aboutsummaryrefslogtreecommitdiff
path: root/libcrystfel/src/geometry.c
blob: 744c13eafa1eef5efb39f557868bd6ecb73d49b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*
 * geometry.c
 *
 * Geometry of diffraction
 *
 * Copyright © 2012-2013 Deutsches Elektronen-Synchrotron DESY,
 *                       a research centre of the Helmholtz Association.
 *
 * Authors:
 *   2010-2013 Thomas White <taw@physics.org>
 *
 * This file is part of CrystFEL.
 *
 * CrystFEL is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * CrystFEL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with CrystFEL.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif


#include <stdlib.h>
#include <assert.h>
#include <fenv.h>

#include "utils.h"
#include "cell.h"
#include "cell-utils.h"
#include "image.h"
#include "peaks.h"
#include "beam-parameters.h"
#include "reflist.h"
#include "reflist-utils.h"
#include "symmetry.h"
#include "geometry.h"


static signed int locate_peak(double x, double y, double z, double k,
                              struct detector *det, double *xdap, double *ydap)
{
	int i;
	signed int found = -1;
	const double den = k + z;

	*xdap = -1;  *ydap = -1;

	for ( i=0; i<det->n_panels; i++ ) {

		double xd, yd;
		double fs, ss, plx, ply;
		struct panel *p;

		p = &det->panels[i];

		/* Coordinates of peak relative to central beam, in m */
		xd = p->clen * x / den;
		yd = p->clen * y / den;

		/* Convert to pixels */
		xd *= p->res;
		yd *= p->res;

		/* Convert to relative to the panel corner */
		plx = xd - p->cnx;
		ply = yd - p->cny;

		fs = p->xfs*plx + p->yfs*ply;
		ss = p->xss*plx + p->yss*ply;

		fs += p->min_fs;
		ss += p->min_ss;

		/* Now, is this on this panel? */
		if ( fs < p->min_fs ) continue;
		if ( fs > p->max_fs ) continue;
		if ( ss < p->min_ss ) continue;
		if ( ss > p->max_ss ) continue;

		/* If peak appears on multiple panels, reject it */
		if ( found != -1 ) return -1;

		/* Woohoo! */
		found = i;
		*xdap = fs;
		*ydap = ss;

	}

	return found;
}


static double partiality(double rlow, double rhigh, double r)
{
	double qlow, qhigh;
	double plow, phigh;

	/* Calculate degrees of penetration */
	qlow  = (rlow + r)/(2.0*r);
	qhigh = (rhigh + r)/(2.0*r);

	/* Convert to partiality */
	plow  = 3.0*pow(qlow,2.0)  - 2.0*pow(qlow,3.0);
	phigh = 3.0*pow(qhigh,2.0) - 2.0*pow(qhigh,3.0);

	return plow - phigh;
}


static Reflection *check_reflection(struct image *image, Crystal *cryst,
                                    signed int h, signed int k, signed int l,
                                    double xl, double yl, double zl)
{
	const int output = 0;
	double tl;
	double rlow, rhigh;     /* "Excitation error" */
	signed int p;           /* Panel number */
	double xda, yda;        /* Position on detector */
	double part;            /* Partiality */
	int clamp_low, clamp_high;
	double klow, khigh;    /* Wavenumber */
	Reflection *refl;
	double cet, cez;
	double pr;
	double L;
	double del;

	/* Don't predict 000 */
	if ( abs(h)+abs(k)+abs(l) == 0 ) return NULL;

	pr = crystal_get_profile_radius(cryst);
	del = image->div + crystal_get_mosaicity(cryst);

	/* "low" gives the largest Ewald sphere (wavelength short => k large)
	 * "high" gives the smallest Ewald sphere (wavelength long => k small)
	 */
	klow = 1.0/(image->lambda - image->lambda*image->bw/2.0);
	khigh = 1.0/(image->lambda + image->lambda*image->bw/2.0);

	/* If the point is looking "backscattery", reject it straight away */
	if ( zl < -khigh/2.0 ) return NULL;

	tl = sqrt(xl*xl + yl*yl);

	cet = -sin(del/2.0) * khigh;
	cez = -cos(del/2.0) * khigh;
	rhigh = khigh - distance(cet, cez, tl, zl);  /* Loss of precision */

	cet =  sin(del/2.0) * klow;
	cez = -cos(del/2.0) * klow;
	rlow = klow - distance(cet, cez, tl, zl);  /* Loss of precision */

	if ( (signbit(rlow) == signbit(rhigh))
	     && (fabs(rlow) > pr)
	     && (fabs(rhigh) > pr) ) return NULL;

	if ( rlow < rhigh ) {
		ERROR("Reflection with rlow < rhigh!\n");
		ERROR("%3i %3i %3i  rlow = %e, rhigh = %e\n",
		      h, k, l, rlow, rhigh);
		ERROR("div + m = %e\n", del);
		return NULL;
	}

