.0) + pow(ry, 2.0)); twothetax = atan2(rx, image->camera_len); twothetay = atan2(ry, image->camera_len); twotheta = atan2(r, image->camera_len); qx = k * sin(twothetax); qy = k * sin(twothetay); qz = k - k * cos(twotheta); q1.u = qx; q1.v = qy; q1.w = qz; /* 2theta value is calculated at the bottom left only */ image->twotheta[x + image->width*y] = twotheta; /* Bottom right corner (using the same panel configuration!) */ rx = ((double)(x+1) - image->det.panels[p].cx) / image->resolution; ry = ((double)y - image->det.panels[p].cy) / image->resolution; twothetax = atan2(rx, image->camera_len); twothetay = atan2(ry, image->camera_len); twotheta = atan2(r, image->camera_len); qx = k * sin(twothetax); qy = k * sin(twothetay); qz = k - k * cos(twotheta); q2.u = qx; q2.v = qy; q2.w = qz; /* Top left corner (using the same panel configuration!) */ rx = ((double)x - image->det.panels[p].cx) / image->resolution; ry = ((double)(y+1) - image->det.panels[p].cy) / image->resolution; twothetax = atan2(rx, image->camera_len); twothetay = atan2(ry, image->camera_len); twotheta = atan2(r, image->camera_len); qx = k * sin(twothetax); qy = k * sin(twothetay); qz = k - k * cos(twotheta); q3.u = qx; q3.v = qy; q3.w = qz; /* Top right corner (using the same panel configuration!) */ rx = ((double)(x+1) - image->det.panels[p].cx) / image->resolution; ry = ((double)(y+1) - image->det.panels[p].cy) / image->resolution; twothetax = atan2(rx, image->camera_len); twothetay = atan2(ry, image->camera_len); twotheta = atan2(r, image->camera_len); qx = k * sin(twothetax); qy = k * sin(twothetay); qz = k - k * cos(twotheta); q4.u = qx; q4.v = qy; q4.w = qz; /* Now interpolate between the values to get * the sampling points */ i = soffs; for ( sx=0; sxqvecs[i++][x + image->width*y] = quat_rot(q, image->orientation); } } if ( (x==0) && (y==(int)image->y_centre) ) { double s; s = 1.0e-9*modulus(qx, qy, qz)/2.0; STATUS("At left edge: 2theta = %5.3f deg," " sin(theta)/lambda = %5.3f nm^-1," " d = %5.3f nm\n", rad2deg(twotheta), s, 1.0/(2.0*s)); } if ( (x==0) && (y==0) ) { double s; s = 1.0e-9*modulus(qx, qy, qz)/2.0; STATUS(" At corner: 2theta = %5.3f deg," " sin(theta)/lambda = %5.3f nm^-1," " d = %5.3f nm\n", rad2deg(twotheta), s, 1.0/(2.0*s)); } } } } void get_ewald(struct image *image) { double kc; /* Wavenumber */ int i, kstep; int mtotal = 0; kc = 1/image->lambda; /* Centre */ image->twotheta = malloc(image->width * image->height * sizeof(double)); /* Create the spheres */ image->nspheres = SAMPLING*SAMPLING*BWSAMPLING; image->qvecs = malloc(image->nspheres * sizeof(struct rvec *)); for ( i=0; inspheres; i++ ) { mtotal += image->width * image->height * sizeof(struct rvec); image->qvecs[i] = malloc(image->width * image->height * sizeof(struct rvec)); } STATUS("%i spheres, %i Mbytes\n", image->nspheres, mtotal/(1024*1024)); for ( kstep=0; kstep