1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
|
/*
* taketwo.c
*
* Rewrite of TakeTwo algorithm (Acta D72 (8) 956-965) for CrystFEL
*
* Copyright © 2016-2017 Helen Ginn
* Copyright © 2016-2020 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2016-2017 Helen Ginn <helen@strubi.ox.ac.uk>
* 2016-2017 Thomas White <taw@physics.org>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* \file taketwo.h
* ## Code outline
* ### Get ready for calculation
* * Pre-calculate symmetry operations (generate_rotation_symops())
* * Pre-calculate theoretical vectors from unit cell dimensions
* (gen_theoretical_vecs())
* * Generate observed vectors from data (gen_observed_vecs())
* * Match observed vectors to theoretical vectors (match_obs_to_cell_vecs())
*
* ### Business bit
*
* ... n.b. rearranging to find all seeds in advance.
*
* * Find starting seeds (find_seeds()):
* - Loop through pairs of observed vectors
* - If they share a spot, find matching pairs of theoretical vectors
* - Remove all duplicate matches due to symmetry operations
* - For the remainder, loop through the matches and extend the seeds
* (start_seed()).
* - If it returns a membership greater than the highest member threshold,
* return the matrix to CrystFEL.
*
* * Extending a seed (start_seed()):
* - Generate a rotation matrix which matches the chosen start seed.
* - Loop through all observed vectors starting from 0.
* - Find another vector to add to the network, if available
* (find_next_index()).
* - If the index is not available, then give up if there were too many dead
* ends. Otherwise, remove the last member and pretend like that didn't
* happen, so it won't happen again.
* - Add the vector to increment the membership list.
* - If the membership number exceeds the maximum, tidy up the solution and
* return a success.
* - If the membership does not, then resume the loop and search for the
* next vector.
*
* * Finding the next member (find_next_index()):
* - Go through the observed vectors, starting from the last index + 1 to
* explore only the "new" vectors.
* - If the vector does not share a spot with the current array of vectors,
* then skip it.
* - We must loop through all the current vectors in the network, and see if
* they match the newcomer for a given matching theoretical vector.
* - We only accept a match if the rotation matrix matches the seed matrix
* for a single matching theoretical vector.
* - If it does match, we can return a success.
*
* * Tidying the solution (finish_solution()):
* - This chooses the most common rotation matrix of the bunch to choose to
* send to CrystFEL. But this should probably take the average instead,
* which is very possible.
*
* * Clean up the mess (cleanup_taketwo_obs_vecs())
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <float.h>
#include <math.h>
#include <assert.h>
#include <time.h>
#include "cell.h"
#include "cell-utils.h"
#include "index.h"
#include "taketwo.h"
#include "peaks.h"
#include "symmetry.h"
struct taketwo_options
{
int member_thresh;
double len_tol;
double angle_tol;
double trace_tol;
};
/**
* \param obsvec an observed vector between two spots
* \param matches array of matching theoretical vectors from unit cell
* \param match_num number of matches
* \param distance length of obsvec (do I need this?)
* \param her_rlp pointer to first rlp position for difference vec
* \param his_rlp pointer to second rlp position for difference vec
*
* Structure representing 3D vector between two potential Bragg peaks
* in reciprocal space, and an array of potential matching theoretical
* vectors from unit cell/centering considerations.
**/
struct SpotVec
{
struct rvec obsvec;
struct TheoryVec *matches;
int match_num;
int assignment;
int in_network;
double distance;
struct rvec *her_rlp;
struct rvec *his_rlp;
};
/**
* theoryvec
*/
struct TheoryVec
{
struct rvec vec;
int asym;
};
/**
* seed
*/
struct Seed
{
int obs1;
int obs2;
int idx1;
int idx2;
double score;
};
struct taketwo_private
{
IndexingMethod indm;
struct taketwo_options *opts;
UnitCell *cell;
int serial_num; /**< Serial of last image, -1 if unassigned */
unsigned int xtal_num; /**< last number of crystals recorded */
struct TheoryVec *theory_vecs; /**< Theoretical vectors for given unit cell */
unsigned int vec_count; /**< Number of theoretical vectors */
gsl_matrix **prevSols; /**< Previous solutions to be ignored */
unsigned int numPrevs; /**< Previous solution count */
double *prevScores; /**< previous solution scores */
unsigned int *membership; /**< previous solution was success or failure */
};
/**
* Internal structure which gets passed the various functions looking after
* the indexing bits and bobs. */
struct TakeTwoCell
{
UnitCell *cell; /**< Contains unit cell dimensions */
gsl_matrix **rotSymOps;
unsigned int numOps;
struct SpotVec *obs_vecs;
struct Seed *seeds;
int seed_count;
int obs_vec_count;
/* Options */
int member_thresh;
double len_tol; /**< In reciprocal metres */
double angle_tol; /**< In radians */
double trace_tol; /**< Contains sqrt(4*(1-cos(angle))) */
/** A given solution to refine */
gsl_matrix *solution;
double x_ang; /**< Rotations in radians to apply to x axis of solution */
double y_ang; /**< Rotations in radians to apply to y axis of solution */
double z_ang; /**< Rotations in radians to apply to z axis of solution */
/**< Temporary memory always allocated for calculations */
gsl_matrix *twiz1Tmp;
/**< Temporary memory always allocated for calculations */
gsl_matrix *twiz2Tmp;
/**< Temporary memory always allocated for calculations */
gsl_vector *vec1Tmp;
/**< Temporary memory always allocated for calculations */
gsl_vector *vec2Tmp;
};
/* Maximum distance between two rlp sizes to consider info for indexing */
#define MAX_RECIP_DISTANCE (0.15*1e10)
/* Tolerance for two lengths in reciprocal space to be considered the same */
#define RECIP_TOLERANCE (0.0010*1e10)
/* Threshold for network members to consider a potential solution */
#define NETWORK_MEMBER_THRESHOLD (20)
/* Minimum for network members to consider a potential solution */
#define MINIMUM_MEMBER_THRESHOLD (5)
/* Maximum dead ends for a single branch extension during indexing */
#define MAX_DEAD_ENDS (10)
/* Maximum observed vectors before TakeTwo gives up and deals with
* what is already there. */
#define MAX_OBS_VECTORS 100000
/* Tolerance for two angles to be considered the same */
#define ANGLE_TOLERANCE (deg2rad(0.6))
/* Tolerance for rot_mats_are_similar */
#define TRACE_TOLERANCE (deg2rad(3.0))
/* Initial step size for refinement of solutions */
#define ANGLE_STEP_SIZE (deg2rad(0.5))
/* Final required step size for refinement of solutions */
#define ANGLE_CONVERGE_SIZE (deg2rad(0.01))
/* TODO: Multiple lattices */
/* ------------------------------------------------------------------------
* apologetic function
* ------------------------------------------------------------------------*/
void apologise()
{
printf("Error - could not allocate memory for indexing.\n");
}
/* ------------------------------------------------------------------------
* functions concerning aspects of rvec which are very likely to be
* incorporated somewhere else in CrystFEL and therefore may need to be
* deleted and references connected to a pre-existing function. (Lowest level)
* ------------------------------------------------------------------------*/
static struct rvec new_rvec(double new_u, double new_v, double new_w)
{
struct rvec new_rvector;
new_rvector.u = new_u;
new_rvector.v = new_v;
new_rvector.w = new_w;
return new_rvector;
}
static struct rvec rvec_add_rvec(struct rvec first, struct rvec second)
{
struct rvec diff = new_rvec(second.u + first.u,
second.v + first.v,
second.w + first.w);
return diff;
}
static struct rvec diff_vec(struct rvec from, struct rvec to)
{
struct rvec diff = new_rvec(to.u - from.u,
to.v - from.v,
to.w - from.w);
return diff;
}
static double sq_length(struct rvec vec)
{
double sqlength = (vec.u * vec.u + vec.v * vec.v + vec.w * vec.w);
return sqlength;
}
static double rvec_length(struct rvec vec)
{
return sqrt(sq_length(vec));
}
static void normalise_rvec(struct rvec *vec)
{
double length = rvec_length(*vec);
vec->u /= length;
vec->v /= length;
vec->w /= length;
}
static double rvec_cosine(struct rvec v1, struct rvec v2)
{
double dot_prod = v1.u * v2.u + v1.v * v2.v + v1.w * v2.w;
double v1_length = rvec_length(v1);
double v2_length = rvec_length(v2);
double cos_theta = dot_prod / (v1_length * v2_length);
return cos_theta;
}
static double rvec_angle(struct rvec v1, struct rvec v2)
{
double cos_theta = rvec_cosine(v1, v2);
double angle = acos(cos_theta);
return angle;
}
static struct rvec rvec_cross(struct rvec a, struct rvec b)
{
struct rvec c;
c.u = a.v*b.w - a.w*b.v;
c.v = -(a.u*b.w - a.w*b.u);
c.w = a.u*b.v - a.v*b.u;
return c;
}
/*
static void show_rvec(struct rvec r2)
{
struct rvec r = r2;
normalise_rvec(&r);
STATUS("[ %.3f %.3f %.3f ]\n", r.u, r.v, r.w);
}
*/
/* ------------------------------------------------------------------------
* functions called under the core functions, still specialised (Level 3)
* ------------------------------------------------------------------------*/
/* cell_transform_gsl_direct() doesn't do quite what we want here.