	/* Lorentz factor is determined direction from the r values, before
	 * clamping.  The multiplication by the profile radius is to make the
	 * correction factor vaguely near 1. */
	L = pr / (rlow - rhigh);

	/* If the "lower" Ewald sphere is a long way away, use the
	 * position at which the Ewald sphere would just touch the
	 * reflection.
	 *
	 * The six possible combinations of clamp_{low,high} (including
	 * zero) correspond to the six situations in Table 3 of Rossmann
	 * et al. (1979).
	 */
	clamp_low = 0;  clamp_high = 0;
	if ( rlow < -pr ) {
		rlow = -pr;
		clamp_low = -1;
	}
	if ( rlow > +pr ) {
		rlow = +pr;
		clamp_low = +1;
	}
	if ( rhigh < -pr ) {
		rhigh = -pr;
		clamp_high = -1;
	}
	if ( rhigh > +pr ) {
		rhigh = +pr;
		clamp_high = +1;
	}

	/* Calculate partiality */
	part = partiality(rlow, rhigh, pr);

	/* Locate peak on detector. */
	p = locate_peak(xl, yl, zl, 1.0/image->lambda, image->det, &xda, &yda);
	if ( p == -1 ) return NULL;

	/* Add peak to list */
	refl = reflection_new(h, k, l);
	set_detector_pos(refl, 0.0, xda, yda);
	set_partial(refl, rlow, rhigh, part, clamp_low, clamp_high);
	set_lorentz(refl, L);
	set_symmetric_indices(refl, h, k, l);
	set_redundancy(refl, 1);

	if ( output ) {
		printf("%3i %3i %3i %6f (at %5.2f,%5.2f) %5.2f\n",
		       h, k, l, 0.0, xda, yda, part);
	}

	return refl;
}


RefList *find_intersections(struct image *image, Crystal *cryst)
{
	double ax, ay, az;
	double bx, by, bz;
	double cx, cy, cz;
	double asx, asy, asz;
	double bsx, bsy, bsz;
	double csx, csy, csz;
	RefList *reflections;
	int hmax, kmax, lmax;
	double mres;
	signed int h, k, l;
	UnitCell *cell;

	cell = crystal_get_cell(cryst);
	if ( cell == NULL ) return NULL;

	reflections = reflist_new();

	/* Cell angle check from Foadi and Evans (2011) */
	if ( !cell_is_sensible(cell) ) {
		ERROR("Invalid unit cell parameters given to"
		      " find_intersections()\n");
		cell_print(cell);
		return NULL;
	}

	cell_get_cartesian(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);

	mres = largest_q(image);

	hmax = mres * modulus(ax, ay, az);
	kmax = mres * modulus(bx, by, bz);
	lmax = mres * modulus(cx, cy, cz);

	if ( (hmax >= 256) || (kmax >= 256) || (lmax >= 256) ) {
		ERROR("Unit cell is stupidly large.\n");
		cell_print(cell);
		if ( hmax >= 256 ) hmax = 255;
		if ( kmax >= 256 ) kmax = 255;
		if ( lmax >= 256 ) lmax = 255;
	}

	cell_get_reciprocal(cell, &asx, &asy, &asz,
	                          &bsx, &bsy, &bsz,
	                          &csx, &csy, &csz);

	for ( h=-hmax; h<=hmax; h++ ) {
	for ( k=-kmax; k<=kmax; k++ ) {
	for ( l=-lmax; l<=lmax; l++ ) {

		Reflection *refl;
		double xl, yl, zl;

		if ( forbidden_reflection(cell, h, k, l) ) continue;

		/* Get the coordinates of the reciprocal lattice point */
		xl = h*asx + k*bsx + l*csx;
		yl = h*asy + k*bsy + l*csy;
		zl = h*asz + k*bsz + l*csz;

		refl = check_reflection(image, cryst, h, k, l, xl, yl, zl);

		if ( refl != NULL ) {
			add_refl_to_list(refl, reflections);
		}

	}
	}
	}

	return reflections;
}


RefList *select_intersections(struct image *image, Crystal *cryst)
{
	double ax, ay, az;
	double bx, by, bz;
	double cx, cy, cz;
	const double min_dist = 0.25;
	RefList *list;
	int i;

	/* Round towards nearest */
	fesetround(1);

	/* Cell basis vectors for this image */
	cell_get_cartesian(crystal_get_cell(cryst), &ax, &ay, &az,
	                   &bx, &by, &bz, &cx, &cy, &cz);

	list = reflist_new();
	if ( list == NULL ) return NULL;

	/* Loop over peaks, checking proximity to nearest reflection */
	for ( i=0; i<image_feature_count(image->features); i++ ) {

		struct imagefeature *f;
		struct rvec q;
		double h, k, l, hd, kd, ld;
		double dsq;

		f = image_get_feature(image->features, i);
		if ( f == NULL ) continue;

