/* * pattern_sim.c * * Simulate diffraction patterns from small crystals * * Copyright © 2012-2016 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2009-2016 Thomas White * 2013-2014 Chun Hong Yoon * 2014 Valerio Mariani * 2013 Alexandra Tolstikova * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include "version.h" #include "image.h" #include "diffraction.h" #include "diffraction-gpu.h" #include "cell.h" #include "cell-utils.h" #include "utils.h" #include "hdf5-file.h" #include "detector.h" #include "peaks.h" #include "symmetry.h" #include "reflist.h" #include "reflist-utils.h" #include "pattern_sim.h" #include "stream.h" static void show_help(const char *s) { printf("Syntax: %s [options]\n\n", s); printf( "Simulate diffraction patterns from small crystals probed with femtosecond\n" "pulses of X-rays from a free electron laser.\n" "\n" " -h, --help Display this help message.\n" " --version Print CrystFEL version number and exit.\n" "\n" " -p, --pdb= File from which to get the unit cell.\n" " (The actual Bragg intensities come from the\n" " intensities file)\n" " --gpu Use the GPU to speed up the calculation.\n" " --gpu-dev= Use GPU device . Omit this option to see the\n" " available devices.\n" " -g, --geometry= Get detector geometry from file.\n" " -n, --number= Generate N images. Default 1.\n" " --no-images Do not output any HDF5 files.\n" " -o, --output= Output HDF5 filename. Default: sim.h5.\n" " -r, --random-orientation Use randomly generated orientations.\n" " --powder= Write a summed pattern of all images simulated by\n" " this invocation as the given filename.\n" " -i, --intensities= Specify file containing reflection intensities\n" " (and phases) to use.\n" " -y, --symmetry= The symmetry of the intensities file.\n" " -t, --gradients= Select method for calculation of shape transforms\n" " --really-random Seed the random number generator with /dev/urandom.\n" " --min-size= Minimum crystal size in nm.\n" " --max-size= Naximum crystal size in nm.\n" " --no-noise Do not calculate Poisson noise.\n" " -s, --sample-spectrum= Use N samples from spectrum. Default 3.\n" " -x, --spectrum= Type of spectrum to simulate.\n" " --background= Add N photons of Poisson background (default 0).\n" " --template= Take orientations from stream .\n" " --no-fringes Exclude the side maxima of Bragg peaks.\n" " --beam-bandwidth Beam bandwidth as a fraction. Default 1%%.\n" " --photon-energy Photon energy in eV. Default 9000.\n" " --nphotons Number of photons per X-ray pulse. Default 1e12.\n" " --beam-radius Radius of beam in metres (default 1e-6).\n" ); } static double *intensities_from_list(RefList *list, SymOpList *sym) { Reflection *refl; RefListIterator *iter; double *out = new_arr_intensity(); SymOpMask *m = new_symopmask(sym); int neq = num_equivs(sym, NULL); for ( refl = first_refl(list, &iter); refl != NULL; refl = next_refl(refl, iter) ) { signed int h, k, l; int eps; double intensity = get_intensity(refl); get_indices(refl, &h, &k, &l); special_position(sym, m, h, k, l); eps = neq / num_equivs(sym, m); set_arr_intensity(out, h, k, l, intensity / eps); } return out; } static double *phases_from_list(RefList *list) { Reflection *refl; RefListIterator *iter; double *out = new_arr_phase(); for ( refl = first_refl(list, &iter); refl != NULL; refl = next_refl(refl, iter) ) { signed int h, k, l; double phase = get_phase(refl, NULL); get_indices(refl, &h, &k, &l); set_arr_phase(out, h, k, l, phase); } return out; } static unsigned char *flags_from_list(RefList *list) { Reflection *refl; RefListIterator *iter; unsigned char *out = new_arr_flag(); for ( refl = first_refl(list, &iter); refl != NULL; refl = next_refl(refl, iter) ) { signed int h, k, l; get_indices(refl, &h, &k, &l); set_arr_flag(out, h, k, l, 1); } return out; } static struct quaternion read_quaternion() { do { int r; float w, x, y, z; char line[1024]; char *rval; printf("Please input quaternion: w x y z\n"); rval = fgets(line, 1023, stdin); if ( rval == NULL ) return invalid_quaternion(); chomp(line); r = sscanf(line, "%f %f %f %f", &w, &x, &y, &z); if ( r == 4 ) { struct quaternion quat; quat.w = w; quat.x = x; quat.y = y; quat.z = z; return quat; } else { ERROR("Invalid rotation '%s'\n", line); } } while ( 1 ); } static int random_ncells(double len, double min_m, double max_m) { int min_cells, max_cells, wid; min_cells = min_m / len; max_cells = max_m / len; wid = max_cells - min_cells; return wid*random()/RAND_MAX + min_cells; } static void fixup_geom(struct detector *det) { int i; for ( i=0; in_panels; i++ ) { det->panels[i].clen += det->panels[i].coffset; } } static int geom_contains_references(struct detector *det) { int i; for ( i=0; in_panels; i++ ) { if ( det->panels[i].clen_from != NULL ) return 1; } return 0; } int main(int argc, char *argv[]) { int c; struct image image; struct gpu_context *gctx = NULL; struct image powder; char *intfile = NULL; double *intensities; char *rval; double *phases; unsigned char *flags; int config_randomquat = 0; int config_noimages = 0; int config_nonoise = 0; int config_nosfac = 0; int config_gpu = 0; int config_random = 0; char *powder_fn = NULL; char *filename = NULL; char *grad_str = NULL; char *outfile = NULL; char *geometry = NULL; char *spectrum_str = NULL; GradientMethod grad; SpectrumType spectrum_type; int ndone = 0; /* Number of simulations done (images or not) */ int number = 1; /* Number used for filename of image */ int n_images = 1; /* Generate one image by default */ int done = 0; UnitCell *input_cell; struct quaternion orientation; int gpu_dev = -1; int random_size = 0; double min_size = 0.0; double max_size = 0.0; char *sym_str = NULL; SymOpList *sym; int nsamples = 3; gsl_rng *rng; double background = 0.0; char *template_file = NULL; Stream *st = NULL; int no_fringes = 0; double nphotons = 1e12; double beam_radius = 1e-6; /* metres */ double bandwidth = 0.01; double photon_energy = 9000.0; struct beam_params beam; int i; /* Long options */ const struct option longopts[] = { {"help", 0, NULL, 'h'}, {"version", 0, NULL, 'v'}, {"gpu", 0, &config_gpu, 1}, {"beam", 1, NULL, 'b'}, {"random-orientation", 0, NULL, 'r'}, {"number", 1, NULL, 'n'}, {"no-images", 0, &config_noimages, 1}, {"no-noise", 0, &config_nonoise, 1}, {"intensities", 1, NULL, 'i'}, {"symmetry", 1, NULL, 'y'}, {"powder", 1, NULL, 'w'}, {"gradients", 1, NULL, 't'}, {"pdb", 1, NULL, 'p'}, {"output", 1, NULL, 'o'}, {"geometry", 1, NULL, 'g'}, {"sample-spectrum", 1, NULL, 's'}, {"type-spectrum", 1, NULL, 'x'}, {"spectrum", 1, NULL, 'x'}, {"really-random", 0, &config_random, 1}, {"no-fringes", 0, &no_fringes, 1}, {"gpu-dev", 1, NULL, 2}, {"min-size", 1, NULL, 3}, {"max-size", 1, NULL, 4}, {"background", 1, NULL, 5}, {"template", 1, NULL, 6}, {"beam-bandwidth", 1, NULL, 7}, {"photon-energy", 1, NULL, 9}, {"nphotons", 1, NULL, 10}, {"beam-radius", 1, NULL, 11}, {0, 0, NULL, 0} }; /* Short options */ while ((c = getopt_long(argc, argv, "hrn:i:t:p:o:g:y:s:x:vb:", longopts, NULL)) != -1) { switch (c) { case 'h' : show_help(argv[0]); return 0; case 'v' : printf("CrystFEL: " CRYSTFEL_VERSIONSTRING "\n"); printf(CRYSTFEL_BOILERPLATE"\n"); return 0; case 'b' : ERROR("WARNING: This version of CrystFEL no longer " "uses beam files. Please remove the beam file " "from your pattern_sim command line.\n"); return 1; case 'r' : config_randomquat = 1; break; case 'n' : n_images = strtol(optarg, &rval, 10); if ( *rval != '\0' ) { ERROR("Invalid number of images.\n"); return 1; } break; case 'i' : intfile = strdup(optarg); break; case 't' : grad_str = strdup(optarg); break; case 'p' : filename = strdup(optarg); break; case 'o' : outfile = strdup(optarg); break; case 'w' : powder_fn = strdup(optarg); break; case 'g' : geometry = strdup(optarg); break; case 'y' : sym_str = strdup(optarg); break; case 's' : nsamples = strtol(optarg, &rval, 10); if ( *rval != '\0' ) { ERROR("Invalid number of spectrum samples.\n"); return 1; } break; case 'x' : spectrum_str = strdup(optarg); break; case 2 : gpu_dev = atoi(optarg); break; case 3 : min_size = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid minimum size.\n"); return 1; } min_size /= 1e9; random_size++; break; case 4 : max_size = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid maximum size.