* The matrix m should be post-multiplied by a matrix of real or reciprocal
* basis vectors (it doesn't matter which because it's just a rotation).
* M contains the basis vectors written in columns: M' = mM */
static UnitCell *cell_post_smiley_face(UnitCell *in, gsl_matrix *m)
{
gsl_matrix *c;
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
gsl_matrix *res;
UnitCell *out;
cell_get_cartesian(in, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
c = gsl_matrix_alloc(3, 3);
gsl_matrix_set(c, 0, 0, asx);
gsl_matrix_set(c, 1, 0, asy);
gsl_matrix_set(c, 2, 0, asz);
gsl_matrix_set(c, 0, 1, bsx);
gsl_matrix_set(c, 1, 1, bsy);
gsl_matrix_set(c, 2, 1, bsz);
gsl_matrix_set(c, 0, 2, csx);
gsl_matrix_set(c, 1, 2, csy);
gsl_matrix_set(c, 2, 2, csz);
res = gsl_matrix_calloc(3, 3);
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, m, c, 0.0, res);
out = cell_new_from_cell(in);
cell_set_cartesian(out, gsl_matrix_get(res, 0, 0),
gsl_matrix_get(res, 1, 0),
gsl_matrix_get(res, 2, 0),
gsl_matrix_get(res, 0, 1),
gsl_matrix_get(res, 1, 1),
gsl_matrix_get(res, 2, 1),
gsl_matrix_get(res, 0, 2),
gsl_matrix_get(res, 1, 2),
gsl_matrix_get(res, 2, 2));
gsl_matrix_free(res);
gsl_matrix_free(c);
return out;
}
static void rotation_around_axis(struct rvec c, double th,
gsl_matrix *res)
{
double omc = 1.0 - cos(th);
double s = sin(th);
gsl_matrix_set(res, 0, 0, cos(th) + c.u*c.u*omc);
gsl_matrix_set(res, 0, 1, c.u*c.v*omc - c.w*s);
gsl_matrix_set(res, 0, 2, c.u*c.w*omc + c.v*s);
gsl_matrix_set(res, 1, 0, c.u*c.v*omc + c.w*s);
gsl_matrix_set(res, 1, 1, cos(th) + c.v*c.v*omc);
gsl_matrix_set(res, 1, 2, c.v*c.w*omc - c.u*s);
gsl_matrix_set(res, 2, 0, c.w*c.u*omc - c.v*s);
gsl_matrix_set(res, 2, 1, c.w*c.v*omc + c.u*s);
gsl_matrix_set(res, 2, 2, cos(th) + c.w*c.w*omc);
}
/** Rotate GSL matrix by three angles along x, y and z axes */
static void rotate_gsl_by_angles(gsl_matrix *sol, double x, double y,
double z, gsl_matrix *result)
{
gsl_matrix *x_rot = gsl_matrix_alloc(3, 3);
gsl_matrix *y_rot = gsl_matrix_alloc(3, 3);
gsl_matrix *z_rot = gsl_matrix_alloc(3, 3);
gsl_matrix *xy_rot = gsl_matrix_alloc(3, 3);
gsl_matrix *xyz_rot = gsl_matrix_alloc(3, 3);
struct rvec x_axis = new_rvec(1, 0, 0);
struct rvec y_axis = new_rvec(1, 0, 0);
struct rvec z_axis = new_rvec(1, 0, 0);
rotation_around_axis(x_axis, x, x_rot);
rotation_around_axis(y_axis, y, y_rot);
rotation_around_axis(z_axis, z, z_rot);
/* Collapse the rotations in x and y onto z */
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, x_rot,
y_rot, 0.0, xy_rot);
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, xy_rot,
z_rot, 0.0, xyz_rot);
/* Apply the whole rotation offset to the solution */
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, xyz_rot,
sol, 0.0, result);
gsl_matrix_free(x_rot);
gsl_matrix_free(y_rot);
gsl_matrix_free(z_rot);
gsl_matrix_free(xy_rot);
gsl_matrix_free(xyz_rot);
}
/* Rotate vector (vec1) around axis (axis) by angle theta. Find value of
* theta for which the angle between (vec1) and (vec2) is minimised. */
static void closest_rot_mat(struct rvec vec1, struct rvec vec2,
struct rvec axis, gsl_matrix *twizzle)
{
/* Let's have unit vectors */
normalise_rvec(&vec1);
normalise_rvec(&vec2);
normalise_rvec(&axis);
/* Redeclaring these to try and maintain readability and
* check-ability against the maths I wrote down */
double a = vec2.u; double b = vec2.v; double c = vec2.w;
double p = vec1.u; double q = vec1.v; double r = vec1.w;
double x = axis.u; double y = axis.v; double z = axis.w;
/* Components in handwritten maths online when I upload it */
double A = a*(p*x*x - p + x*y*q + x*z*r) +
b*(p*x*y + q*y*y - q + r*y*z) +
c*(p*x*z + q*y*z + r*z*z - r);
double B = a*(y*r - z*q) + b*(p*z - r*x) + c*(q*x - p*y);
double tan_theta = - B / A;
double theta = atan(tan_theta);
/* Now we have two possible solutions, theta or theta+pi
* and we need to work out which one. This could potentially be
* simplified - do we really need so many cos/sins? maybe check
* the 2nd derivative instead? */
double cc = cos(theta);
double C = 1 - cc;
double s = sin(theta);
double occ = -cc;
double oC = 1 - occ;
double os = -s;
double pPrime = (x*x*C+cc)*p + (x*y*C-z*s)*q + (x*z*C+y*s)*r;
double qPrime = (y*x*C+z*s)*p + (y*y*C+cc)*q + (y*z*C-x*s)*r;
double rPrime = (z*x*C-y*s)*p + (z*y*C+x*s)*q + (z*z*C+cc)*r;
double pDbPrime = (x*x*oC+occ)*p + (x*y*oC-z*os)*q + (x*z*oC+y*os)*r;
double qDbPrime = (y*x*oC+z*os)*p + (y*y*oC+occ)*q + (y*z*oC-x*os)*r;
double rDbPrime = (z*x*oC-y*os)*p + (z*y*oC+x*os)*q + (z*z*oC+occ)*r;
double cosAlpha = pPrime * a + qPrime * b + rPrime * c;
double cosAlphaOther = pDbPrime * a + qDbPrime * b + rDbPrime * c;
int addPi = (cosAlphaOther > cosAlpha);
double bestAngle = theta + addPi * M_PI;
/* Don't return an identity matrix which has been rotated by
* theta around "axis", but do assign it to twizzle. */
rotation_around_axis(axis, bestAngle, twizzle);
}
static double matrix_trace(gsl_matrix *a)
{
int i;
double tr = 0.0;
assert(a->size1 == a->size2);
for ( i=0; i<a->size1; i++ ) {
tr += gsl_matrix_get(a, i, i);
}
return tr;
}
static char *add_ua(const char *inp, char ua)
{
char *pg = malloc(64);
if ( pg == NULL ) return NULL;
snprintf(pg, 63, "%s_ua%c", inp, ua);
return pg;
}
static char *get_chiral_holohedry(UnitCell *cell)
{
LatticeType lattice = cell_get_lattice_type(cell);
char *pg;
char *pgout = 0;
switch (lattice)
{
case L_TRICLINIC:
pg = "1";
break;
case L_MONOCLINIC:
pg = "2";
break;
case L_ORTHORHOMBIC:
pg = "222";
break;
case L_TETRAGONAL:
pg = "422";
break;
case L_RHOMBOHEDRAL:
pg = "3_R";
break;
case L_HEXAGONAL:
if ( cell_get_centering(cell) == 'H' ) {
pg = "3_H";
} else {
pg = "622";
}
break;
case L_CUBIC:
pg = "432";
break;
default:
pg = "error";
break;
}
switch (lattice)
{
case L_TRICLINIC:
case L_ORTHORHOMBIC:
case L_RHOMBOHEDRAL:
case L_CUBIC:
pgout = strdup(pg);
break;
case L_MONOCLINIC:
case L_TETRAGONAL:
case L_HEXAGONAL:
pgout = add_ua(pg, cell_get_unique_axis(cell));
break;
default:
break;
}
return pgout;
}
static SymOpList *sym_ops_for_cell(UnitCell *cell)
{
SymOpList *rawList;
char *pg = get_chiral_holohedry(cell);
rawList = get_pointgroup(pg);
free(pg);
return rawList;
}
static int rot_mats_are_similar(gsl_matrix *rot1, gsl_matrix *rot2,
gsl_matrix *sub, gsl_matrix *mul,
double *score, struct TakeTwoCell *cell)
{
double tr;
gsl_matrix_memcpy(sub, rot1);
gsl_matrix_sub(sub, rot2); /* sub = rot1 - rot2 */
gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, sub, sub, 0.0, mul);
tr = matrix_trace(mul);
if (score != NULL) *score = tr;
return (tr < cell->trace_tol);
}
static int symm_rot_mats_are_similar(gsl_matrix *rot1, gsl_matrix *rot2,
struct TakeTwoCell *cell)
{
int i;
