1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
|
//
// ignore.h
// cppxfel
//
// Created by Helen Ginn on 24/03/2017.
// Copyright (c) 2017 Division of Structural Biology Oxford. All rights reserved.
//
#ifndef cppxfel_ignore_h
#define cppxfel_ignore_h
/*
* taketwo.c
*
* Rewrite of TakeTwo algorithm (Acta D72 (8) 956-965) for CrystFEL
*
* Copyright © 2016 Helen Ginn
* Copyright © 2016 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2016 Helen Ginn <helen@strubi.ox.ac.uk>
* 2016 Thomas White <taw@physics.org>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
#include <float.h>
#include <math.h>
#include <assert.h>
#include "cell-utils.h"
#include "index.h"
#include "taketwo.h"
#include "peaks.h"
#include "symmetry.h"
#include <time.h>
/**
* spotvec
* @obsvec: an observed vector between two spots
* @matches: array of matching theoretical vectors from unit cell
* @match_num: number of matches
* @distance: length of obsvec (do I need this?)
* @her_rlp: pointer to first rlp position for difference vec
* @his_rlp: pointer to second rlp position for difference vec
*
* Structure representing 3D vector between two potential Bragg peaks
* in reciprocal space, and an array of potential matching theoretical
* vectors from unit cell/centering considerations.
**/
struct SpotVec
{
struct rvec obsvec;
struct rvec *matches;
int match_num;
struct rvec *asym_matches;
int asym_match_num;
double distance;
struct rvec *her_rlp;
struct rvec *his_rlp;
};
struct taketwo_private
{
IndexingMethod indm;
float *ltl;
UnitCell *cell;
};
// These rotation symmetry operators
struct TakeTwoCell
{
UnitCell *cell;
gsl_matrix **rotSymOps;
unsigned int numOps;
};
/* Maximum distance between two rlp sizes to consider info for indexing */
#define MAX_RECIP_DISTANCE (0.20*1e10)
/* Tolerance for two lengths in reciprocal space to be considered the same */
#define RECIP_TOLERANCE (0.0010*1e10)
/* Threshold for network members to consider a potential solution */
#define NETWORK_MEMBER_THRESHOLD (25)
/* Maximum network members (obviously a solution so should stop) */
#define MAX_NETWORK_MEMBERS (NETWORK_MEMBER_THRESHOLD + 3)
/* Maximum dead ends for a single branch extension during indexing */
#define MAX_DEAD_ENDS (0)
/* Tolerance for two angles to be considered the same */
#define ANGLE_TOLERANCE (deg2rad(0.5))
#define COSINE_TOLERANCE 0.017
/* Tolerance for rot_mats_are_similar */
#define TRACE_TOLERANCE (deg2rad(4.0))
/** TODO:
*
* - May need to be capable of playing with the tolerances/#defined stuff.
