1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
/*
* symop.y
*
* Parser for symmetry operations
*
* Copyright © 2019 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2019 Thomas White <taw@physics.org>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
%{
#include <stdio.h>
#include "rational.h"
#include "symmetry.h"
extern int symoplex();
extern int symopparse(RationalMatrix *m, SymOpList *list);
void symoperror(RationalMatrix *m, SymOpList *list, const char *s);
%}
%define api.prefix {symop}
%parse-param {RationalMatrix *m} {SymOpList *list}
%code requires {
#include "symmetry.h"
}
%union {
RationalMatrix *m; /* Full rational matrix */
Rational rv[3]; /* Rational vector, e.g. '1/2h+3k' */
Rational r; /* Rational number */
int n; /* Just a number */
}
%token SEMICOLON
%token COMMA
%token NUMBER
%token OPENB CLOSEB
%token H K L
%left PLUS MINUS
%left DIVIDE
%precedence MUL
%precedence NEG
%type <m> symop
%type <rv> axexpr
%type <rv> part
%type <n> NUMBER
%type <r> fraction
%{
static int try_add_symop(SymOpList *list, RationalMatrix *m, int complain)
{
if ( list == NULL ) {
/* Only complain if this isn't the only operation provided */
if ( complain ) {
yyerror(m, list, "Must be a single symmetry operation");
}
return 1;
} else {
IntegerMatrix *im;
im = intmat_from_rtnl_mtx(m);
if ( im == NULL ) {
yyerror(m, list, "Symmetry operations must all be integer");
return 1;
} else {
add_symop(list, im);
}
}
return 0;
}
%}
%%
symoplist:
symop { try_add_symop(list, m, 0); }
| symoplist SEMICOLON symop { if ( try_add_symop(list, m, 1) ) YYERROR; }
;
symop:
axexpr COMMA axexpr COMMA axexpr { rtnl_mtx_set(m, 0, 0, $1[0]);
rtnl_mtx_set(m, 0, 1, $1[1]);
rtnl_mtx_set(m, 0, 2, $1[2]);
rtnl_mtx_set(m, 1, 0, $3[0]);
rtnl_mtx_set(m, 1, 1, $3[1]);
rtnl_mtx_set(m, 1, 2, $3[2]);
rtnl_mtx_set(m, 2, 0, $5[0]);
rtnl_mtx_set(m, 2, 1, $5[1]);
rtnl_mtx_set(m, 2, 2, $5[2]);
}
;
axexpr:
part { int i; for ( i=0; i<3; i++ ) $$[i] = $1[i]; }
| axexpr PLUS axexpr { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_add($1[i], $3[i]); }
| axexpr MINUS axexpr { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_sub($1[i], $3[i]); }
| MINUS axexpr %prec NEG { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_sub(rtnl_zero(), $2[i]); }
| OPENB axexpr CLOSEB { int i; for ( i=0; i<3; i++ ) $$[i] = $2[i]; }
| axexpr DIVIDE NUMBER { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_div($1[i], rtnl($3, 1)); }
| NUMBER axexpr %prec MUL { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_mul($2[i], rtnl($1, 1)); }
| fraction axexpr %prec MUL { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_mul($2[i], $1); }
;
part:
H { $$[0] = rtnl(1, 1); $$[1] = rtnl_zero(); $$[2] = rtnl_zero(); }
| K { $$[1] = rtnl(1, 1); $$[0] = rtnl_zero(); $$[2] = rtnl_zero(); }
| L { $$[2] = rtnl(1, 1); $$[0] = rtnl_zero(); $$[1] = rtnl_zero(); }
;
fraction:
NUMBER DIVIDE NUMBER { $$ = rtnl($1, $3); }
;
%%
void symoperror(RationalMatrix *m, SymOpList *list, const char *s) {
printf("Error: %s\n", s);
}
|