gsl_matrix *sub = gsl_matrix_calloc(3, 3);
gsl_matrix *mul = gsl_matrix_calloc(3, 3);
for (i = 0; i < cell->numOps; i++) {
gsl_matrix *testRot = gsl_matrix_alloc(3, 3);
gsl_matrix *symOp = cell->rotSymOps[i];
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, rot1, symOp,
0.0, testRot);
if (rot_mats_are_similar(testRot, rot2, sub, mul, NULL, cell)) {
gsl_matrix_free(testRot);
gsl_matrix_free(sub);
gsl_matrix_free(mul);
return 1;
}
gsl_matrix_free(testRot);
}
gsl_matrix_free(sub);
gsl_matrix_free(mul);
return 0;
}
static void rotation_between_vectors(struct rvec a, struct rvec b,
gsl_matrix *twizzle)
{
double th = rvec_angle(a, b);
struct rvec c = rvec_cross(a, b);
normalise_rvec(&c);
rotation_around_axis(c, th, twizzle);
}
static void rvec_to_gsl(gsl_vector *newVec, struct rvec v)
{
gsl_vector_set(newVec, 0, v.u);
gsl_vector_set(newVec, 1, v.v);
gsl_vector_set(newVec, 2, v.w);
}
struct rvec gsl_to_rvec(gsl_vector *a)
{
struct rvec v;
v.u = gsl_vector_get(a, 0);
v.v = gsl_vector_get(a, 1);
v.w = gsl_vector_get(a, 2);
return v;
}
/* Code me in gsl_matrix language to copy the contents of the function
* in cppxfel (IndexingSolution::createSolution). This function is quite
* intensive on the number crunching side so simple angle checks are used
* to 'pre-scan' vectors beforehand. */
static gsl_matrix *generate_rot_mat(struct rvec obs1, struct rvec obs2,
struct rvec cell1, struct rvec cell2,
struct TakeTwoCell *cell)
{
gsl_matrix *fullMat;
rvec_to_gsl(cell->vec1Tmp, cell2);
normalise_rvec(&obs1);
normalise_rvec(&obs2);
normalise_rvec(&cell1);
normalise_rvec(&cell2);
/* Rotate reciprocal space so that the first simulated vector lines up
* with the observed vector. */
rotation_between_vectors(cell1, obs1, cell->twiz1Tmp);
normalise_rvec(&obs1);
/* Multiply cell2 by rotateSpotDiffMatrix --> cell2vr */
gsl_blas_dgemv(CblasNoTrans, 1.0, cell->twiz1Tmp, cell->vec1Tmp,
0.0, cell->vec2Tmp);
/* Now we twirl around the firstAxisUnit until the rotated simulated
* vector matches the second observed vector as closely as possible. */
closest_rot_mat(gsl_to_rvec(cell->vec2Tmp), obs2, obs1, cell->twiz2Tmp);
/* We want to apply the first matrix and then the second matrix,
* so we multiply these. */
fullMat = gsl_matrix_calloc(3, 3);
gsl_blas_dgemm(CblasTrans, CblasTrans, 1.0,
cell->twiz1Tmp, cell->twiz2Tmp, 0.0, fullMat);
gsl_matrix_transpose(fullMat);
return fullMat;
}
static int obs_vecs_share_spot(struct SpotVec *her_obs, struct SpotVec *his_obs)
{
if ( (her_obs->her_rlp == his_obs->her_rlp) ||
(her_obs->her_rlp == his_obs->his_rlp) ||
(her_obs->his_rlp == his_obs->her_rlp) ||
(her_obs->his_rlp == his_obs->his_rlp) ) {
return 1;
}
return 0;
}
static int obs_shares_spot_w_array(struct SpotVec *obs_vecs, int test_idx,
int *members, int num)
{
int i;
struct SpotVec *her_obs = &obs_vecs[test_idx];
for ( i=0; i<num; i++ ) {
struct SpotVec *his_obs = &obs_vecs[members[i]];
int shares = obs_vecs_share_spot(her_obs, his_obs);
if ( shares ) return 1;
}
return 0;
}
static int obs_vecs_match_angles(int her, int his,
struct Seed **seeds, int *match_count,
struct TakeTwoCell *cell)
{
struct SpotVec *obs_vecs = cell->obs_vecs;
struct SpotVec *her_obs = &obs_vecs[her];
struct SpotVec *his_obs = &obs_vecs[his];
*match_count = 0;
double min_angle = deg2rad(2.5);
double max_angle = deg2rad(187.5);
/* calculate angle between observed vectors */
double obs_angle = rvec_angle(her_obs->obsvec, his_obs->obsvec);
/* calculate angle between all potential theoretical vectors */
int i, j;
for ( i=0; i<her_obs->match_num; i++ ) {
for ( j=0; j<his_obs->match_num; j++ ) {
double score = 0;
struct rvec *her_match = &her_obs->matches[i].vec;
struct rvec *his_match = &his_obs->matches[j].vec;
double her_dist = rvec_length(*her_match);
double his_dist = rvec_length(*his_match);
double theory_angle = rvec_angle(*her_match,
*his_match);
/* is this angle a match? */
double angle_diff = fabs(theory_angle - obs_angle);
/* within basic tolerance? */
if ( angle_diff != angle_diff ||
angle_diff > cell->angle_tol ) {
continue;
}
double add = angle_diff;
if (add == add) {
score += add * her_dist * his_dist;
}
/* If the angles are too close to 0
or 180, one axis ill-determined */
if (theory_angle < min_angle ||
theory_angle > max_angle) {
continue;
}
/* check that third vector adequately completes
* triangle */
struct rvec theory_diff = diff_vec(*his_match, *her_match);
struct rvec obs_diff = diff_vec(his_obs->obsvec,
her_obs->obsvec);
theory_angle = rvec_angle(*her_match,
theory_diff);
obs_angle = rvec_angle(her_obs->obsvec, obs_diff);
angle_diff = fabs(obs_angle - theory_angle);
double diff_dist = rvec_length(obs_diff);
if (angle_diff > ANGLE_TOLERANCE) {
continue;
}
add = angle_diff;
if (add == add) {
score += add * her_dist * diff_dist;
}
theory_angle = rvec_angle(*his_match,
theory_diff);
obs_angle = rvec_angle(his_obs->obsvec, obs_diff);
if (fabs(obs_angle - theory_angle) > ANGLE_TOLERANCE) {
continue;
}
add = angle_diff;
if (add == add) {
score += add * his_dist * diff_dist;
}
/* we add a new seed to the array */
size_t new_size = (*match_count + 1);
new_size *= sizeof(struct Seed);
/* Reallocate the array to fit in another match */
struct Seed *tmp_seeds = realloc(*seeds, new_size);
if ( tmp_seeds == NULL ) {
apologise();
}
(*seeds) = tmp_seeds;
(*seeds)[*match_count].obs1 = her;
(*seeds)[*match_count].obs2 = his;
(*seeds)[*match_count].idx1 = i;
(*seeds)[*match_count].idx2 = j;
(*seeds)[*match_count].score = score * 1000;
(*match_count)++;
}
}
return (*match_count > 0);
}
/* ------------------------------------------------------------------------
* core functions regarding the meat of the TakeTwo algorithm (Level 2)
* ------------------------------------------------------------------------*/
static signed int finish_solution(gsl_matrix *rot, struct SpotVec *obs_vecs,
int *obs_members, int *match_members,
int member_num, struct TakeTwoCell *cell)
{
gsl_matrix *sub = gsl_matrix_calloc(3, 3);
gsl_matrix *mul = gsl_matrix_calloc(3, 3);
gsl_matrix **rotations = malloc(sizeof(*rotations)* pow(member_num, 2)
- member_num);
int i, j, count;
count = 0;
for ( i=0; i<1; i++ ) {
for ( j=0; j<member_num; j++ ) {
if (i == j) continue;
struct SpotVec i_vec = obs_vecs[obs_members[i]];
struct SpotVec j_vec = obs_vecs[obs_members[j]];
struct rvec i_obsvec = i_vec.obsvec;
struct rvec j_obsvec = j_vec.obsvec;
struct rvec i_cellvec = i_vec.matches[match_members[i]].vec;
struct rvec j_cellvec = j_vec.matches[match_members[j]].vec;
rotations[count] = generate_rot_mat(i_obsvec, j_obsvec,
i_cellvec, j_cellvec,
cell);
count++;
}
}
double min_score = FLT_MAX;
int min_rot_index = 0;
for (i=0; i<count; i++) {
double current_score = 0;
for (j=0; j<count; j++) {
