1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
|
/*
* rational.c
*
* A small rational number library
*
* Copyright © 2019 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2019 Thomas White <taw@physics.org>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <locale.h>
#include "rational.h"
#include "integer_matrix.h"
#include "utils.h"
/**
* SECTION:rational
* @short_description: Rational numbers
* @title: Rational numbers
* @section_id:
* @see_also:
* @include: "rational.h"
* @Image:
*
* A rational number library
*/
/* Eucliden algorithm for finding greatest common divisor */
static signed int gcd(signed int a, signed int b)
{
while ( b != 0 ) {
signed int t = b;
b = a % b;
a = t;
}
return a;
}
static void squish(Rational *rt)
{
signed int g;
if ( rt->num == 0 ) {
rt->den = 1;
return;
}
g = gcd(rt->num, rt->den);
assert(g != 0);
rt->num /= g;
rt->den /= g;
if ( rt->den < 0 ) {
rt->num = -rt->num;
rt->den = -rt->den;
}
}
Rational rtnl_zero()
{
Rational r;
r.num = 0;
r.den = 1;
return r;
}
Rational rtnl(signed long long int num, signed long long int den)
{
Rational r;
r.num = num;
r.den = den;
squish(&r);
return r;
}
double rtnl_as_double(Rational r)
{
return (double)r.num/r.den;
}
static void overflow(long long int c, long long int a, long long int b)
{
setlocale(LC_ALL, "");
ERROR("Overflow detected in rational number library.\n");
ERROR("%'lli < %'lli * %'lli\n", c, a, b);
abort();
}
static void check_overflow(long long int c, long long int a, long long int b)
{
if ( (a==0) || (b==0) ) {
if ( c != 0 ) overflow(c,a,b);
} else if ( (llabs(c) < llabs(a)) || (llabs(c) < llabs(b)) ) {
overflow(c,a,b);
}
}
Rational rtnl_mul(Rational a, Rational b)
{
Rational r;
r.num = a.num * b.num;
r.den = a.den * b.den;
check_overflow(r.num, a.num, b.num);
check_overflow(r.den, a.den, b.den);
squish(&r);
return r;
}
Rational rtnl_div(Rational a, Rational b)
{
signed int t = b.num;
b.num = b.den;
b.den = t;
return rtnl_mul(a, b);
}
Rational rtnl_add(Rational a, Rational b)
{
Rational r, trt1, trt2;
trt1.num = a.num * b.den;
trt2.num = b.num * a.den;
check_overflow(trt1.num, a.num, b.den);
check_overflow(trt2.num, b.num, a.den);
trt1.den = a.den * b.den;
trt2.den = trt1.den;
check_overflow(trt1.den, a.den, b.den);
r.num = trt1.num + trt2.num;
r.den = trt1.den;
squish(&r);
return r;
}
Rational rtnl_sub(Rational a, Rational b)
{
b.num = -b.num;
return rtnl_add(a, b);
}
/* -1, 0 +1 respectively for a<b, a==b, a>b */
signed int rtnl_cmp(Rational a, Rational b)
{
Rational trt1, trt2;
trt1.num = a.num * b.den;
trt2.num = b.num * a.den;
trt1.den = a.den * b.den;
trt2.den = a.den * b.den;
if ( trt1.num > trt2.num ) return +1;
if ( trt1.num < trt2.num ) return -1;
return 0;
}
Rational rtnl_abs(Rational a)
{
Rational r = a;
squish(&r);
if ( r.num < 0 ) r.num = -r.num;
return r;
}
/**
* rtnl_format
* @rt: A %Rational
*
* Formats @rt as a string
*
* Returns: a string which should be freed by the caller
*/
char *rtnl_format(Rational rt)
{
char *v = malloc(32);
if ( v == NULL ) return NULL;
if ( rt.den == 1 ) {
snprintf(v, 31, "%lli", rt.num);
} else {
snprintf(v, 31, "%lli/%lli", rt.num, rt.den);
}
return v;
}
Rational *rtnl_list(signed int num_min, signed int num_max,
signed int den_min, signed int den_max,
int *pn)
{
signed int num, den;
Rational *list;
int n = 0;
list = malloc((1+num_max-num_min)*(1+den_max-den_min)*sizeof(Rational));
if ( list == NULL ) return NULL;
for ( num=num_min; num<=num_max; num++ ) {
for ( den=den_min; den<=den_max; den++ ) {
Rational r = rtnl(num, den);
/* Denominator zero? */
if ( den == 0 ) continue;
/* Same as last entry? */
if ( (n>0) && (rtnl_cmp(list[n-1], r)==0) ) continue;
/* Can be reduced? */
if ( gcd(num, den) != 1 ) continue;
list[n++] = r;
}
}
*pn = n;
return list;
}
/**
* SECTION:rational_matrix
* @short_description: Rational matrices
* @title: Rational matrices
* @section_id:
* @see_also:
* @include: "rational.h"
* @Image:
*
* A rational matrix library
*/
struct _rationalmatrix
{
unsigned int rows;
unsigned int cols;
Rational *v;
};
/**
* rtnl_mtx_new:
* @rows: Number of rows that the new matrix is to have
* @cols: Number of columns that the new matrix is to have
*
* Allocates a new %RationalMatrix with all elements set to zero.