\n"); return 1; } max_size /= 1e9; random_size++; break; case 5 : background = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid background level.\n"); return 1; } break; case 6 : template_file = strdup(optarg); break; case 7 : bandwidth = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid beam bandwidth.\n"); return 1; } if ( bandwidth < 0.0 ) { ERROR("Beam bandwidth must be positive.\n"); return 1; } break; case 9 : photon_energy = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid photon energy.\n"); return 1; } if ( photon_energy < 0.0 ) { ERROR("Photon energy must be positive.\n"); return 1; } break; case 10 : nphotons = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid number of photons.\n"); return 1; } if ( nphotons < 0.0 ) { ERROR("Number of photons must be positive.\n"); return 1; } break; case 11 : beam_radius = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid beam radius.\n"); return 1; } if ( beam_radius < 0.0 ) { ERROR("Beam radius must be positive.\n"); return 1; } break; case 0 : break; case '?' : break; default : ERROR("Unhandled option '%c'\n", c); break; } } if ( random_size == 1 ) { ERROR("You must specify both --min-size and --max-size.\n"); return 1; } if ( filename == NULL ) { filename = strdup("molecule.pdb"); } if ( outfile == NULL ) { if ( n_images == 1 ) { outfile = strdup("sim.h5"); } else { outfile = strdup("sim"); } } if ( template_file != NULL ) { if ( config_randomquat ) { ERROR("You cannot use -r and --template together.\n"); return 1; } st = open_stream_for_read(template_file); if ( st == NULL ) { ERROR("Failed to open stream.\n"); return 1; } free(template_file); } if ( sym_str == NULL ) sym_str = strdup("1"); pointgroup_warning(sym_str); sym = get_pointgroup(sym_str); /* sym_str is used below */ if ( grad_str == NULL ) { STATUS("You didn't specify a gradient calculation method, so" " I'm using the 'mosaic' method, which is fastest.\n"); grad = GRADIENT_MOSAIC; } else if ( strcmp(grad_str, "mosaic") == 0 ) { grad = GRADIENT_MOSAIC; } else if ( strcmp(grad_str, "interpolate") == 0) { grad = GRADIENT_INTERPOLATE; } else if ( strcmp(grad_str, "phased") == 0) { grad = GRADIENT_PHASED; } else { ERROR("Unrecognised gradient method '%s'\n", grad_str); return 1; } free(grad_str); if ( config_gpu && (grad != GRADIENT_MOSAIC) ) { ERROR("Only the mosaic method can be used for gradients when" "calculating on the GPU.\n"); return 1; } if ( geometry == NULL ) { ERROR("You need to specify a geometry file with --geometry\n"); return 1; } image.beam = &beam; image.det = get_detector_geometry(geometry, image.beam); if ( image.det == NULL ) { ERROR("Failed to read detector geometry from '%s'\n", geometry); return 1; } free(geometry); if ( (beam.photon_energy > 0.0) && (beam.photon_energy_from == NULL) ) { ERROR("WARNING: An explicit photon energy was found in the " "geometry file. It will be ignored!\n"); ERROR("The value given on the command line " "(with --photon-energy) will be used instead.\n"); } if ( geom_contains_references(image.det) ) { ERROR("Geometry file contains a reference to an HDF5 location" " for the camera length. Change it to a numerical value " " and try again.\n"); return 1; } fixup_geom(image.det); if ( spectrum_str == NULL ) { STATUS("You didn't specify a spectrum type, so" " I'm using a 'tophat' spectrum.\n"); spectrum_type = SPECTRUM_TOPHAT; } else if ( strcasecmp(spectrum_str, "tophat") == 0) { spectrum_type = SPECTRUM_TOPHAT; } else if ( strcasecmp(spectrum_str, "sase") == 0) { spectrum_type = SPECTRUM_SASE; } else if ( strcasecmp(spectrum_str, "twocolour") == 0 || strcasecmp(spectrum_str, "twocolor") == 0 || strcasecmp(spectrum_str, "twocolours") == 0 || strcasecmp(spectrum_str, "twocolors") == 0) { spectrum_type = SPECTRUM_TWOCOLOUR; } else { ERROR("Unrecognised spectrum type '%s'\n", spectrum_str); return 1; } free(spectrum_str); /* Load unit cell */ input_cell = load_cell_from_file(filename); if ( input_cell == NULL ) { exit(1); } if ( intfile == NULL ) { /* Gentle reminder */ STATUS("You didn't specify the file containing the "); STATUS("reflection intensities (with --intensities).