double addition;
rot_mats_are_similar(rotations[i], rotations[j],
sub, mul,
&addition, cell);
current_score += addition;
}
if (current_score < min_score) {
min_score = current_score;
min_rot_index = i;
}
}
gsl_matrix_memcpy(rot, rotations[min_rot_index]);
for (i=0; i<count; i++) {
gsl_matrix_free(rotations[i]);
}
free(rotations);
gsl_matrix_free(sub);
gsl_matrix_free(mul);
return 1;
}
gsl_matrix *rot_mat_from_indices(int her, int his,
int her_match, int his_match,
struct TakeTwoCell *cell)
{
struct SpotVec *obs_vecs = cell->obs_vecs;
struct SpotVec *her_obs = &obs_vecs[her];
struct SpotVec *his_obs = &obs_vecs[his];
struct rvec i_obsvec = her_obs->obsvec;
struct rvec j_obsvec = his_obs->obsvec;
struct rvec i_cellvec = her_obs->matches[her_match].vec;
struct rvec j_cellvec = his_obs->matches[his_match].vec;
gsl_matrix *mat = generate_rot_mat(i_obsvec, j_obsvec,
i_cellvec, j_cellvec, cell);
return mat;
}
static int weed_duplicate_matches(struct Seed **seeds,
int *match_count, struct TakeTwoCell *cell)
{
int num_occupied = 0;
gsl_matrix **old_mats = calloc(*match_count, sizeof(gsl_matrix *));
if (old_mats == NULL)
{
apologise();
return 0;
}
signed int i, j;
int duplicates = 0;
/* Now we weed out the self-duplicates from the remaining batch */
for (i = *match_count - 1; i >= 0; i--) {
int her_match = (*seeds)[i].idx1;
int his_match = (*seeds)[i].idx2;
gsl_matrix *mat;
mat = rot_mat_from_indices((*seeds)[i].obs1, (*seeds)[i].obs2,
her_match, his_match, cell);
int found = 0;
for (j = 0; j < num_occupied; j++) {
if (old_mats[j] && mat &&
symm_rot_mats_are_similar(old_mats[j], mat, cell))
{
// we have found a duplicate, so flag as bad.
(*seeds)[i].idx1 = -1;
(*seeds)[i].idx2 = -1;
found = 1;
duplicates++;
gsl_matrix_free(mat);
break;
}
}
if (!found) {
// we have not found a duplicate, add to list.
old_mats[num_occupied] = mat;
num_occupied++;
}
}
for (i = 0; i < num_occupied; i++) {
if (old_mats[i]) {
gsl_matrix_free(old_mats[i]);
}
}
free(old_mats);
return 1;
}
static signed int find_next_index(gsl_matrix *rot, int *obs_members,
int *match_members, int start, int member_num,
int *match_found, struct TakeTwoCell *cell)
{
struct SpotVec *obs_vecs = cell->obs_vecs;
int obs_vec_count = cell->obs_vec_count;
gsl_matrix *sub = gsl_matrix_calloc(3, 3);
gsl_matrix *mul = gsl_matrix_calloc(3, 3);
int i, j, k;
for ( i=start; i<obs_vec_count; i++ ) {
/* If we've considered this vector before, ignore it */
if (obs_vecs[i].in_network == 1)
{
continue;
}
/* first we check for a shared spot - harshest condition */
int shared = obs_shares_spot_w_array(obs_vecs, i, obs_members,
member_num);
if ( !shared ) continue;
int all_ok = 1;
int matched = -1;
/* Check all existing members are happy to let in the newcomer */
for ( j=0; j<member_num && all_ok; j++ ) {
struct SpotVec *me = &obs_vecs[i];
struct SpotVec *you = &obs_vecs[obs_members[j]];
struct rvec you_cell;
you_cell = you->matches[match_members[j]].vec;
struct rvec me_obs = me->obsvec;
struct rvec you_obs = you->obsvec;
int one_is_okay = 0;
/* Loop through all possible theoretical vector
* matches for the newcomer.. */
for ( k=0; k<me->match_num; k++ ) {
gsl_matrix *test_rot;
struct rvec me_cell = me->matches[k].vec;
test_rot = generate_rot_mat(me_obs,
you_obs, me_cell, you_cell,
cell);
double trace = 0;
int ok = rot_mats_are_similar(rot, test_rot,
sub, mul, &trace, cell);
gsl_matrix_free(test_rot);
if (ok) {
one_is_okay = 1;
/* We are only happy if the vector
* matches for only one kind of
* theoretical vector. We don't want to
* accept mixtures of theoretical vector
* matches. */
if (matched >= 0 && k == matched) {
*match_found = k;
} else if (matched < 0) {
matched = k;
} else {
one_is_okay = 0;
break;
}
}
}
if (!one_is_okay) {
all_ok = 0;
break;
}
}
if (all_ok) {
gsl_matrix_free(sub);
gsl_matrix_free(mul);
return i;
}
}
/* give up. */
gsl_matrix_free(sub);
gsl_matrix_free(mul);
return -1;
}
/**
* Reward target function for refining solution to all vectors in a
* given image. Sum of exponentials of the negative distances, which
* means that the reward decays as the distance from the nearest
* theoretical vector reduces. */
static double obs_to_sol_score(struct TakeTwoCell *ttCell)
{
double total = 0;
int count = 0;
int i;
gsl_matrix *solution = ttCell->solution;
gsl_matrix *full_rot = gsl_matrix_alloc(3, 3);
rotate_gsl_by_angles(solution, ttCell->x_ang, ttCell->y_ang,
ttCell->z_ang, full_rot);
for (i = 0; i < ttCell->obs_vec_count; i++)
{
struct rvec *obs = &ttCell->obs_vecs[i].obsvec;
rvec_to_gsl(ttCell->vec1Tmp, *obs);
/* Rotate all the observed vectors by the modified soln */
/* ttCell->vec2Tmp = 1.0 * full_rot * ttCell->vec1Tmp */
gsl_blas_dgemv(CblasTrans, 1.0, full_rot, ttCell->vec1Tmp,
0.0, ttCell->vec2Tmp);
struct rvec rotated = gsl_to_rvec(ttCell->vec2Tmp);
int j = ttCell->obs_vecs[i].assignment;
if (j < 0) continue;
struct rvec *match = &ttCell->obs_vecs[i].matches[j].vec;
struct rvec diff = diff_vec(rotated, *match);
double length = rvec_length(diff);
double addition = exp(-(1 / RECIP_TOLERANCE) * length);
total += addition;
count++;
}
total /= (double)-count;
gsl_matrix_free(full_rot);
return total;
}
/**
* Matches every observed vector in the image to its closest theoretical
* neighbour after applying the rotation matrix, in preparation for
* refining the rotation matrix to match these. */
static void match_all_obs_to_sol(struct TakeTwoCell *ttCell)
{
int i, j;
double total = 0;
int count = 0;
gsl_matrix *solution = ttCell->solution;
for (i = 0; i < ttCell->obs_vec_count; i++)
{
struct rvec *obs = &ttCell->obs_vecs[i].obsvec;
rvec_to_gsl(ttCell->vec1Tmp, *obs);
/* ttCell->vec2Tmp = 1.0 * solution * ttCell->vec1Tmp */
gsl_blas_dgemv(CblasTrans, 1.0, solution, ttCell->vec1Tmp,
0.0, ttCell->vec2Tmp);
struct rvec rotated = gsl_to_rvec(ttCell->vec2Tmp);
double smallest = FLT_MAX;
int assigned = -1;
for (j = 0; j < ttCell->obs_vecs[i].match_num; j++)
{
struct rvec *match = &ttCell->obs_vecs[i].matches[j].vec;
struct rvec diff = diff_vec(rotated, *match);
double length = rvec_length(diff);
if (length < smallest)
{
smallest = length;
assigned = j;
}
}
ttCell->obs_vecs[i].assignment = assigned;
if (smallest != FLT_MAX)
{
double addition = exp(-(1 / RECIP_TOLERANCE) * smallest);
total += addition;
count++;
}
}
total /= (double)count;
}
/**
* Refines a matrix against all of the observed vectors against their
* closest theoretical neighbour, by perturbing the matrix along the principle
* axes until it maximises a reward function consisting of the sum of
* the distances of individual observed vectors to their closest
* theoretical neighbour. Reward function means that noise and alternative
* lattices do not dominate the equation!