* - Multiple lattices
*/
/* ------------------------------------------------------------------------
* apologetic function
* ------------------------------------------------------------------------*/
void apologise()
{
printf("Error - could not allocate memory for indexing.\n");
}
/* ------------------------------------------------------------------------
* functions concerning aspects of rvec which are very likely to be
* incorporated somewhere else in CrystFEL and therefore may need to be
* deleted and references connected to a pre-existing function. (Lowest level)
* ------------------------------------------------------------------------*/
static struct rvec new_rvec(double new_u, double new_v, double new_w)
{
struct rvec new_rvector;
new_rvector.u = new_u;
new_rvector.v = new_v;
new_rvector.w = new_w;
return new_rvector;
}
static struct rvec diff_vec(struct rvec from, struct rvec to)
{
struct rvec diff = new_rvec(to.u - from.u,
to.v - from.v,
to.w - from.w);
return diff;
}
static double sq_length(struct rvec vec)
{
double sqlength = (vec.u * vec.u + vec.v * vec.v + vec.w * vec.w);
return sqlength;
}
static double rvec_length(struct rvec vec)
{
return sqrt(sq_length(vec));
}
static void normalise_rvec(struct rvec *vec)
{
double length = rvec_length(*vec);
vec->u /= length;
vec->v /= length;
vec->w /= length;
}
static double rvec_cosine(struct rvec v1, struct rvec v2)
{
double dot_prod = v1.u * v2.u + v1.v * v2.v + v1.w * v2.w;
double v1_length = rvec_length(v1);
double v2_length = rvec_length(v2);
double cos_theta = dot_prod / (v1_length * v2_length);
return cos_theta;
}
static double rvec_angle(struct rvec v1, struct rvec v2)
{
double cos_theta = rvec_cosine(v1, v2);
double angle = acos(cos_theta);
return angle;
}
static struct rvec rvec_cross(struct rvec a, struct rvec b)
{
struct rvec c;
c.u = a.v*b.w - a.w*b.v;
c.v = -(a.u*b.w - a.w*b.u);
c.w = a.u*b.v - a.v*b.u;
return c;
}
static void show_rvec(struct rvec r2)
{
struct rvec r = r2;
normalise_rvec(&r);
STATUS("[ %.3f %.3f %.3f ]\n", r.u, r.v, r.w);
}
/* ------------------------------------------------------------------------
* functions called under the core functions, still specialised (Level 3)
* ------------------------------------------------------------------------*/
static gsl_matrix *rotation_around_axis(struct rvec c, double th)
{
double omc = 1.0 - cos(th);
double s = sin(th);
gsl_matrix *res = gsl_matrix_alloc(3, 3);
gsl_matrix_set(res, 0, 0, cos(th) + c.u*c.u*omc);
gsl_matrix_set(res, 0, 1, c.u*c.v*omc - c.w*s);
gsl_matrix_set(res, 0, 2, c.u*c.w*omc + c.v*s);
gsl_matrix_set(res, 1, 0, c.u*c.v*omc + c.w*s);
gsl_matrix_set(res, 1, 1, cos(th) + c.v*c.v*omc);
gsl_matrix_set(res, 1, 2, c.v*c.w*omc - c.u*s);
gsl_matrix_set(res, 2, 0, c.w*c.u*omc - c.v*s);
gsl_matrix_set(res, 2, 1, c.w*c.v*omc + c.u*s);
gsl_matrix_set(res, 2, 2, cos(th) + c.w*c.w*omc);
return res;
}
/* Rotate vector (vec1) around axis (axis) by angle theta. Find value of
* theta for which the angle between (vec1) and (vec2) is minimised.
* Behold! Finally an analytical solution for this one. Assuming
* that @result has already been allocated. Will upload the maths to the
* shared Google drive. */
static gsl_matrix *closest_rot_mat(struct rvec vec1, struct rvec vec2,
struct rvec axis)
{
/* Let's have unit vectors */
normalise_rvec(&vec1);
normalise_rvec(&vec2);
normalise_rvec(&axis);
/* Redeclaring these to try and maintain readability and
