1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
|
/*
* integer_matrix.c
*
* A small integer matrix library
*
* Copyright © 2012 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2012 Thomas White <taw@physics.org>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "rational.h"
#include "integer_matrix.h"
#include "utils.h"
/** \file integer_matrix.h */
struct _integermatrix
{
unsigned int rows;
unsigned int cols;
signed int *v;
};
/**
* \param rows Number of rows that the new matrix is to have
* \param cols Number of columns that the new matrix is to have
*
* Allocates a new \ref IntegerMatrix with all elements set to zero.
*
* \returns A new \ref IntegerMatrix, or NULL on error.
**/
IntegerMatrix *intmat_new(unsigned int rows, unsigned int cols)
{
IntegerMatrix *m;
m = malloc(sizeof(IntegerMatrix));
if ( m == NULL ) return NULL;
m->v = calloc(rows*cols, sizeof(signed int));
if ( m->v == NULL ) {
free(m);
return NULL;
}
m->rows = rows;
m->cols = cols;
return m;
}
/**
* \param m An \ref IntegerMatrix
*
* \returns A newly allocated copy of \p m, or NULL on error
**/
IntegerMatrix *intmat_copy(const IntegerMatrix *m)
{
IntegerMatrix *p;
int i, j;
p = intmat_new(m->rows, m->cols);
if ( p == NULL ) return NULL;
for ( i=0; i<m->rows; i++ ) {
for ( j=0; j<m->rows; j++ ) {
intmat_set(p, i, j, intmat_get(m, i, j));
}
}
return p;
}
/**
* \param m An \ref IntegerMatrix
*
* Frees \p m, unless \p m is NULL in which case nothing is done.
**/
void intmat_free(IntegerMatrix *m)
{
if ( m == NULL ) return;
free(m->v);
free(m);
}
/**
* \param m An \ref IntegerMatrix
* \param rows Location to store number of rows
* \param cols Location to store number of columns
*
* Sets \p rows and \p cols to the size of \p m.
*/
void intmat_size(const IntegerMatrix *m, unsigned int *rows, unsigned int *cols)
{
if ( m == NULL ) {
*rows = 0;
*cols = 0;
return;
}
*rows = m->rows;
*cols = m->cols;
}
/**
* \param m An \ref IntegerMatrix
* \param i row number to set
* \param j column number to set
* \param v value to set to
*
* Sets the \p i,\p j element of \p m to \p v.
**/
void intmat_set(IntegerMatrix *m, unsigned int i, unsigned int j, signed int v)
{
assert(i < m->rows);
assert(j < m->cols);
m->v[j + m->cols*i] = v;
}
/**
* \param m An \ref IntegerMatrix
* \param i column number to set
* \param j row number to set
*
* Gets the \p i,\p j element of \p m.
*
* \returns The \p i,\p j element of \p m.
**/
signed int intmat_get(const IntegerMatrix *m, unsigned int i, unsigned int j)
{
assert(i < m->rows);
assert(j < m->cols);
return m->v[j + m->cols*i];
}
/**
* \param P An \ref IntegerMatrix
* \param hkl An array of signed integers
*
* Apply transformation matrix P to a set of reciprocal space Miller indices.
*
* In other words:
* Multiplies the matrix \p P by the row vector \p hkl. The size of \p vec must equal
* the number of columns in \p P, and the size of the result equals the number of
* rows in \p P.
*
* The multiplication looks like this:
* (a1, a2, a3) = (hkl1, hkl2, hkl3) P
* Therefore matching the notation in ITA chapter 5.1.
*
* \returns A newly allocated array of signed integers containing the answer,
* or NULL on error.
**/
signed int *transform_indices(const IntegerMatrix *P, const signed int *hkl)
{
signed int *ans;
unsigned int j;
ans = malloc(P->rows * sizeof(signed int));
if ( ans == NULL ) return NULL;
for ( j=0; j<P->cols; j++ ) {
unsigned int i;
ans[j] = 0;
for ( i=0; i<P->rows; i++ ) {
ans[j] += intmat_get(P, i, j) * hkl[i];
}
}
return ans;
}
/**
* \param a An \ref IntegerMatrix
* \param b An \ref IntegerMatrix
*
* Multiplies the matrix \p a by the matrix \p b.