\n"); STATUS("I'll simulate a flat intensity distribution.\n"); intensities = NULL; phases = NULL; flags = NULL; } else { RefList *reflections; reflections = read_reflections(intfile); if ( reflections == NULL ) { ERROR("Problem reading input file %s\n", intfile); return 1; } if ( grad == GRADIENT_PHASED ) { phases = phases_from_list(reflections); } else { phases = NULL; } intensities = intensities_from_list(reflections, sym); phases = phases_from_list(reflections); flags = flags_from_list(reflections); /* Check that the intensities have the correct symmetry */ if ( check_list_symmetry(reflections, sym) ) { ERROR("The input reflection list does not appear to" " have symmetry %s\n", symmetry_name(sym)); if ( cell_get_lattice_type(input_cell) == L_MONOCLINIC ) { ERROR("You may need to specify the unique axis " "in your point group. The default is " "unique axis c.\n"); ERROR("See 'man crystfel' for more details.\n"); } return 1; } reflist_free(reflections); } image.lambda = ph_en_to_lambda(eV_to_J(photon_energy)); image.bw = bandwidth; image.nsamples = nsamples; /* Initialise stuff */ image.filename = NULL; image.features = NULL; image.bad = NULL; image.dp = malloc(image.det->n_panels*sizeof(float *)); if ( image.dp == NULL ) { ERROR("Failed to allocate data\n"); return 1; } for ( i=0; in_panels; i++ ) { image.dp[i] = calloc(image.det->panels[i].w * image.det->panels[i].h, sizeof(float)); if ( image.dp[i] == NULL ) { ERROR("Failed to allocate data\n"); return 1; } } rng = gsl_rng_alloc(gsl_rng_mt19937); if ( config_random ) { FILE *fh; unsigned long int seed; fh = fopen("/dev/urandom", "r"); fread(&seed, sizeof(seed), 1, fh); fclose(fh); gsl_rng_set(rng, seed); } powder.det = image.det; powder.beam = NULL; powder.lambda = 0.0; powder.spectrum = NULL; powder.dp = malloc(image.det->n_panels*sizeof(float *)); if ( powder.dp == NULL ) { ERROR("Failed to allocate powder data\n"); return 1; } for ( i=0; in_panels; i++ ) { powder.dp[i] = calloc(image.det->panels[i].w * image.det->panels[i].h, sizeof(float)); if ( powder.dp[i] == NULL ) { ERROR("Failed to allocate powder data\n"); return 1; } } /* Splurge a few useful numbers */ STATUS("Simulation parameters:\n"); STATUS(" Photon energy: %.2f eV (wavelength %.5f A)\n", photon_energy, image.lambda*1e10); STATUS(" Number of photons: %.0f (%.2f mJ)\n", nphotons, eV_to_J(photon_energy)*nphotons*1e3); STATUS(" Beam divergence: not simulated\n"); STATUS(" Beam radius: %.2f microns\n", beam_radius*1e6); STATUS(" Background: %.2f photons\n", background); switch ( spectrum_type ) { case SPECTRUM_TOPHAT: STATUS(" X-ray spectrum: top hat, " "width %.5f %%\n", image.bw*100.0); break; case SPECTRUM_SASE: STATUS(" X-ray spectrum: SASE, " "bandwidth %.5f %%\n", image.bw*100.0); break; case SPECTRUM_TWOCOLOUR: STATUS(" X-ray spectrum: two colour, " "separation %.5f %%\n", image.bw*100.0); break; } if ( random_size ) { STATUS(" Crystal size: random, between " "%.2f and %.2f nm along each of a, b and c\n", min_size*1e9, max_size*1e9); } else { STATUS(" Crystal size: 8 unit cells along " "each of a, b and c\n"); } if ( intfile == NULL ) { STATUS(" Full intensities: all equal\n"); } else { STATUS(" Full intensities: from %s\n", intfile); } do { int na, nb, nc; double a, b, c, d; UnitCell *cell; int err = 0; int pi; for ( pi=0; pin_panels; pi++ ) { long j; long np = image.det->panels[pi].w * image.det->panels[pi].h; for ( j=0; j 1 ) { ERROR("Using the first crystal only.\n"); } for ( i=1; in_panels; pn++ ) { size_t w, i; w = image.det->panels[pn].w * image.det->panels[pn].h; for ( i=0; i= n_images) ) done = 1; } while ( !done ); if ( powder_fn != NULL ) { hdf5_write_image(powder_fn, &powder, NULL); } if ( gctx != NULL ) { cleanup_gpu(gctx); } for ( i=0; in_panels; i++ ) { free(image.dp[i]); free(powder.dp[i]); } free(image.dp); free(powder.dp); free(intfile); free(image.det); cell_free(input_cell); free(intensities); free(outfile); free(filename); free(sym_str); free_symoplist(sym); gsl_rng_free(rng); return 0; }