**/
static void refine_solution(struct TakeTwoCell *ttCell)
{
match_all_obs_to_sol(ttCell);
int i, j, k;
const int total = 3 * 3 * 3;
const int middle = (total - 1) / 2;
struct rvec steps[total];
double start = obs_to_sol_score(ttCell);
const int max_tries = 100;
int count = 0;
double size = ANGLE_STEP_SIZE;
/* First we create our combinations of steps */
for (i = -1; i <= 1; i++) {
for (j = -1; j <= 1; j++) {
for (k = -1; k <= 1; k++) {
struct rvec vec = new_rvec(i, j, k);
steps[count] = vec;
count++;
}
}
}
struct rvec current = new_rvec(ttCell->x_ang, ttCell->y_ang,
ttCell->z_ang);
double best = start;
count = 0;
while (size > ANGLE_CONVERGE_SIZE && count < max_tries)
{
struct rvec sized[total];
int best_num = middle;
for (i = 0; i < total; i++)
{
struct rvec sized_step = steps[i];
sized_step.u *= size;
sized_step.v *= size;
sized_step.w *= size;
struct rvec new_angles = rvec_add_rvec(current,
sized_step);
sized[i] = new_angles;
ttCell->x_ang = sized[i].u;
ttCell->y_ang = sized[i].v;
ttCell->z_ang = sized[i].w;
double score = obs_to_sol_score(ttCell);
if (score < best)
{
best = score;
best_num = i;
}
}
if (best_num == middle)
{
size /= 2;
}
current = sized[best_num];
count++;
}
ttCell->x_ang = 0;
ttCell->y_ang = 0;
ttCell->z_ang = 0;
gsl_matrix *tmp = gsl_matrix_alloc(3, 3);
rotate_gsl_by_angles(ttCell->solution, current.u,
current.v, current.w, tmp);
gsl_matrix_free(ttCell->solution);
ttCell->solution = tmp;
}
static unsigned int grow_network(gsl_matrix *rot, int obs_idx1, int obs_idx2,
int match_idx1, int match_idx2,
struct TakeTwoCell *cell)
{
struct SpotVec *obs_vecs = cell->obs_vecs;
int obs_vec_count = cell->obs_vec_count;
int *obs_members;
int *match_members;
/* Clear the in_network status of all vectors to start */
int i;
for (i = 0; i < obs_vec_count; i++)
{
obs_vecs[i].in_network = 0;
}
/* indices of members of the self-consistent network of vectors */
obs_members = malloc((cell->member_thresh+3)*sizeof(int));
match_members = malloc((cell->member_thresh+3)*sizeof(int));
if ( (obs_members == NULL) || (match_members == NULL) ) {
apologise();
return 0;
}
/* initialise the ones we know already */
obs_members[0] = obs_idx1;
obs_members[1] = obs_idx2;
match_members[0] = match_idx1;
match_members[1] = match_idx2;
int member_num = 2;
/* counter for dead ends which must not exceed MAX_DEAD_ENDS
* before it is reset in an additional branch */
int dead_ends = 0;
/* we start from 0 */
int start = 0;
while ( 1 ) {
if (start > obs_vec_count) {
free(obs_members);
free(match_members);
return 0;
}
int match_found = -1;
signed int next_index = find_next_index(rot, obs_members,
match_members,
0, member_num,
&match_found, cell);
if ( member_num < 2 ) {
free(obs_members);
free(match_members);
return 0;
}
if ( next_index < 0 ) {
/* If there have been too many dead ends, give up
* on indexing altogether.
**/
if ( dead_ends > MAX_DEAD_ENDS ) {
break;
}
/* We have not had too many dead ends. Try removing
the last member and continue. */
member_num--;
dead_ends++;
continue;
}
/* Elongation of the network was successful */
obs_vecs[next_index].in_network = 1;
obs_members[member_num] = next_index;
match_members[member_num] = match_found;
member_num++;
/* If member_num is high enough, we want to return a yes */
if ( member_num > cell->member_thresh ) break;
}
finish_solution(rot, obs_vecs, obs_members,
match_members, member_num, cell);
free(obs_members);
free(match_members);
return ( member_num );
}
static unsigned int start_seed(int i, int j, int i_match, int j_match,
gsl_matrix **rotation, struct TakeTwoCell *cell)
{
struct SpotVec *obs_vecs = cell->obs_vecs;
gsl_matrix *rot_mat;
rot_mat = generate_rot_mat(obs_vecs[i].obsvec,
obs_vecs[j].obsvec,
obs_vecs[i].matches[i_match].vec,
obs_vecs[j].matches[j_match].vec,
cell);
/* Try to expand this rotation matrix to a larger network */
int member_num = grow_network(rot_mat, i, j, i_match, j_match,
cell);
/* return this matrix and if it was immediately successful */
*rotation = rot_mat;
return member_num;
}
static int sort_seed_by_score(const void *av, const void *bv)
{
struct Seed *a = (struct Seed *)av;
struct Seed *b = (struct Seed *)bv;
return a->score > b->score;
}
static void remove_old_solutions(struct TakeTwoCell *cell,
struct taketwo_private *tp)
{
int duplicates = 0;
struct Seed *seeds = cell->seeds;
unsigned int total = cell->seed_count;
/* First we remove duplicates with previous solutions */
int i, j;
for (i = total - 1; i >= 0; i--) {
int her_match = seeds[i].idx1;
int his_match = seeds[i].idx2;
gsl_matrix *mat;
mat = rot_mat_from_indices(seeds[i].obs1, seeds[i].obs2,
her_match, his_match, cell);
if (mat == NULL)
{
continue;
}
for (j = 0; j < tp->numPrevs; j++)
{
int sim = symm_rot_mats_are_similar(tp->prevSols[j],
mat, cell);
/* Found a duplicate with a previous solution */
if (sim)
{
seeds[i].idx1 = -1;
seeds[i].idx2 = -1;
duplicates++;
break;
}
}
gsl_matrix_free(mat);
}
// STATUS("Removing %i duplicates due to prev solutions.\n", duplicates);
}
static int find_seeds(struct TakeTwoCell *cell, struct taketwo_private *tp)
{
struct SpotVec *obs_vecs = cell->obs_vecs;
int obs_vec_count = cell->obs_vec_count;
/* loop round pairs of vectors to try and find a suitable
* seed to start building a self-consistent network of vectors
*/
int i, j;
for ( i=1; i<obs_vec_count; i++ ) {
for ( j=0; j<i; j++ ) {
/** Only check distances which are accumulatively less
* than the limit if we can easily generate seeds */
if (obs_vecs[j].distance + obs_vecs[i].distance >
MAX_RECIP_DISTANCE && cell->seed_count > 100) {
continue;
}
/** Check to see if there is a shared spot - opportunity
* for optimisation by generating a look-up table
* by spot instead of by vector.