*
* \returns A newly allocated \ref IntegerMatrix containing the answer, or NULL on
* error.
**/
IntegerMatrix *intmat_intmat_mult(const IntegerMatrix *a,
const IntegerMatrix *b)
{
unsigned int i, j;
IntegerMatrix *ans;
if ( a->cols != b->rows ) return NULL;
ans = intmat_new(a->rows, a->cols);
if ( ans == NULL ) return NULL;
for ( i=0; i<ans->rows; i++ ) {
for ( j=0; j<ans->cols; j++ ) {
unsigned int k;
signed int r = 0;
for ( k=0; k<a->cols; k++ ) { /* a->cols == b->rows */
r += intmat_get(a, i, k) * intmat_get(b, k, j);
}
intmat_set(ans, i, j, r);
}
}
return ans;
}
void intmat_zero(IntegerMatrix *m)
{
memset(m->v, 0, m->rows*m->cols*sizeof(signed int));
}
static IntegerMatrix *delete_row_and_column(const IntegerMatrix *m,
unsigned int di, unsigned int dj)
{
IntegerMatrix *n;
unsigned int i, j;
n = intmat_new(m->rows-1, m->cols-1);
if ( n == NULL ) return NULL;
for ( i=0; i<n->rows; i++ ) {
for ( j=0; j<n->cols; j++ ) {
signed int val;
unsigned int gi, gj;
gi = (i>=di) ? i+1 : i;
gj = (j>=dj) ? j+1 : j;
val = intmat_get(m, gi, gj);
intmat_set(n, i, j, val);
}
}
return n;
}
static signed int cofactor(const IntegerMatrix *m,
unsigned int i, unsigned int j)
{
IntegerMatrix *n;
signed int t, C;
n = delete_row_and_column(m, i, j);
if ( n == NULL ) {
fprintf(stderr, "Failed to allocate matrix.\n");
return 0;
}
/* -1 if odd, +1 if even */
t = (i+j) & 0x1 ? -1 : +1;
C = t * intmat_det(n);
intmat_free(n);
return C;
}
/**
* \param m An \ref IntegerMatrix
*
* Calculates the determinant of \p m. Inefficiently.
*
* \returns The determinant of \p m.
**/
signed int intmat_det(const IntegerMatrix *m)
{
unsigned int i, j;
signed int det = 0;
assert(m->rows == m->cols); /* Otherwise determinant doesn't exist */
if ( m->rows == 2 ) {
return intmat_get(m, 0, 0)*intmat_get(m, 1, 1)
- intmat_get(m, 0, 1)*intmat_get(m, 1, 0);
}
i = 0; /* Fixed */
for ( j=0; j<m->cols; j++ ) {
det += intmat_get(m, i, j) * cofactor(m, i, j);
}
return det;
}
static IntegerMatrix *intmat_cofactors(const IntegerMatrix *m)
{
IntegerMatrix *n;
signed int i, j;
n = intmat_new(m->rows, m->cols);
if ( n == NULL ) return NULL;
for ( i=0; i<n->rows; i++ ) {
for ( j=0; j<n->cols; j++ ) {
intmat_set(n, i, j, cofactor(m, i, j));
}
}
return n;
}
/**
* \param m An \ref IntegerMatrix
*
* Calculates the inverse of \p m. Inefficiently.
*
* Works only if the inverse of the matrix is also an integer matrix,
* i.e. if the determinant of \p m is +/- 1.
*
* \returns The inverse of \p m, or NULL on error.
**/
IntegerMatrix *intmat_inverse(const IntegerMatrix *m)
{
IntegerMatrix *adjugateT;
IntegerMatrix *inverse;
unsigned int i, j;
signed int det;
det = intmat_det(m);
if ( (det != +1) && (det != -1) ) {
fprintf(stderr,
"Inverse matrix not an integer matrix (det = %i).\n",
det);
return NULL;
}
adjugateT = intmat_cofactors(m);
if ( adjugateT == NULL ) return NULL;
inverse = intmat_new(m->cols, m->rows); /* The other way round */
if ( inverse == NULL ) return NULL;
for ( i=0; i<inverse->rows; i++ ) {
for ( j=0; j<inverse->cols; j++ ) {
signed int v;
v = intmat_get(adjugateT, j, i);
/* 1/-1 = -1 and 1/+1 = +1, and these are the only two cases */
intmat_set(inverse, i, j, v*det);
}
}
intmat_free(adjugateT);
return inverse;
}
/**
* \param m An \ref IntegerMatrix
*
* Prints \param m to stderr.
