/* * geometry.c * * Geometry of diffraction * * (c) 2006-2010 Thomas White * * Part of CrystFEL - crystallography with a FEL * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include "utils.h" #include "cell.h" #include "image.h" #include "peaks.h" #include "beam-parameters.h" #define MAX_CPEAKS (256 * 256) static signed int locate_peak(double x, double y, double z, double k, struct detector *det, double *xdap, double *ydap) { int p; signed int found = -1; const double den = k + z; *xdap = -1; *ydap = -1; for ( p=0; pn_panels; p++ ) { double xd, yd, cl; double xda, yda; /* Camera length for this panel */ cl = det->panels[p].clen; /* Coordinates of peak relative to central beam, in m */ xd = cl * x / den; yd = cl * y / den; /* Convert to pixels */ xd *= det->panels[p].res; yd *= det->panels[p].res; /* Add the coordinates of the central beam */ xda = xd + det->panels[p].cx; yda = yd + det->panels[p].cy; /* Now, is this on this panel? */ if ( xda < det->panels[p].min_x ) continue; if ( xda > det->panels[p].max_x ) continue; if ( yda < det->panels[p].min_y ) continue; if ( yda > det->panels[p].max_y ) continue; /* If peak appears on multiple panels, reject it */ if ( found != -1 ) return -1; /* Woohoo! */ found = p; *xdap = xda; *ydap = yda; } return found; } static double excitation_error(double xl, double yl, double zl, double ds, double k, double divergence) { double tt, al; double r; double delta; tt = angle_between(0.0, 0.0, 1.0, xl, yl, zl+k); al = M_PI_2 - asin(-zl/ds); r = ( ds * sin(al) / sin(tt) ) - k; delta = sqrt(2.0 * pow(ds, 2.0) * (1-cos(divergence))); if ( divergence > 0.0 ) { r += delta; } else { r -= delta; } return r; } static double partiality(double r1, double r2, double r) { double q1, q2; double p1, p2; /* Calculate degrees of penetration */ q1 = (r1 + r)/(2.0*r); q2 = (r2 + r)/(2.0*r); /* Convert to partiality */ p1 = 3.0*pow(q1,2.0) - 2.0*pow(q1,3.0); p2 = 3.0*pow(q2,2.0) - 2.0*pow(q2,3.0); return p2 - p1; } static int check_reflection(struct image *image, double mres, int output, struct cpeak *cpeaks, int np, signed int h, signed int k, signed int l, double asx, double asy, double asz, double bsx, double bsy, double bsz, double csx, double csy, double csz) { double xl, yl, zl; double ds, ds_sq; double rlow, rhigh; /* "Excitation error" */ signed int p; /* Panel number */ double xda, yda; /* Position on detector */ int close, inside; double part; /* Partiality */ int clamp_low = 0; int clamp_high = 0; double bandwidth = image->bw; double divergence = image->div; double lambda = image->lambda; double klow, kcen, khigh; /* Wavenumber */ /* Bounding sphere for the shape transform approximation */ const double profile_cutoff = 0.02e9; /* 0.02 nm^-1 */ /* "low" gives the largest Ewald sphere, * "high" gives the smallest Ewald sphere. */ klow = 1.0/(lambda - lambda*bandwidth/2.0); kcen = 1.0/lambda; khigh = 1.0/(lambda + lambda*bandwidth/2.0); /* Get the coordinates of the reciprocal lattice point */ zl = h*asz + k*bsz + l*csz; /* Throw out if it's "in front" */ if ( zl > profile_cutoff ) return 0; xl = h*asx + k*bsx + l*csx; yl = h*asy + k*bsy + l*csy; /* Calculate reciprocal lattice point modulus (and square) */ ds_sq = modulus_squared(xl, yl, zl); /* d*^2 */ ds = sqrt(ds_sq); if ( ds > mres ) return 0; /* Outside resolution range */ /* Calculate excitation errors */ rlow = excitation_error(xl, yl, zl, ds, klow, -divergence); rhigh = excitation_error(xl, yl, zl, ds, khigh, +divergence); /* Is the reciprocal lattice point close to either extreme of * the sphere, maybe just outside the "Ewald volume"? */ close = (fabs(rlow) < profile_cutoff) || (fabs(rhigh) < profile_cutoff); /* Is the reciprocal lattice point somewhere between the * extremes of the sphere, i.e. inside the "Ewald volume"? */ inside = signbit(rlow) ^ signbit(rhigh); /* Can't be both inside and close */ if ( inside ) close = 0; /* Neither? Skip it. */ if ( !(close || inside) ) return 0; /* If the "lower" Ewald sphere is a long way away, use the * position at which the Ewald sphere would just touch the * reflection. */ if ( rlow < -profile_cutoff ) { rlow = -profile_cutoff; clamp_low = -1; } if ( rlow > +profile_cutoff ) { rlow = +profile_cutoff; clamp_low = +1; } /* Likewise the "higher" Ewald sphere */ if ( rhigh < -profile_cutoff ) { rhigh = -profile_cutoff; clamp_high = -1; } if ( rhigh > +profile_cutoff ) { rhigh = +profile_cutoff; clamp_high = +1; } /* The six possible combinations of clamp_{low,high} (including * zero) correspond to the six situations in Table 3 of Rossmann * et al. (1979). */ /* Calculate partiality and reject if too small */ part = partiality(rlow, rhigh, image->profile_radius); if ( part < 0.1 ) return 0; /* Locate peak on detector. */ p = locate_peak(xl, yl, zl, kcen, image->det, &xda, &yda); if ( p == -1 ) return 0; /* Add peak to list */ cpeaks[np].h = h; cpeaks[np].k = k; cpeaks[np].l = l; cpeaks[np].x = xda; cpeaks[np].y = yda; cpeaks[np].r1 = rlow; cpeaks[np].r2 = rhigh; cpeaks[np].p = part; cpeaks[np].clamp1 = clamp_low; cpeaks[np].clamp2 = clamp_high; np++; if ( output ) { printf("%3i %3i %3i %6f (at %5.2f,%5.2f) %5.2f\n", h, k, l, 0.0, xda, yda, part); } return 1; } struct cpeak *find_intersections(struct image *image, UnitCell *cell, int *n, int output, struct cpeak *t) { double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; struct cpeak *cpeaks; int np = 0; int hmax, kmax, lmax; double mres; signed int h, k, l; cpeaks = malloc(sizeof(struct cpeak)*MAX_CPEAKS); if ( cpeaks == NULL ) { *n = 0; return NULL; } cell_get_reciprocal(cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); mres = 1.0 / 8.0e-10; /* 8 Angstroms */ hmax = mres / modulus(asx, asy, asz); kmax = mres / modulus(bsx, bsy, bsz); lmax = mres / modulus(csx, csy, csz); for ( h=-hmax; h