*/
int shared = obs_vecs_share_spot(&obs_vecs[i],
&obs_vecs[j]);
if ( !shared ) continue;
/* cell vector index matches stored in i, j and total
* number stored in int matches.
*/
int seed_num = 0;
struct Seed *seeds = NULL;
/* Check to see if any angles match from the cell
* vectors */
obs_vecs_match_angles(i, j, &seeds, &seed_num, cell);
if (seed_num == 0)
{
/* Nothing to clean up here */
continue;
}
/* Weed out the duplicate seeds (from symmetric
* reflection pairs) */
weed_duplicate_matches(&seeds, &seed_num, cell);
/* Add all the new seeds to the full list */
size_t new_size = cell->seed_count + seed_num;
new_size *= sizeof(struct Seed);
struct Seed *tmp = realloc(cell->seeds, new_size);
if (tmp == NULL) {
apologise();
}
cell->seeds = tmp;
int i;
for ( i = 0; i < seed_num; i++)
{
if (seeds[i].idx1 < 0 || seeds[i].idx2 < 0)
{
continue;
}
cell->seeds[cell->seed_count] = seeds[i];
cell->seed_count++;
}
free(seeds);
}
}
qsort(cell->seeds, cell->seed_count, sizeof(struct Seed),
sort_seed_by_score);
return 1;
}
static unsigned int start_seeds(gsl_matrix **rotation, struct TakeTwoCell *cell)
{
struct Seed *seeds = cell->seeds;
int seed_num = cell->seed_count;
int member_num = 0;
int max_members = 0;
gsl_matrix *rot = NULL;
/* We have seeds! Pass each of them through the seed-starter */
/* If a seed has the highest achieved membership, make note...*/
int k;
for ( k=0; k<seed_num; k++ ) {
int seed_idx1 = seeds[k].idx1;
int seed_idx2 = seeds[k].idx2;
if (seed_idx1 < 0 || seed_idx2 < 0) {
continue;
}
int seed_obs1 = seeds[k].obs1;
int seed_obs2 = seeds[k].obs2;
member_num = start_seed(seed_obs1, seed_obs2, seed_idx1,
seed_idx2, &rot, cell);
if (member_num > max_members)
{
if ( *rotation != NULL ) {
/* Free previous best */
gsl_matrix_free(*rotation);
}
*rotation = rot;
max_members = member_num;
} else {
gsl_matrix_free(rot);
}
if (member_num >= NETWORK_MEMBER_THRESHOLD) {
free(seeds);
return max_members;
}
}
free(seeds);
return max_members;
}
static void set_gsl_matrix(gsl_matrix *mat,
double asx, double asy, double asz,
double bsx, double bsy, double bsz,
double csx, double csy, double csz)
{
gsl_matrix_set(mat, 0, 0, asx);
gsl_matrix_set(mat, 0, 1, asy);
gsl_matrix_set(mat, 0, 2, asz);
gsl_matrix_set(mat, 1, 0, bsx);
gsl_matrix_set(mat, 1, 1, bsy);
gsl_matrix_set(mat, 1, 2, bsz);
gsl_matrix_set(mat, 2, 0, csx);
gsl_matrix_set(mat, 2, 1, csy);
gsl_matrix_set(mat, 2, 2, csz);
}
static int generate_rotation_sym_ops(struct TakeTwoCell *ttCell)
{
SymOpList *rawList = sym_ops_for_cell(ttCell->cell);
/* Now we must convert these into rotation matrices rather than hkl
* transformations (affects triclinic, monoclinic, rhombohedral and
* hexagonal space groups only) */
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
gsl_matrix *recip = gsl_matrix_alloc(3, 3);
gsl_matrix *cart = gsl_matrix_alloc(3, 3);
cell_get_reciprocal(ttCell->cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
set_gsl_matrix(recip, asx, asy, asz,
asx, bsy, bsz,
csx, csy, csz);
cell_get_cartesian(ttCell->cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
set_gsl_matrix(cart, asx, bsx, csx,
asy, bsy, csy,
asz, bsz, csz);
int i, j, k;
int numOps = num_equivs(rawList, NULL);
ttCell->rotSymOps = malloc(numOps * sizeof(gsl_matrix *));
ttCell->numOps = numOps;
if (ttCell->rotSymOps == NULL) {
apologise();
return 0;
}
for (i = 0; i < numOps; i++)
{
gsl_matrix *symOp = gsl_matrix_alloc(3, 3);
IntegerMatrix *op = get_symop(rawList, NULL, i);
for (j = 0; j < 3; j++) {
for (k = 0; k < 3; k++) {
gsl_matrix_set(symOp, j, k, intmat_get(op, j, k));
}
}
gsl_matrix *first = gsl_matrix_calloc(3, 3);
gsl_matrix *second = gsl_matrix_calloc(3, 3);
/* Each equivalence is of the form:
cartesian * symOp * reciprocal.