* check-ability against the maths I wrote down */
double a = vec2.u; double b = vec2.v; double c = vec2.w;
double p = vec1.u; double q = vec1.v; double r = vec1.w;
double x = axis.u; double y = axis.v; double z = axis.w;
/* Components in handwritten maths online when I upload it */
double A = a*(p*x*x - p + x*y*q + x*z*r) +
b*(p*x*y + q*y*y - q + r*y*z) +
c*(p*x*z + q*y*z + r*z*z - r);
double B = a*(y*r - z*q) + b*(p*z - r*x) + c*(q*x - p*y);
double tan_theta = - B / A;
double theta = atan(tan_theta);
/* Now we have two possible solutions, theta or theta+pi
* and we need to work out which one. This could potentially be
* simplified - do we really need so many cos/sins? maybe check
* the 2nd derivative instead? */
double cc = cos(theta);
double C = 1 - cc;
double s = sin(theta);
double occ = -cc;
double oC = 1 - occ;
double os = -s;
double pPrime = (x*x*C+cc)*p + (x*y*C-z*s)*q + (x*z*C+y*s)*r;
double qPrime = (y*x*C+z*s)*p + (y*y*C+cc)*q + (y*z*C-x*s)*r;
double rPrime = (z*x*C-y*s)*p + (z*y*C+x*s)*q + (z*z*C+cc)*r;
double pDbPrime = (x*x*oC+occ)*p + (x*y*oC-z*os)*q + (x*z*oC+y*os)*r;
double qDbPrime = (y*x*oC+z*os)*p + (y*y*oC+occ)*q + (y*z*oC-x*os)*r;
double rDbPrime = (z*x*oC-y*os)*p + (z*y*oC+x*os)*q + (z*z*oC+occ)*r;
double cosAlpha = pPrime * a + qPrime * b + rPrime * c;
double cosAlphaOther = pDbPrime * a + qDbPrime * b + rDbPrime * c;
int addPi = (cosAlphaOther > cosAlpha);
double bestAngle = theta + addPi * M_PI;
/* Return an identity matrix which has been rotated by
* theta around "axis" */
return rotation_around_axis(axis, bestAngle);
}
static double matrix_trace(gsl_matrix *a)
{
int i;
double tr = 0.0;
assert(a->size1 == a->size2);
for ( i=0; i<a->size1; i++ ) {
tr += gsl_matrix_get(a, i, i);
}
return tr;
}
static char *add_ua(const char *inp, char ua)
{
char *pg = malloc(64);
if ( pg == NULL ) return NULL;
snprintf(pg, 63, "%s_ua%c", inp, ua);
return pg;
}
static char *get_chiral_holohedry(UnitCell *cell)
{
LatticeType lattice = cell_get_lattice_type(cell);
char *pg = malloc(64);
char *pgout = 0;
if ( pg == NULL ) return NULL;
switch (lattice)
{
case L_TRICLINIC:
pg = "1";
break;
case L_MONOCLINIC:
pg = "2";
break;
case L_ORTHORHOMBIC:
pg = "222";
break;
case L_TETRAGONAL:
pg = "422";
break;
case L_RHOMBOHEDRAL:
pg = "3_R";
break;
case L_HEXAGONAL:
if ( cell_get_centering(cell) == 'H' ) {
pg = "3_H";
} else {
pg = "622";
}
break;
case L_CUBIC:
pg = "432";
break;
default:
pg = "error";
break;
}
switch (lattice)
{
case L_TRICLINIC:
case L_ORTHORHOMBIC:
case L_RHOMBOHEDRAL:
case L_CUBIC:
pgout = strdup(pg);
break;
case L_MONOCLINIC:
case L_TETRAGONAL:
case L_HEXAGONAL:
pgout = add_ua(pg, cell_get_unique_axis(cell));
break;
default:
break;
}
return pgout;
}
static SymOpList *sym_ops_for_cell(UnitCell *cell)
{
SymOpList *rawList;
char *pg = get_chiral_holohedry(cell);
rawList = get_pointgroup(pg);
free(pg);
return rawList;
}
static int rot_mats_are_similar(gsl_matrix *rot1, gsl_matrix *rot2,
gsl_matrix *sub, gsl_matrix *mul,
double *score)
{
double tr;
gsl_matrix_memcpy(sub, rot1);
gsl_matrix_sub(sub, rot2); /* sub = rot1 - rot2 */
gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, sub, sub, 0.0, mul);
tr = matrix_trace(mul);
if (score != NULL) *score = tr;
double max = sqrt(4.0*(1.0-cos(TRACE_TOLERANCE)));
return (tr < max);
}
static int symm_rot_mats_are_similar(gsl_matrix *rot1, gsl_matrix *rot2,
struct TakeTwoCell *cell)
{
int i;
gsl_matrix *sub;
gsl_matrix *mul;
sub = gsl_matrix_calloc(3, 3);
