/* * post-refinement.c * * Post refinement * * Copyright © 2012-2015 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * * Authors: * 2010-2015 Thomas White * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include "image.h" #include "post-refinement.h" #include "peaks.h" #include "symmetry.h" #include "geometry.h" #include "cell.h" #include "cell-utils.h" /* Minimum partiality of a reflection for it to be used for refinement */ #define MIN_PART_REFINE (0.1) /* Maximum number of iterations of NLSq to do for each image per macrocycle. */ #define MAX_CYCLES (10) /* Returns dp(gauss)/dr at "r" */ static double gaussian_fraction_gradient(double r, double R) { const double ng = 2.6; const double sig = R/ng; /* If the Ewald sphere isn't within the profile, the gradient is zero */ if ( r < -R ) return 0.0; if ( r > +R ) return 0.0; return exp(-pow(r/sig, 2.0)/2.0) / (sig*sqrt(2.0*M_PI)); } /* Returns dp(sph)/dr at "r" */ static double sphere_fraction_gradient(double r, double pr) { double q, dpdq, dqdr; /* If the Ewald sphere isn't within the profile, the gradient is zero */ if ( r < -pr ) return 0.0; if ( r > +pr ) return 0.0; q = (r + pr)/(2.0*pr); dpdq = 6.0*(q - q*q); dqdr = 1.0 / (2.0*pr); return dpdq * dqdr; } /* Returns dp/dr at "r" */ static double partiality_gradient(double r, double pr, PartialityModel pmodel, double rlow, double rhigh) { double A, D; D = rlow - rhigh; switch ( pmodel ) { default: case PMODEL_UNITY: return 0.0; case PMODEL_SCSPHERE: A = sphere_fraction_gradient(r, pr)/D; return 4.0*pr*A/3.0; case PMODEL_SCGAUSSIAN: A = gaussian_fraction_gradient(r, pr)/D; return 4.0*pr*A/3.0; } } static double sphere_fraction_rgradient(double r, double R) { /* If the Ewald sphere isn't within the profile, the gradient is zero */ if ( r < -R ) return 0.0; if ( r > +R ) return 0.0; return -(3.0*r/(4.0*R*R)) * (1.0 - r*r/(R*R)); } static double gaussian_fraction_rgradient(double r, double R) { const double ng = 2.6; const double sig = R/ng; /* If the Ewald sphere isn't within the profile, the gradient is zero */ if ( r < -R ) return 0.0; if ( r > +R ) return 0.0; return -(ng*r/(sqrt(2.0*M_PI)*R*R))*exp(-r*r/(2.0*sig*sig)); } static double volume_fraction_rgradient(double r, double pr, PartialityModel pmodel) { switch ( pmodel ) { case PMODEL_UNITY : return 1.0; case PMODEL_SCSPHERE : return sphere_fraction_rgradient(r, pr); case PMODEL_SCGAUSSIAN : return gaussian_fraction_rgradient(r, pr); } ERROR("No pmodel in volume_fraction_rgradient!\n"); return 1.0; } static double volume_fraction(double rlow, double rhigh, double pr, PartialityModel pmodel) { switch ( pmodel ) { case PMODEL_UNITY : return 1.0; case PMODEL_SCSPHERE : return sphere_fraction(rlow, rhigh, pr); case PMODEL_SCGAUSSIAN : return gaussian_fraction(rlow, rhigh, pr); } ERROR("No pmodel in volume_fraction!\n"); return 1.0; } /* Return the gradient of "fx" wrt parameter 'k' given the current * status of the crystal. */ double gradient(Crystal *cr, int k, Reflection *refl, PartialityModel pmodel) { double glow, ghigh; double rlow, rhigh, p; struct image *image = crystal_get_image(cr); double R = crystal_get_profile_radius(cr); double osf = crystal_get_osf(cr); double gr; signed int hi, ki, li; double s; get_indices(refl, &hi, &ki, &li); s = resolution(crystal_get_cell(cr), hi, ki, li); get_partial(refl, &rlow, &rhigh, &p); if ( k == GPARAM_OSF ) { return 1.0; } if ( k == GPARAM_BFAC ) { return -s*s; } if ( k == GPARAM_R ) { double Rglow, Rghigh; double D, psph; D = rlow - rhigh; psph = volume_fraction(rlow, rhigh, R, pmodel); Rglow = volume_fraction_rgradient(rlow, R, pmodel); Rghigh = volume_fraction_rgradient(rhigh, R, pmodel); gr = 4.0*psph/(3.0*D) + (4.0*R/(3.0*D))*(Rglow - Rghigh); return