First multiplication: symOp * reciprocal */
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans,
1.0, symOp, recip,
0.0, first);
/* Second multiplication: cartesian * first */
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans,
1.0, cart, first,
0.0, second);
ttCell->rotSymOps[i] = second;
gsl_matrix_free(symOp);
gsl_matrix_free(first);
}
gsl_matrix_free(cart);
gsl_matrix_free(recip);
free_symoplist(rawList);
return 1;
}
struct sortme
{
struct TheoryVec v;
double dist;
};
static int sort_theory_distances(const void *av, const void *bv)
{
struct sortme *a = (struct sortme *)av;
struct sortme *b = (struct sortme *)bv;
return a->dist > b->dist;
}
static int match_obs_to_cell_vecs(struct TheoryVec *cell_vecs, int cell_vec_count,
struct TakeTwoCell *cell)
{
struct SpotVec *obs_vecs = cell->obs_vecs;
int obs_vec_count = cell->obs_vec_count;
int i, j;
for ( i=0; i<obs_vec_count; i++ ) {
int count = 0;
struct sortme *for_sort = NULL;
for ( j=0; j<cell_vec_count; j++ ) {
/* get distance for unit cell vector */
double cell_length = rvec_length(cell_vecs[j].vec);
double obs_length = obs_vecs[i].distance;
/* check if this matches the observed length */
double dist_diff = fabs(cell_length - obs_length);
if ( dist_diff > cell->len_tol ) continue;
/* we have a match, add to array! */
size_t new_size = (count+1)*sizeof(struct sortme);
for_sort = realloc(for_sort, new_size);
if ( for_sort == NULL ) return 0;
for_sort[count].v = cell_vecs[j];
for_sort[count].dist = dist_diff;
count++;
}
/* Pointers to relevant things */
struct TheoryVec **match_array;
int *match_count;
match_array = &(obs_vecs[i].matches);
match_count = &(obs_vecs[i].match_num);
/* Sort in order to get most agreeable matches first */
qsort(for_sort, count, sizeof(struct sortme), sort_theory_distances);
*match_array = malloc(count*sizeof(struct TheoryVec));
*match_count = count;
for ( j=0; j<count; j++ ) {
(*match_array)[j] = for_sort[j].v;
}
free(for_sort);
}
return 1;
}
static int compare_spot_vecs(const void *av, const void *bv)
{
struct SpotVec *a = (struct SpotVec *)av;
struct SpotVec *b = (struct SpotVec *)bv;
return a->distance > b->distance;
}
static int gen_observed_vecs(struct rvec *rlps, int rlp_count,
struct TakeTwoCell *cell)
{
int i, j;
int count = 0;
/* maximum distance squared for comparisons */
double max_sq_length = pow(MAX_RECIP_DISTANCE, 2);
for ( i=0; i<rlp_count-1 && count < MAX_OBS_VECTORS; i++ ) {
for ( j=i+1; j<rlp_count; j++ ) {
/* calculate difference vector between rlps */
struct rvec diff = diff_vec(rlps[i], rlps[j]);
/* are these two far from each other? */
double sqlength = sq_length(diff);
if ( sqlength > max_sq_length ) continue;
count++;
struct SpotVec *temp_obs_vecs;
temp_obs_vecs = realloc(cell->obs_vecs,
count*sizeof(struct SpotVec));
if ( temp_obs_vecs == NULL ) {
return 0;
} else {
cell->obs_vecs = temp_obs_vecs;
/* initialise all SpotVec struct members */
struct SpotVec spot_vec;
spot_vec.obsvec = diff;
spot_vec.distance = sqrt(sqlength);
spot_vec.matches = NULL;
spot_vec.assignment = -1;
spot_vec.match_num = 0;
spot_vec.her_rlp = &rlps[i];
spot_vec.his_rlp = &rlps[j];
cell->obs_vecs[count - 1] = spot_vec;
}
}
}
/* Sort such that the shortest distances are searched first. */
qsort(cell->obs_vecs, count, sizeof(struct SpotVec), compare_spot_vecs);
cell->obs_vec_count = count;
return 1;
}
static int gen_theoretical_vecs(UnitCell *cell, struct TheoryVec **cell_vecs,
unsigned int *vec_count)
{
double a, b, c, alpha, beta, gamma;
int h_max, k_max, l_max;
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
cell_get_reciprocal(cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
SymOpList *rawList = sym_ops_for_cell(cell);
cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma);
/* find maximum Miller (h, k, l) indices for a given resolution */
h_max = MAX_RECIP_DISTANCE * a;
k_max = MAX_RECIP_DISTANCE * b;
l_max = MAX_RECIP_DISTANCE * c;
int h, k, l;
int _h, _k, _l;
int count = 0;
for ( h=-h_max; h<=+h_max; h++ ) {
for ( k=-k_max; k<=+k_max; k++ ) {
for ( l=-l_max; l<=+l_max; l++ ) {
struct rvec cell_vec;
/* Exclude systematic absences from centering concerns */
if ( forbidden_reflection(cell, h, k, l) ) continue;
int asymmetric = 0;
get_asymm(rawList, h, k, l, &_h, &_k, &_l);
if (h == _h && k == _k && l == _l) {
asymmetric = 1;
}
cell_vec.u = h*asx + k*bsx + l*csx;
cell_vec.v = h*asy + k*bsy + l*csy;
cell_vec.w = h*asz + k*bsz + l*csz;
struct TheoryVec theory;
theory.vec = cell_vec;
theory.asym = asymmetric;
/* add this to our array - which may require expanding */
count++;
struct TheoryVec *temp_cell_vecs;
temp_cell_vecs = realloc(*cell_vecs,
count*sizeof(struct TheoryVec));
if ( temp_cell_vecs == NULL ) {
return 0;
} else {
*cell_vecs = temp_cell_vecs;
(*cell_vecs)[count - 1] = theory;
}
}
}
}
*vec_count = count;
free_symoplist(rawList);
return 1;
}
/* ------------------------------------------------------------------------
* cleanup functions - called from run_taketwo().
* ------------------------------------------------------------------------*/
static void cleanup_taketwo_obs_vecs(struct SpotVec *obs_vecs,
int obs_vec_count)
{
int i;
for ( i=0; i<obs_vec_count; i++ ) {
free(obs_vecs[i].matches);
}
free(obs_vecs);
}
static void cleanup_taketwo_cell(struct TakeTwoCell *ttCell)
{
/* n.b. solutions in ttCell are taken care of in the
* partial taketwo cleanup. */
int i;
for ( i=0; i<ttCell->numOps; i++ ) {
gsl_matrix_free(ttCell->rotSymOps[i]);
}
free(ttCell->rotSymOps);
cleanup_taketwo_obs_vecs(ttCell->obs_vecs,
ttCell->obs_vec_count);
gsl_vector_free(ttCell->vec1Tmp);
gsl_vector_free(ttCell->vec2Tmp);
gsl_matrix_free(ttCell->twiz1Tmp);
gsl_matrix_free(ttCell->twiz2Tmp);
}
/* ------------------------------------------------------------------------
* external functions - top level functions (Level 1)
* ------------------------------------------------------------------------*/
/**
* @cell: target unit cell
* @rlps: spot positions on detector back-projected into recripocal
* space depending on detector geometry etc.
* @rlp_count: number of rlps in rlps array.
* @rot: pointer to be given an assignment (hopefully) if indexing is
* successful.
**/
static UnitCell *run_taketwo(UnitCell *cell, const struct taketwo_options *opts,
struct rvec *rlps, int rlp_count,
struct taketwo_private *tp)
{
UnitCell *result;
int success = 0;
gsl_matrix *solution = NULL;
/* Initialise TakeTwoCell */
struct TakeTwoCell ttCell;
ttCell.cell = cell;
ttCell.seeds = NULL;
ttCell.seed_count = 0;
ttCell.rotSymOps = NULL;
ttCell.obs_vecs = NULL;
ttCell.twiz1Tmp = gsl_matrix_calloc(3, 3);
ttCell.twiz2Tmp = gsl_matrix_calloc(3, 3);
ttCell.vec1Tmp = gsl_vector_calloc(3);
ttCell.vec2Tmp = gsl_vector_calloc(3);
ttCell.numOps = 0;
ttCell.obs_vec_count = 0;
ttCell.solution = NULL;
ttCell.x_ang = 0;
ttCell.y_ang = 0;
ttCell.z_ang = 0;
success = generate_rotation_sym_ops(&ttCell);
if ( !success ) {
cleanup_taketwo_cell(&ttCell);
return NULL;
}
success = gen_observed_vecs(rlps, rlp_count, &ttCell);
if ( !success ) {
cleanup_taketwo_cell(&ttCell);
return NULL;
}
if ( opts->member_thresh < 0 ) {
ttCell.member_thresh = NETWORK_MEMBER_THRESHOLD;
} else {
ttCell.member_thresh = opts->member_thresh;
}
if ( opts->len_tol < 0.0 ) {
ttCell.len_tol = RECIP_TOLERANCE;
} else {
ttCell.len_tol = opts->len_tol; /* Already in m^-1 */
}
if ( opts->angle_tol < 0.0 ) {
ttCell.angle_tol = ANGLE_TOLERANCE;
} else {