mul = gsl_matrix_calloc(3, 3);
for (i = 0; i < cell->numOps; i++) {
gsl_matrix *testRot = gsl_matrix_alloc(3, 3);
gsl_matrix *symOp = cell->rotSymOps[i];
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, rot1, symOp,
0.0, testRot);
if (rot_mats_are_similar(testRot, rot2, sub, mul, NULL)) {
gsl_matrix_free(testRot);
gsl_matrix_free(sub);
gsl_matrix_free(mul);
return 1;
}
gsl_matrix_free(testRot);
}
gsl_matrix_free(sub);
gsl_matrix_free(mul);
return 0;
}
static gsl_matrix *rotation_between_vectors(struct rvec a, struct rvec b)
{
double th = rvec_angle(a, b);
struct rvec c = rvec_cross(a, b);
normalise_rvec(&c);
return rotation_around_axis(c, th);
}
static gsl_vector *rvec_to_gsl(struct rvec v)
{
gsl_vector *a = gsl_vector_alloc(3);
gsl_vector_set(a, 0, v.u);
gsl_vector_set(a, 1, v.v);
gsl_vector_set(a, 2, v.w);
return a;
}
struct rvec gsl_to_rvec(gsl_vector *a)
{
struct rvec v;
v.u = gsl_vector_get(a, 0);
v.v = gsl_vector_get(a, 1);
v.w = gsl_vector_get(a, 2);
return v;
}
/* Code me in gsl_matrix language to copy the contents of the function
* in cppxfel (IndexingSolution::createSolution). This function is quite
* intensive on the number crunching side so simple angle checks are used
* to 'pre-scan' vectors beforehand. */
static gsl_matrix *generate_rot_mat(struct rvec obs1, struct rvec obs2,
struct rvec cell1, struct rvec cell2)
{
gsl_matrix *rotateSpotDiffMatrix;
gsl_matrix *secondTwizzleMatrix;
gsl_matrix *fullMat;
gsl_vector *cell2v = rvec_to_gsl(cell2);
gsl_vector *cell2vr = gsl_vector_calloc(3);
normalise_rvec(&obs1);
normalise_rvec(&obs2);
normalise_rvec(&cell1);
normalise_rvec(&cell2);
/* Rotate reciprocal space so that the first simulated vector lines up
* with the observed vector. */
rotateSpotDiffMatrix = rotation_between_vectors(cell1, obs1);
normalise_rvec(&obs1);
/* Multiply cell2 by rotateSpotDiffMatrix --> cell2vr */
gsl_blas_dgemv(CblasNoTrans, 1.0, rotateSpotDiffMatrix, cell2v,
0.0, cell2vr);
/* Now we twirl around the firstAxisUnit until the rotated simulated
* vector matches the second observed vector as closely as possible. */
secondTwizzleMatrix = closest_rot_mat(gsl_to_rvec(cell2vr), obs2, obs1);
/* We want to apply the first matrix and then the second matrix,
* so we multiply these. */
fullMat = gsl_matrix_calloc(3, 3);
gsl_blas_dgemm(CblasTrans, CblasTrans, 1.0,
rotateSpotDiffMatrix, secondTwizzleMatrix, 0.0, fullMat);
gsl_matrix_transpose(fullMat);
gsl_vector_free(cell2v);
gsl_vector_free(cell2vr);
gsl_matrix_free(secondTwizzleMatrix);
gsl_matrix_free(rotateSpotDiffMatrix);
return fullMat;
}
static int obs_vecs_share_spot(struct SpotVec *her_obs, struct SpotVec *his_obs)
{
if ( (her_obs->her_rlp == his_obs->her_rlp) ||
(her_obs->her_rlp == his_obs->his_rlp) ||
(her_obs->his_rlp == his_obs->her_rlp) ||
(her_obs->his_rlp == his_obs->his_rlp) ) {
return 1;
}
return 0;
}
static int obs_shares_spot_w_array(struct SpotVec *obs_vecs, int test_idx,
int *members, int num)
{
int i;
int total = 0;
int target = 1;
struct SpotVec *her_obs = &obs_vecs[test_idx];
for ( i=0; i<num; i++ ) {
struct SpotVec *his_obs = &obs_vecs[members[i]];
int shares = obs_vecs_share_spot(her_obs, his_obs);
if ( shares ) return 1;;
}
if (total > target) {
return 1;
}
return 0;
}
/** Note: this could potentially (and cautiously) converted to comparing
* cosines rather than angles, to lose an "acos" but different parts of the
* cosine graph are more sensitive than others, so may be a trade off... or not.
