/* * process_hkl.c * * Assemble and process FEL Bragg intensities * * Copyright © 2012-2013 Deutsches Elektronen-Synchrotron DESY, * a research centre of the Helmholtz Association. * Copyright © 2012 Lorenzo Galli * * Authors: * 2009-2013 Thomas White * 2011 Andrew Martin * 2012 Lorenzo Galli * * This file is part of CrystFEL. * * CrystFEL is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * CrystFEL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CrystFEL. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include "utils.h" #include "statistics.h" #include "reflist-utils.h" #include "symmetry.h" #include "stream.h" #include "reflist.h" #include "image.h" #include "crystal.h" #include "thread-pool.h" static void show_help(const char *s) { printf("Syntax: %s [options]\n\n", s); printf( "Assemble and process FEL Bragg intensities.\n" "\n" " -h, --help Display this help message.\n" " -i, --input= Specify input filename (\"-\" for stdin).\n" " -o, --output= Specify output filename for merged intensities\n" " Default: processed.hkl).\n" " -y, --symmetry= Merge according to point group .\n" "\n" " --start-after= Skip crystals at the start of the stream.\n" " --stop-after= Stop after merging crystals.\n" " -g, --histogram= Calculate the histogram of measurements for this\n" " reflection.\n" " -z, --hist-parameters Set the range for the histogram and the number of\n" " = bins. \n" "\n" " --scale Scale each pattern for best fit with the current\n" " model.\n" " --reference= Compare against intensities from when\n" " scaling. \n" " --no-polarisation Disable polarisation correction.\n" " --min-measurements= Require at least measurements before a\n" " reflection appears in the output. Default: 2\n" ); } static void plot_histogram(double *vals, int n, float hist_min, float hist_max, int nbins) { int i; double max = -INFINITY; double min = +INFINITY; double step; int histo[nbins]; FILE *fh; fh = fopen("histogram.dat", "w"); if ( fh == NULL ) { ERROR("Couldn't open 'histogram.dat'\n"); return; } if ( hist_min == hist_max ) { for ( i=0; i max ) max = vals[i]; if ( vals[i] < min ) min = vals[i]; } } else { min = hist_min; max = hist_max; } STATUS("min max nbins: %f %f %i\n", min, max, nbins); min--; max++; for ( i=0; i min) && (vals[i] < max) ) { bin = (vals[i]-min)/step; histo[bin]++; } } for ( i=0; ilambda; tt = angle_between(0.0, 0.0, 1.0, xl, yl, zl+ool); phi = atan2(yl, xl); pa = pow(sin(phi)*sin(tt), 2.0); pb = pow(cos(tt), 2.0); pol = 1.0 - 2.0*(1.0-pa) + (1.0+pb); intensity /= pol; } cur_intensity = get_intensity(model_version); set_intensity(model_version, cur_intensity + intensity); cur_redundancy = get_redundancy(model_version); set_redundancy(model_version, cur_redundancy+1); cur_sumsq = get_temp1(model_version); set_temp1(model_version, cur_sumsq + pow(intensity, 2.0)); if ( hist_vals != NULL ) { if ( (h==hist_h) && (k==hist_k) && (l==hist_l) ) { hist_vals[*hist_n] = intensity; *hist_n += 1; } } } return 0; } static void display_progress(int n_images, int n_crystals, int n_crystals_used) { if ( !isatty(STDERR_FILENO) ) return; if ( tcgetpgrp(STDERR_FILENO) != getpgrp() ) return; pthread_mutex_lock(&stderr_lock); fprintf(stderr, "\r%i images processed, %i crystals, %i crystals used.", n_images, n_crystals, n_crystals_used); pthread_mutex_unlock(&stderr_lock); fflush(stdout); } static int merge_all(Stream *st, RefList *model, RefList *reference, const SymOpList *sym, double *hist_vals, signed int hist_h, signed int hist_k, signed int hist_l, int *hist_i, int config_nopolar, int min_measurements, int start_after, int stop_after) { int rval; int n_images = 0; int n_crystals = 0; int n_crystals_used = 0; Reflection *refl; RefListIterator *iter; int n_crystals_seen = 0; do { struct image image; int i; image.det = NULL; /* Get data from next chunk */ rval = read_chunk(st, &image); if ( rval ) break; n_images++; for ( i=0; i0) && (n_crystals_used == stop_after) ) break; } while ( rval == 0 ); for ( refl = first_refl(model, &iter); refl != NULL; refl = next_refl(refl, iter) ) { double intensity, sumsq, esd; int red; red = get_redundancy(refl); if ( red < min_measurements ) { set_redundancy(refl, 0); continue; } intensity = get_intensity(refl) / red; set_intensity(refl, intensity); sumsq = get_temp1(refl) / red; esd = sqrt(sumsq - pow(intensity, 2.0)) / sqrt(red); set_esd_intensity(refl, esd); } return 0; } int main(int argc, char *argv[]) { int c; char *filename = NULL; char *output = NULL; Stream *st; RefList *model; int config_maxonly = 0; int config_sum = 0; int config_scale = 0; char *sym_str = NULL; SymOpList *sym; char *histo = NULL; signed int hist_h, hist_k, hist_l; signed int hist_nbins=50; float hist_min=0.0, hist_max=0.0; double *hist_vals = NULL; int hist_i; int space_for_hist = 0; char *histo_params = NULL; int config_nopolar = 0; char *rval; int min_measurements = 2; int r; int start_after = 0; int stop_after = 0; /* Long options */ const struct option longopts[] = { {"help", 0, NULL, 'h'}, {"input", 1, NULL, 'i'}, {"output", 1, NULL, 'o'}, {"max-only", 0, &config_maxonly, 1}, {"output-every", 1, NULL, 'e'}, {"start-after", 1, NULL, 's'}, {"stop-after", 1, NULL, 'f'}, {"sum", 0, &config_sum, 1}, {"scale", 0, &config_scale, 1}, {"no-polarisation", 0, &config_nopolar, 1}, {"no-polarization", 0, &config_nopolar, 1}, {"symmetry", 1, NULL, 'y'}, {"histogram", 1, NULL, 'g'}, {"hist-parameters", 1, NULL, 'z'}, {"min-measurements", 1, NULL, 2}, {0, 0, NULL, 0} }; /* Short options */ while ((c = getopt_long(argc, argv, "hi:e:o:y:g:s:f:z:", longopts, NULL)) != -1) { switch (c) { case 'h' : show_help(argv[0]); return 0; case 'i' : filename = strdup(optarg); break; case 'o' : output = strdup(optarg); break; case 's' : errno = 0; start_after = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid value for --start-after.\n"); return 1; } break; case 'f' : errno = 0; stop_after = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid value for --stop-after.\n"); return 1; } break; case 'y' : sym_str = strdup(optarg); break; case 'g' : histo = strdup(optarg); break; case 'z' : histo_params = strdup(optarg); break; case 2 : errno = 0; min_measurements = strtod(optarg, &rval); if ( *rval != '\0' ) { ERROR("Invalid value for --min-measurements.\n"); return 1; } break; case '?' : break; case 0 : break; default : ERROR("Unhandled option '%c'\n", c); break; } } if ( filename == NULL ) { ERROR("Please specify filename using the -i option\n"); return 1; } if ( output == NULL ) { output = strdup("processed.hkl"); } if ( sym_str == NULL ) sym_str = strdup("1"); sym = get_pointgroup(sym_str); free(sym_str); /* Open the data stream */ st = open_stream_for_read(filename); if ( st == NULL ) { ERROR("Failed to open stream.\n"); return 1; } model = reflist_new(); if ( histo != NULL ) { int r; r = sscanf(histo, "%i,%i,%i", &hist_h, &hist_k, &hist_l); if ( r != 3 ) { ERROR("Invalid indices for '--histogram'\n"); return 1; } /* FIXME: This array must grow as necessary. */ space_for_hist = 0 * num_equivs(sym, NULL); hist_vals = malloc(space_for_hist * sizeof(double)); free(histo); STATUS("Histogramming %i %i %i -> ", hist_h, hist_k, hist_l); /* Put into the asymmetric cell for the target group */ get_asymm(sym, hist_h, hist_k, hist_l, &hist_h, &hist_k, &hist_l); STATUS("%i %i %i\n", hist_h, hist_k, hist_l); } if ( histo_params != NULL ) { int rr; rr = sscanf(histo_params, "%f,%f,%i", &hist_min, &hist_max, &hist_nbins); if ( rr != 3 ) { ERROR("Invalid parameters for '--hist-parameters'\n"); return 1; } free(histo_params); if ( hist_max <= hist_min ) { ERROR("Invalid range for '--hist-parameters'. " "Make sure that 'max' is greater than 'min'.\n"); return 1; } } hist_i = 0; r = merge_all(st, model, NULL, sym, hist_vals, hist_h, hist_k, hist_l, &hist_i, config_nopolar, min_measurements, start_after, stop_after); fprintf(stderr, "\n"); if ( r ) { ERROR("Error while reading stream.\n"); return 1; } if ( config_scale ) { RefList *reference; if ( rewind_stream(st) ) { ERROR("Couldn't rewind stream - scaling cannot be " "performed.\n"); } else { int r; STATUS("Extra pass for scaling...\n"); reference = copy_reflist(model); reflist_free(model); model = reflist_new(); r = merge_all(st, model, reference, sym, hist_vals, hist_h, hist_k, hist_l, &hist_i, config_nopolar, min_measurements, start_after, stop_after); fprintf(stderr, "\n"); if ( r ) { ERROR("Error while reading stream.\n"); return 1; } reflist_free(reference); } } if ( space_for_hist && (hist_i >= space_for_hist) ) { ERROR("Histogram array was too small!\n"); } if ( hist_vals != NULL ) { STATUS("%i %i %i was seen %i times.\n", hist_h, hist_k, hist_l, hist_i); plot_histogram(hist_vals, hist_i, hist_min, hist_max, hist_nbins); } write_reflist(output, model); close_stream(st); free(sym); reflist_free(model); free(output); return 0; }