*
* Returns: a new %RationalMatrix, or NULL on error.
**/
RationalMatrix *rtnl_mtx_new(unsigned int rows, unsigned int cols)
{
RationalMatrix *m;
int i;
m = malloc(sizeof(RationalMatrix));
if ( m == NULL ) return NULL;
m->v = calloc(rows*cols, sizeof(Rational));
if ( m->v == NULL ) {
free(m);
return NULL;
}
m->rows = rows;
m->cols = cols;
for ( i=0; i<m->rows*m->cols; i++ ) {
m->v[i] = rtnl_zero();
}
return m;
}
RationalMatrix *rtnl_mtx_identity(int rows)
{
int i;
RationalMatrix *m = rtnl_mtx_new(rows, rows);
for ( i=0; i<rows; i++ ) {
rtnl_mtx_set(m, i, i, rtnl(1,1));
}
return m;
}
RationalMatrix *rtnl_mtx_copy(const RationalMatrix *m)
{
RationalMatrix *n;
int i;
n = rtnl_mtx_new(m->rows, m->cols);
if ( n == NULL ) return NULL;
for ( i=0; i<m->rows*m->cols; i++ ) {
n->v[i] = m->v[i];
}
return n;
}
Rational rtnl_mtx_get(const RationalMatrix *m, int i, int j)
{
assert(m != NULL);
return m->v[j+m->cols*i];
}
void rtnl_mtx_set(const RationalMatrix *m, int i, int j, Rational v)
{
assert(m != NULL);
m->v[j+m->cols*i] = v;
}
RationalMatrix *rtnl_mtx_from_intmat(const IntegerMatrix *m)
{
RationalMatrix *n;
unsigned int rows, cols;
int i, j;
intmat_size(m, &rows, &cols);
n = rtnl_mtx_new(rows, cols);
if ( n == NULL ) return NULL;
for ( i=0; i<rows; i++ ) {
for ( j=0; j<cols; j++ ) {
n->v[j+cols*i] = rtnl(intmat_get(m, i, j), 1);
}
}
return n;
}
IntegerMatrix *intmat_from_rtnl_mtx(const RationalMatrix *m)
{
IntegerMatrix *n;
int i, j;
n = intmat_new(m->rows, m->cols);
if ( n == NULL ) return NULL;
for ( i=0; i<m->rows; i++ ) {
for ( j=0; j<m->cols; j++ ) {
Rational v = rtnl_mtx_get(m, i, j);
squish(&v);
if ( v.den != 1 ) {
ERROR("Rational matrix can't be converted to integers\n");
intmat_free(n);
return NULL;
}
intmat_set(n, i, j, v.num);
}
}
return n;
}
void rtnl_mtx_free(RationalMatrix *mtx)
{
if ( mtx == NULL ) return;
free(mtx->v);
free(mtx);
}
/* rtnl_mtx_solve:
* @m: A %RationalMatrix
* @vec: An array of %Rational
* @ans: An array of %Rational in which to store the result
*
* Solves the matrix equation m*ans = vec, where @ans and @vec are
* vectors of %Rational.
*
* In this version, @m must be square.
*
* The number of columns in @m must equal the length of @ans, and the number
* of rows in @m must equal the length of @vec, but note that there is no way
* for this function to check that this is the case.
*
* Returns: non-zero on error
**/
int rtnl_mtx_solve(const RationalMatrix *m, const Rational *ivec, Rational *ans)
{
RationalMatrix *cm;
Rational *vec;
int h, k;
int i;
if ( m->rows != m->cols ) return 1;
/* Copy the matrix and vector because the calculation will
* be done in-place */
cm = rtnl_mtx_copy(m);
if ( cm == NULL ) return 1;
vec = malloc(m->rows*sizeof(Rational));
if ( vec == NULL ) return 1;
for ( h=0; h<m->rows; h++ ) vec[h] = ivec[h];
/* Gaussian elimination with partial pivoting */
h = 0;
k = 0;
while ( h<=m->rows && k<=m->cols ) {
int prow = 0;
Rational pval = rtnl_zero();
Rational t;
/* Find the row with the largest value in column k */
for ( i=h; i<m->rows; i++ ) {
if ( rtnl_cmp(rtnl_abs(rtnl_mtx_get(cm, i, k)), pval) > 0 ) {
pval = rtnl_abs(rtnl_mtx_get(cm, i, k));
prow = i;
}
}
if ( rtnl_cmp(pval, rtnl_zero()) == 0 ) {
k++;
continue;
}
/* Swap 'prow' with row h */
for ( i=0; i<m->cols; i++ ) {
t = rtnl_mtx_get(cm, h, i);
rtnl_mtx_set(cm, h, i, rtnl_mtx_get(cm, prow, i));
rtnl_mtx_set(cm, prow, i, t);
}
t = vec[prow];
vec[prow] = vec[h];
vec[h] = t;
/* Divide and subtract rows below */
for ( i=h+1; i<m->rows; i++ ) {
int j;
Rational dval;
dval = rtnl_div(rtnl_mtx_get(cm, i, k),
rtnl_mtx_get(cm, h, k));
for ( j=0; j<m->cols; j++ ) {
Rational t = rtnl_mtx_get(cm, i, j);
Rational p = rtnl_mul(dval, rtnl_mtx_get(cm, h, j));
t = rtnl_sub(t, p);
rtnl_mtx_set(cm, i, j, t);
}
/* Divide the right hand side as well */
Rational t = vec[i];
Rational p = rtnl_mul(dval, vec[h]);
vec[i] = rtnl_sub(t, p);
}
h++;
k++;
}
/* Back-substitution */
for ( i=m->rows-1; i>=0; i-- ) {
int j;
Rational sum = rtnl_zero();
for ( j=i+1; j<m->cols; j++ ) {
Rational av;
av = rtnl_mul(rtnl_mtx_get(cm, i, j), ans[j]);
sum = rtnl_add(sum, av);
}
sum = rtnl_sub(vec[i], sum);
ans[i] = rtnl_div(sum, rtnl_mtx_get(cm, i, i));
}
free(vec);
rtnl_mtx_free(cm);
return 0;
}
/**
* rtnl_mtx_print
* @m: A %RationalMatrix
*
* Prints @m to stderr.