*
*/
void intmat_print(const IntegerMatrix *m)
{
unsigned int i, j;
if ( m == NULL ) {
fprintf(stderr, "(NULL matrix)\n");
return;
}
for ( i=0; i<m->rows; i++ ) {
fprintf(stderr, "[ ");
for ( j=0; j<m->cols; j++ ) {
fprintf(stderr, "%4i ", intmat_get(m, i, j));
}
fprintf(stderr, "]\n");
}
}
/**
* \param m An \ref IntegerMatrix
*
* \returns True if \p m is an identity matrix.
*
*/
int intmat_is_identity(const IntegerMatrix *m)
{
int i, j;
if ( m->rows != m->cols ) return 0;
for ( i=0; i<m->rows; i++ ) {
for ( j=0; j<m->cols; j++ ) {
signed int v;
v = intmat_get(m, i, j);
if ( i == j ) {
if ( v != 1 ) return 0;
} else {
if ( v != 0 ) return 0;
}
}
}
return 1;
}
/**
* \param m An \ref IntegerMatrix
*
* \returns True if \p m = -I, where I is an identity matrix.
*
*/
int intmat_is_inversion(const IntegerMatrix *m)
{
int i, j;
if ( m->rows != m->cols ) return 0;
for ( i=0; i<m->rows; i++ ) {
for ( j=0; j<m->cols; j++ ) {
signed int v;
v = intmat_get(m, i, j);
if ( i == j ) {
if ( v != -1 ) return 0;
} else {
if ( v != 0 ) return 0;
}
}
}
return 1;
}
/**
* \param a An \ref IntegerMatrix
* \param b An \ref IntegerMatrix
*
* \returns True if \p a = \p b.
*
*/
int intmat_equals(const IntegerMatrix *a, const IntegerMatrix *b)
{
int i, j;
if ( a->rows != b->rows ) return 0;
if ( a->cols != b->cols ) return 0;
for ( i=0; i<a->rows; i++ ) {
for ( j=0; j<b->cols; j++ ) {
signed int v;
v = intmat_get(a, i, j);
if ( v != intmat_get(b, i, j) ) return 0;
}
}
return 1;
}
/**
* \param size The size of the (square) matrix
*
* \returns An identity \ref IntegerMatrix with side length \p size, or NULL on error.
*
*/
IntegerMatrix *intmat_identity(int size)
{
IntegerMatrix *m;
int i, j;
m = intmat_new(size, size);
if ( m == NULL ) return NULL;
for ( i=0; i<size; i++ ) {
for ( j=0; j<size; j++ ) {
if ( i == j ) {
intmat_set(m, i, j, 1);
} else {
intmat_set(m, i, j, 0);
}
}
}
return m;
}
/**
* \param m11 Matrix element
* \param m12 Matrix element
* \param m13 Matrix element
* \param m21 Matrix element
* \param m22 Matrix element
* \param m23 Matrix element
* \param m31 Matrix element
* \param m32 Matrix element
* \param m33 Matrix element
*
* \returns A newly allocated 3x3 \ref IntegerMatrix with the given values.
*/
IntegerMatrix *intmat_create_3x3(signed int m11, signed int m12, signed int m13,
signed int m21, signed int m22, signed int m23,
signed int m31, signed int m32, signed int m33)
{
IntegerMatrix *m = intmat_new(3, 3);
if ( m == NULL ) return NULL;
intmat_set(m, 0, 0, m11);
intmat_set(m, 0, 1, m12);
intmat_set(m, 0, 2, m13);
intmat_set(m, 1, 0, m21);
intmat_set(m, 1, 1, m22);
intmat_set(m, 1, 2, m23);
intmat_set(m, 2, 0, m31);
intmat_set(m, 2, 1, m32);
intmat_set(m, 2, 2, m33);
return m;
}
|