gr * osf; } /* Calculate the gradient of partiality wrt excitation error. */ glow = partiality_gradient(rlow, R, pmodel, rlow, rhigh); ghigh = partiality_gradient(rhigh, R, pmodel, rlow, rhigh); if ( k == GPARAM_DIV ) { double D, psph, ds; signed int hs, ks, ls; D = rlow - rhigh; psph = volume_fraction(rlow, rhigh, R, pmodel); get_symmetric_indices(refl, &hs, &ks, &ls); ds = 2.0 * resolution(crystal_get_cell(cr), hs, ks, ls); gr = (ds/2.0)*(glow+ghigh) - 4.0*R*psph*ds/(3.0*D*D); return gr * osf; } gr = r_gradient(crystal_get_cell(cr), k, refl, image) * (glow-ghigh); return gr * osf; } static void apply_cell_shift(UnitCell *cell, int k, double shift) { double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; cell_get_reciprocal(cell, &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); switch ( k ) { case GPARAM_ASX : asx += shift; break; case GPARAM_ASY : asy += shift; break; case GPARAM_ASZ : asz += shift; break; case GPARAM_BSX : bsx += shift; break; case GPARAM_BSY : bsy += shift; break; case GPARAM_BSZ : bsz += shift; break; case GPARAM_CSX : csx += shift; break; case GPARAM_CSY : csy += shift; break; case GPARAM_CSZ : csz += shift; break; } cell_set_reciprocal(cell, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz); } /* Apply the given shift to the 'k'th parameter of 'image'. */ static void apply_shift(Crystal *cr, int k, double shift) { double t; struct image *image = crystal_get_image(cr); switch ( k ) { case GPARAM_DIV : if ( isnan(shift) ) { ERROR("NaN divergence shift\n"); } else { image->div += shift; if ( image->div < 0.0 ) image->div = 0.0; } break; case GPARAM_R : t = crystal_get_profile_radius(cr); t += shift; crystal_set_profile_radius(cr, t); break; case GPARAM_BFAC : t = crystal_get_Bfac(cr); t += shift; crystal_set_Bfac(cr, t); break; case GPARAM_OSF : t = crystal_get_osf(cr); t += shift; crystal_set_osf(cr, t); break; case GPARAM_ASX : case GPARAM_ASY : case GPARAM_ASZ : case GPARAM_BSX : case GPARAM_BSY : case GPARAM_BSZ : case GPARAM_CSX : case GPARAM_CSY : case GPARAM_CSZ : apply_cell_shift(crystal_get_cell(cr), k, shift); break; default : ERROR("No shift defined for parameter %i\n", k); abort(); } } /* Perform one cycle of post refinement on 'image' against 'full' */ static double pr_iterate(Crystal *cr, const RefList *full, PartialityModel pmodel, int no_scale, int *n_filtered, int verbose) { gsl_matrix *M; gsl_vector *v; gsl_vector *shifts; int param; Reflection *refl; RefListIterator *iter; RefList *reflections; double max_shift; int nref = 0; int num_params = 0; enum gparam rv[32]; double G, B; *n_filtered = 0; /* If partiality model is anything other than "unity", refine all the * geometrical parameters */ if ( pmodel != PMODEL_UNITY ) { rv[num_params++] = GPARAM_ASX; rv[num_params++] = GPARAM_ASY; rv[num_params++] = GPARAM_ASZ; rv[num_params++] = GPARAM_BSX; rv[num_params++] = GPARAM_BSY; rv[num_params++] = GPARAM_BSZ; rv[num_params++] = GPARAM_CSX; rv[num_params++] = GPARAM_CSY; rv[num_params++] = GPARAM_CSZ; } /* If we are scaling, refine scale factors (duh) */ if ( !no_scale ) { rv[num_params++] = GPARAM_OSF; rv[num_params++] = GPARAM_BFAC; } if ( num_params == 0 ) return 0.0; reflections = crystal_get_reflections(cr); M = gsl_matrix_calloc(num_params, num_params); v = gsl_vector_calloc(num_params); G = crystal_get_osf(cr); B = crystal_get_Bfac(cr); /* Construct the equations, one per reflection in this image */ for ( refl = first_refl(reflections, &iter); refl != NULL; refl = next_refl(refl, iter) ) { signed int ha, ka, la; double I_full, delta_I, esd; double w; double I_partial; int k; double p, L, s; double fx; Reflection *match; double gradients[num_params]; /* Find the full version */ get_indices(refl, &ha, &ka, &la); match = find_refl(full, ha, ka, la); if ( match == NULL ) continue; /* Merged intensitty */ I_full = get_intensity(match); /* Actual measurement of this reflection from this pattern */ I_partial = get_intensity(refl); esd = get_esd_intensity(refl); if ( (get_partiality(refl) < MIN_PART_REFINE) || (get_redundancy(match) < 2) || (I_full <= 0) || (I_partial < 3*esd) ) continue; p = get_partiality(refl); L = get_lorentz(refl); s = resolution(crystal_get_cell(cr), ha, ka, la); /* Calculate the weight for this reflection */ w = 1.0; /* Calculate all gradients for this reflection */ for ( k=0; k k ) continue; M_c = w * gradients[g] * gradients[k]; M_curr = gsl_matrix_get(M, k, g); gsl_matrix_set(M, k, g, M_curr + M_c); gsl_matrix_set(M, g, k, M_curr + M_c); } fx = G + log(p) - log(L) - B*s*s + log(I_full); delta_I = log(I_partial) - fx; v_c = w * delta_I * gradients[k]; v_curr = gsl_vector_get(v, k); gsl_vector_set(v, k, v_curr + v_c); } nref++; } if ( verbose ) { STATUS("The original equation:\n"); show_matrix_eqn(M, v); STATUS("%i reflections went into the equations.\n", nref); } if ( nref == 0 ) { crystal_set_user_flag(cr, 2); gsl_matrix_free(M); gsl_vector_free(v); return 0.0; } max_shift = 0.0; shifts = solve_svd(v, M, n_filtered, verbose); if ( shifts != NULL ) { for ( param=0; param max_shift ) max_shift = fabs(shift); } } else { crystal_set_user_flag(cr, 3); } gsl_matrix_free(M); gsl_vector_free(v); gsl_vector_free(shifts); return max_shift; } static double residual(Crystal *cr, const RefList *full, int verbose) { double dev = 0.0; double G, B; Reflection *refl; RefListIterator *iter; FILE *fh = NULL; if ( verbose ) { fh = fopen("residual.dat", "w"); } G = crystal_get_osf(cr); B = crystal_get_Bfac(cr); for ( refl = first_refl(crystal_get_reflections(cr), &iter); refl != NULL; refl = next_refl(refl, iter) ) { double p, L, s, w; signed int h, k, l; Reflection *match; double esd, I_full, I_partial; double fx, dc; get_indices(refl, &h, &k, &l); match = find_refl(full, h, k, l); if ( match == NULL ) continue; p = get_partiality(refl); L = get_lorentz(refl); I_partial = get_intensity(refl); I_full = get_intensity(match); esd = get_esd_intensity(refl); s = resolution(crystal_get_cell(cr), h, k, l); if ( (get_partiality(refl) < MIN_PART_REFINE) || (get_redundancy(match) < 2) || (I_full <= 0) || (I_partial < 3*esd) ) continue; fx = G + log(p) - log(L) - B*s*s + log(I_full); dc = log(I_partial) - fx; w = 1.0; dev += w*dc*dc; if ( fh != NULL ) { fprintf(fh, "%4i %4i %4i %e %.2f %e %f %f\n", h, k, l, s, G, B, I_partial, I_full); } } if ( fh != NULL ) fclose(fh); return dev; } struct prdata pr_refine(Crystal *cr, const RefList *full, PartialityModel pmodel, int no_scale) { double dev; int i; int verbose = 0; struct prdata prdata; prdata.refined = 0; prdata.n_filtered = 0; /* Don't refine crystal if scaling was bad */ if ( crystal_get_user_flag(cr) != 0 ) return prdata; if ( verbose ) { dev = residual(cr, full, 1); STATUS("\n"); /* Deal with progress bar */ STATUS("Initial G=%.2f, B=%e\n", crystal_get_osf(cr), crystal_get_Bfac(cr)); STATUS("Initial dev = %10.5e\n", dev); } i = 0; do { double asx, asy, asz; double bsx, bsy, bsz; double csx, csy, csz; double dev; cell_get_reciprocal(crystal_get_cell(cr), &asx, &asy, &asz, &bsx, &bsy, &bsz, &csx, &csy, &csz); pr_iterate(cr, full, pmodel, no_scale, &prdata.n_filtered, 0); update_partialities(cr, pmodel); if ( verbose ) { dev = residual(cr, full, 0); STATUS("PR Iteration %2i: dev = %10.5e\n", i+1, dev); } i++; } while ( i < MAX_CYCLES ); if ( crystal_get_user_flag(cr) == 0 ) { prdata.refined = 1; } if ( verbose ) { STATUS("Final G=%.2f, B=%e\n", crystal_get_osf(cr), crystal_get_Bfac(cr)); } return prdata; }