*
*/
void rtnl_mtx_print(const RationalMatrix *m)
{
unsigned int i, j;
for ( i=0; i<m->rows; i++ ) {
fprintf(stderr, "[ ");
for ( j=0; j<m->cols; j++ ) {
char *v = rtnl_format(m->v[j+m->cols*i]);
fprintf(stderr, "%4s ", v);
free(v);
}
fprintf(stderr, "]\n");
}
}
void rtnl_mtx_mtxmult(const RationalMatrix *A, const RationalMatrix *B,
RationalMatrix *ans)
{
int i, j;
assert(ans->cols == A->cols);
assert(ans->rows == B->rows);
assert(A->cols == B->rows);
for ( i=0; i<ans->rows; i++ ) {
for ( j=0; j<ans->cols; j++ ) {
int k;
Rational sum = rtnl_zero();
for ( k=0; k<A->rows; k++ ) {
Rational add;
add = rtnl_mul(rtnl_mtx_get(A, i, k),
rtnl_mtx_get(B, k, j));
sum = rtnl_add(sum, add);
}
rtnl_mtx_set(ans, i, j, sum);
}
}
}
void rtnl_mtx_mult(const RationalMatrix *m, const Rational *vec, Rational *ans)
{
int i, j;
for ( i=0; i<m->rows; i++ ) {
ans[i] = rtnl_zero();
for ( j=0; j<m->cols; j++ ) {
Rational add;
add = rtnl_mul(rtnl_mtx_get(m, i, j), vec[j]);
ans[i] = rtnl_add(ans[i], add);
}
}
}
static RationalMatrix *delete_row_and_column(const RationalMatrix *m,
unsigned int di, unsigned int dj)
{
RationalMatrix *n;
unsigned int i, j;
n = rtnl_mtx_new(m->rows-1, m->cols-1);
if ( n == NULL ) return NULL;
for ( i=0; i<n->rows; i++ ) {
for ( j=0; j<n->cols; j++ ) {
Rational val;
unsigned int gi, gj;
gi = (i>=di) ? i+1 : i;
gj = (j>=dj) ? j+1 : j;
val = rtnl_mtx_get(m, gi, gj);
rtnl_mtx_set(n, i, j, val);
}
}
return n;
}
static Rational cofactor(const RationalMatrix *m,
unsigned int i, unsigned int j)
{
RationalMatrix *n;
Rational t, C;
n = delete_row_and_column(m, i, j);
if ( n == NULL ) {
fprintf(stderr, "Failed to allocate matrix.\n");
return rtnl_zero();
}
/* -1 if odd, +1 if even */
t = (i+j) & 0x1 ? rtnl(-1, 1) : rtnl(1, 1);
C = rtnl_mul(t, rtnl_mtx_det(n));
rtnl_mtx_free(n);
return C;
}
Rational rtnl_mtx_det(const RationalMatrix *m)
{
unsigned int i, j;
Rational det;
assert(m->rows == m->cols); /* Otherwise determinant doesn't exist */
if ( m->rows == 2 ) {
Rational a, b;
a = rtnl_mul(rtnl_mtx_get(m, 0, 0), rtnl_mtx_get(m, 1, 1));
b = rtnl_mul(rtnl_mtx_get(m, 0, 1), rtnl_mtx_get(m, 1, 0));
return rtnl_sub(a, b);
}
i = 0; /* Fixed */
det = rtnl_zero();
for ( j=0; j<m->cols; j++ ) {
Rational a;
a = rtnl_mul(rtnl_mtx_get(m, i, j), cofactor(m, i, j));
det = rtnl_add(det, a);
}
return det;
}
|