ttCell.angle_tol = opts->angle_tol; /* Already in radians */
}
if ( opts->trace_tol < 0.0 ) {
ttCell.trace_tol = sqrt(4.0*(1.0-cos(TRACE_TOLERANCE)));
} else {
ttCell.trace_tol = sqrt(4.0*(1.0-cos(opts->trace_tol)));
}
success = match_obs_to_cell_vecs(tp->theory_vecs, tp->vec_count,
&ttCell);
if ( !success ) {
cleanup_taketwo_cell(&ttCell);
return NULL;
}
/* Find all the seeds, then take each one and extend them, returning
* a solution if it exceeds the NETWORK_MEMBER_THRESHOLD. */
find_seeds(&ttCell, tp);
remove_old_solutions(&ttCell, tp);
unsigned int members = start_seeds(&solution, &ttCell);
if ( solution == NULL ) {
cleanup_taketwo_cell(&ttCell);
return NULL;
}
/* If we have a solution, refine against vectors in the entire image */
ttCell.solution = solution;
refine_solution(&ttCell);
solution = ttCell.solution;
double score = obs_to_sol_score(&ttCell);
/* Add the current solution to the previous solutions list */
int new_size = (tp->numPrevs + 1) * sizeof(gsl_matrix *);
gsl_matrix **tmp = realloc(tp->prevSols, new_size);
double *tmpScores = realloc(tp->prevScores,
(tp->numPrevs + 1) * sizeof(double));
unsigned int *tmpSuccesses;
tmpSuccesses = realloc(tp->membership,
(tp->numPrevs + 1) * sizeof(unsigned int));
if (!tmp) {
apologise();
}
tp->prevSols = tmp;
tp->prevScores = tmpScores;
tp->membership = tmpSuccesses;
tp->prevSols[tp->numPrevs] = solution;
tp->prevScores[tp->numPrevs] = score;
tp->membership[tp->numPrevs] = members;
tp->numPrevs++;
/* Prepare the solution for CrystFEL friendliness */
result = cell_post_smiley_face(cell, solution);
cleanup_taketwo_cell(&ttCell);
return result;
}
/* Cleans up the per-image information for taketwo */
static void partial_taketwo_cleanup(struct taketwo_private *tp)
{
if (tp->prevSols != NULL)
{
int i;
for (i = 0; i < tp->numPrevs; i++)
{
gsl_matrix_free(tp->prevSols[i]);
}
free(tp->prevSols);
}
free(tp->prevScores);
free(tp->membership);
tp->prevScores = NULL;
tp->membership = NULL;
tp->xtal_num = 0;
tp->numPrevs = 0;
tp->prevSols = NULL;
}
/* CrystFEL interface hooks */
int taketwo_index(struct image *image, void *priv)
{
Crystal *cr;
UnitCell *cell;
struct rvec *rlps;
int n_rlps = 0;
int i;
struct taketwo_private *tp = (struct taketwo_private *)priv;
/* Check serial number against previous for solution tracking */
int this_serial = image->serial;
if (tp->serial_num == this_serial)
{
tp->xtal_num = image->n_crystals;
}
else
{
/*
for (i = 0; i < tp->numPrevs; i++)
{
STATUS("score, %i, %.5f, %i\n",
this_serial, tp->prevScores[i],
tp->membership[i]);
}
*/
partial_taketwo_cleanup(tp);
tp->serial_num = this_serial;
tp->xtal_num = image->n_crystals;
}
/*
STATUS("Indexing %i with %i attempts, %i crystals\n", this_serial, tp->attempts,
image->n_crystals);
*/
rlps = malloc((image_feature_count(image->features)+1)*sizeof(struct rvec));
for ( i=0; i<image_feature_count(image->features); i++ ) {
struct imagefeature *pk = image_get_feature(image->features, i);
if ( pk == NULL ) continue;
rlps[n_rlps].u = pk->rx;
rlps[n_rlps].v = pk->ry;
rlps[n_rlps].w = pk->rz;
n_rlps++;
}
rlps[n_rlps].u = 0.0;
rlps[n_rlps].v = 0.0;
rlps[n_rlps++].w = 0.0;
cell = run_taketwo(tp->cell, tp->opts, rlps, n_rlps, tp);
free(rlps);
if ( cell == NULL ) return 0;
cr = crystal_new();
if ( cr == NULL ) {
ERROR("Failed to allocate crystal.\n");
return 0;
}
crystal_set_cell(cr, cell);
image_add_crystal(image, cr);
return 1;
}
void *taketwo_prepare(IndexingMethod *indm, struct taketwo_options *opts,
UnitCell *cell)
{
struct taketwo_private *tp;
/* Flags that TakeTwo knows about */
*indm &= INDEXING_METHOD_MASK | INDEXING_USE_LATTICE_TYPE
| INDEXING_USE_CELL_PARAMETERS;
if ( !( (*indm & INDEXING_USE_LATTICE_TYPE)
&& (*indm & INDEXING_USE_CELL_PARAMETERS)) )
{
ERROR("TakeTwo indexing requires cell and lattice type "
"information.\n");
return NULL;
}
if ( cell == NULL ) {
ERROR("TakeTwo indexing requires a unit cell.\n");
return NULL;
}
STATUS("*******************************************************************\n");
STATUS("***** Welcome to TakeTwo *****\n");
STATUS("*******************************************************************\n");
STATUS(" If you use these indexing results, please keep a roof\n");
STATUS(" over the author's head by citing this paper.\n\n");
STATUS("o o o o o o o o o o o o\n");
STATUS(" o o o o o o o o o o o \n");
STATUS("o o\n");
STATUS(" o The citation is: o \n");
STATUS("o Ginn et al., Acta Cryst. (2016). D72, 956-965 o\n");
STATUS(" o Thank you! o \n");
STATUS("o o\n");
STATUS(" o o o o o o o o o o o \n");
STATUS("o o o o o o o o o o o o\n");
STATUS("\n");
tp = malloc(sizeof(struct taketwo_private));
if ( tp == NULL ) return NULL;
tp->cell = cell;
tp->indm = *indm;
tp->serial_num = -1;
tp->xtal_num = 0;
tp->prevSols = NULL;
tp->numPrevs = 0;
tp->prevScores = NULL;
tp->membership = NULL;
tp->vec_count = 0;
tp->theory_vecs = NULL;
gen_theoretical_vecs(cell, &tp->theory_vecs, &tp->vec_count);
return tp;
}
void taketwo_cleanup(IndexingPrivate *pp)
{
struct taketwo_private *tp = (struct taketwo_private *)pp;
partial_taketwo_cleanup(tp);
free(tp->theory_vecs);
free(tp);
}
const char *taketwo_probe(UnitCell *cell)
{
if ( cell_has_parameters(cell) ) return "taketwo";
return NULL;
}
static void taketwo_show_help()
{
printf("Parameters for the TakeTwo indexing algorithm:\n"
" --taketwo-member-threshold\n"
" Minimum number of members in network\n"
" --taketwo-len-tolerance\n"
" Reciprocal space length tolerance (1/A)\n"
" --taketwo-angle-tolerance\n"
" Reciprocal space angle tolerance (in degrees)\n"
" --taketwo-trace-tolerance\n"
" Rotation matrix equivalence tolerance (in degrees)\n"
);
}
int taketwo_default_options(TakeTwoOptions **opts_ptr)
{
TakeTwoOptions *opts;
opts = malloc(sizeof(struct taketwo_options));
if ( opts == NULL ) return ENOMEM;
opts->member_thresh = -1.0;
opts->len_tol = -1.0;
opts->angle_tol = -1.0;
opts->trace_tol = -1.0;
*opts_ptr = opts;
return 0;
}
static error_t taketwo_parse_arg(int key, char *arg,
struct argp_state *state)
{
struct taketwo_options **opts_ptr = state->input;
float tmp;
int r;
switch ( key ) {
case ARGP_KEY_INIT :
r = taketwo_default_options(opts_ptr);
if ( r ) return r;
break;
case 1 :
taketwo_show_help();
return EINVAL;
case 2 :
if ( sscanf(arg, "%i", &(*opts_ptr)->member_thresh) != 1 )
{
ERROR("Invalid value for --taketwo-member-threshold\n");
return EINVAL;
}
break;
case 3 :
if ( sscanf(arg, "%f", &tmp) != 1 )
{
ERROR("Invalid value for --taketwo-len-tol\n");
return EINVAL;
}
(*opts_ptr)->len_tol = tmp * 1e10; /* Convert to m^-1 */
break;
case 4 :
if ( sscanf(arg, "%f", &tmp) != 1 )
{
ERROR("Invalid value for --taketwo-angle-tol\n");
return EINVAL;
}
(*opts_ptr)->angle_tol = deg2rad(tmp);
break;
case 5 :
if ( sscanf(arg, "%f", &tmp) != 1 )
{
ERROR("Invalid value for --taketwo-trace-tol\n");
return EINVAL;
}
(*opts_ptr)->trace_tol = deg2rad(tmp);
break;
default :
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static struct argp_option taketwo_options[] = {
{"help-taketwo", 1, NULL, OPTION_NO_USAGE,
"Show options for TakeTwo indexing algorithm", 99},
{"taketwo-member-threshold", 2, "n", OPTION_HIDDEN, NULL},
{"taketwo-len-tolerance", 3, "one_over_A", OPTION_HIDDEN, NULL},
{"taketwo-angle-tolerance", 4, "deg", OPTION_HIDDEN, NULL},
{"taketwo-trace-tolerance", 5, "deg", OPTION_HIDDEN, NULL},
{0}
};
struct argp taketwo_argp = { taketwo_options, taketwo_parse_arg,
NULL, NULL, NULL, NULL, NULL };
|