*/
static int obs_vecs_match_angles(struct SpotVec *her_obs,
struct SpotVec *his_obs,
int **her_match_idxs, int **his_match_idxs,
int *match_count)
{
int i, j;
*match_count = 0;
double min_angle = 0.9990;
double max_angle = -0.99144;
/* calculate angle between observed vectors */
double obs_cos = rvec_cosine(her_obs->obsvec, his_obs->obsvec);
/* calculate angle between all potential theoretical vectors */
for ( i=0; i<her_obs->match_num; i++ ) {
for ( j=0; j<his_obs->match_num; j++ ) {
struct rvec *her_match = &her_obs->matches[i];
struct rvec *his_match = &his_obs->matches[j];
double theory_cos = rvec_cosine(*her_match,
*his_match);
/* is this angle a match? */
double cos_diff = fabs(theory_cos - obs_cos);
if ( cos_diff < COSINE_TOLERANCE ) {
// in the case of a brief check only
if (!her_match_idxs || !his_match_idxs) {
return 1;
}
/* If the angles are too close to 0
or 180, one axis ill-determined */
if (theory_cos > min_angle ||
theory_cos < max_angle) {
continue;
}
// check the third vector
struct rvec theory_diff = diff_vec(*his_match, *her_match);
struct rvec obs_diff = diff_vec(his_obs->obsvec,
her_obs->obsvec);
theory_cos = rvec_cosine(*her_match,
theory_diff);
obs_cos = rvec_cosine(her_obs->obsvec, obs_diff);
if (fabs(obs_cos - theory_cos) > COSINE_TOLERANCE) {
continue;
}
theory_cos = rvec_cosine(*his_match,
theory_diff);
obs_cos = rvec_cosine(his_obs->obsvec, obs_diff);
if (fabs(obs_cos - theory_cos) > COSINE_TOLERANCE) {
continue;
}
size_t new_size = (*match_count + 1) *
sizeof(int);
if (her_match_idxs && his_match_idxs)
{
/* Reallocate the array to fit in another match */
int *temp_hers;
int *temp_his;
temp_hers = realloc(*her_match_idxs, new_size);
temp_his = realloc(*his_match_idxs, new_size);
if ( temp_hers == NULL || temp_his == NULL ) {
apologise();
}
(*her_match_idxs) = temp_hers;
(*his_match_idxs) = temp_his;
(*her_match_idxs)[*match_count] = i;
(*his_match_idxs)[*match_count] = j;
}
(*match_count)++;
}
}
}
return (*match_count > 0);
}
// DELETE ME IF UNUSED
static int obs_angles_match_array(struct SpotVec *obs_vecs, int test_idx,
int *obs_members, int *match_members, int num)
{
/* note: this is just a preliminary check to reduce unnecessary
* computation later down the line, but is not entirely accurate.