		/* Reciprocal space position of found peak */
		q = get_q(image, f->fs, f->ss, NULL, 1.0/image->lambda);

		/* Decimal and fractional Miller indices of nearest
		 * reciprocal lattice point */
		hd = q.u * ax + q.v * ay + q.w * az;
		kd = q.u * bx + q.v * by + q.w * bz;
		ld = q.u * cx + q.v * cy + q.w * cz;
		h = lrint(hd);
		k = lrint(kd);
		l = lrint(ld);

		/* Check distance */
		dsq = pow(h-hd, 2.0) + pow(k-kd, 2.0) + pow(l-ld, 2.0);

		if ( sqrt(dsq) < min_dist ) {

			Reflection *refl;

			refl = add_refl(list, h, k, l);
			set_detector_pos(refl, sqrt(dsq), f->fs, f->ss);

		}

	}

	return list;
}


static void set_unity_partialities(Crystal *cryst)
{
	Reflection *refl;
	RefListIterator *iter;

	for ( refl = first_refl(crystal_get_reflections(cryst), &iter);
	      refl != NULL;
	      refl = next_refl(refl, iter) )
	{
		set_partiality(refl, 1.0);
		set_lorentz(refl, 1.0);
	}
}


/* Calculate partialities and apply them to the image's reflections */
void update_partialities(Crystal *cryst, PartialityModel pmodel)
{
	Reflection *refl;
	RefListIterator *iter;
	double asx, asy, asz;
	double bsx, bsy, bsz;
	double csx, csy, csz;
	struct image *image = crystal_get_image(cryst);

	if ( pmodel == PMODEL_UNITY ) {
		/* It isn't strictly necessary to set the partialities to 1,
		 * because the scaling stuff will just a correction factor of
		 * 1 anyway.  This is just to help things make sense. */
		set_unity_partialities(cryst);
		return;
	}

	cell_get_reciprocal(crystal_get_cell(cryst), &asx, &asy, &asz,
	                    &bsx, &bsy, &bsz, &csx, &csy, &csz);

	for ( refl = first_refl(crystal_get_reflections(cryst), &iter);
	      refl != NULL;
	      refl = next_refl(refl, iter) )
	{
		Reflection *vals;
		double r1, r2, L, p, x, y;
		double xl, yl, zl;
		signed int h, k, l;
		int clamp1, clamp2;

		get_symmetric_indices(refl, &h, &k, &l);

		/* Get the coordinates of the reciprocal lattice point */
		xl = h*asx + k*bsx + l*csx;
		yl = h*asy + k*bsy + l*csy;
		zl = h*asz + k*bsz + l*csz;

		vals = check_reflection(image, cryst, h, k, l, xl, yl, zl);

		if ( vals == NULL ) {
			set_redundancy(refl, 0);
			continue;
		}
		set_redundancy(refl, 1);

		/* Transfer partiality stuff */
		get_partial(vals, &r1, &r2, &p, &clamp1, &clamp2);
		set_partial(refl, r1, r2, p, clamp1, clamp2);
		L = get_lorentz(vals);
		set_lorentz(refl, L);

		/* Transfer detector location */
		get_detector_pos(vals, &x, &y);
		set_detector_pos(refl, 0.0, x, y);

		reflection_free(vals);
	}
}


void polarisation_correction(RefList *list, UnitCell *cell, struct image *image)
{
	Reflection *refl;
	RefListIterator *iter;
	double asx, asy, asz;
	double bsx, bsy, bsz;
	double csx, csy, csz;

	cell_get_reciprocal(cell, &asx, &asy, &asz,
	                          &bsx, &bsy, &bsz,
	                          &csx, &csy, &csz);

	for ( refl = first_refl(list, &iter);
	      refl != NULL;
	      refl = next_refl(refl, iter) )
	{
		double pol, pa, pb, phi, tt, ool;
		double intensity;
		double xl, yl, zl;
		signed int h, k, l;

		get_indices(refl, &h, &k, &l);

		/* Polarisation correction assuming 100% polarisation
		 * along the x direction */
		xl = h*asx + k*bsx + l*csx;
		yl = h*asy + k*bsy + l*csy;
		zl = h*asz + k*bsz + l*csz;

		ool = 1.0 / image->lambda;
		tt = angle_between(0.0, 0.0, 1.0,  xl, yl, zl+ool);
		phi = atan2(yl, xl);
		pa = pow(sin(phi)*sin(tt), 2.0);
		pb = pow(cos(tt), 2.0);
		pol = 1.0 - 2.0*(1.0-pa) + (1.0+pb);

		intensity = get_intensity(refl);
		set_intensity(refl, intensity / pol);
	}
}