**/
int i = 0;
struct SpotVec *her_obs = &obs_vecs[test_idx];
for ( i=0; i<num && i < 2; i++ ) {
struct SpotVec *his_obs = &obs_vecs[obs_members[i]];
/* placeholders, but results are ignored */
int match_count = 0;
/* check our test vector matches existing network member */
int success = obs_vecs_match_angles(her_obs, his_obs,
NULL, NULL,
&match_count);
if (!success) return 0;
}
return 1;
}
/* ------------------------------------------------------------------------
* core functions regarding the meat of the TakeTwo algorithm (Level 2)
* ------------------------------------------------------------------------*/
static signed int finish_solution(gsl_matrix *rot, struct SpotVec *obs_vecs,
int *obs_members, int *match_members,
int member_num)
{
gsl_matrix *sub;
gsl_matrix *mul;
sub = gsl_matrix_calloc(3, 3);
mul = gsl_matrix_calloc(3, 3);
gsl_matrix **rotations = malloc(sizeof(*rotations)* pow(member_num, 2) - member_num);
int i, j, count;
count = 0;
for ( i=0; i<1; i++ ) {
for ( j=0; j<member_num; j++ ) {
if (i == j) continue;
struct SpotVec i_vec = obs_vecs[obs_members[i]];
struct SpotVec j_vec = obs_vecs[obs_members[j]];
struct rvec i_obsvec = i_vec.obsvec;
struct rvec j_obsvec = j_vec.obsvec;
struct rvec i_cellvec = i_vec.matches[match_members[i]];
struct rvec j_cellvec = j_vec.matches[match_members[j]];
rotations[count] = generate_rot_mat(i_obsvec, j_obsvec,
i_cellvec, j_cellvec);
count++;
}
}
double min_score = FLT_MAX;
int min_rot_index = 0;
for (i=0; i<count; i++) {
double current_score = 0;
for (j=0; j<count; j++) {
double addition;
rot_mats_are_similar(rotations[i], rotations[j],
sub, mul,
&addition);
current_score += addition;
}
if (current_score < min_score) {
min_score = current_score;
min_rot_index = i;
}
}
gsl_matrix_memcpy(rot, rotations[min_rot_index]);
for (i=0; i<count; i++) {
gsl_matrix_free(rotations[i]);
}
free(rotations);
gsl_matrix_free(sub);
gsl_matrix_free(mul);
return 1;
}
static signed int find_next_index(gsl_matrix *rot, struct SpotVec *obs_vecs,
int obs_vec_count, int *obs_members,
int *match_members, int start, int member_num,
int *match_found)
{
int i;
gsl_matrix *sub;
gsl_matrix *mul;
sub = gsl_matrix_calloc(3, 3);
mul = gsl_matrix_calloc(3, 3);
for ( i=start; i<obs_vec_count && i < start + 1000; i++ ) {
/* first we check for a shared spot - harshest condition */
int shared = obs_shares_spot_w_array(obs_vecs, i, obs_members,
member_num);
if ( !shared ) continue;
/* now we check that angles between all vectors match */
// int matches = obs_angles_match_array(obs_vecs, i, obs_members,
//match_members, member_num);
// if ( !matches ) continue;
/* final test: does the corresponding rotation matrix
* match the others? NOTE: have not tested to see if
* every combination of test/existing member has to be checked
* so for now, just sticking to the first two...
*/
/* need to grab all the matching vector indices */
int *member_idx = 0;
int *test_idx = 0;
int match_num;
obs_vecs_match_angles(&obs_vecs[obs_members[0]], &obs_vecs[i],
&member_idx, &test_idx, &match_num);
/* if ok is set to 0, give up on this vector before
* checking the next value of j */
int j, k;
for ( j=0; j<match_num; j++ ) {
int all_ok = 1;
for ( k=0; k<member_num; k++ )
{
gsl_matrix *test_rot;
struct rvec member_match;
int idx_k = obs_members[k];
/* First observed vector and matching theoretical */
member_match = obs_vecs[idx_k].matches[match_members[k]];
/* Potential match with another vector */
struct rvec a_match = obs_vecs[i].matches[test_idx[j]];
test_rot = generate_rot_mat(obs_vecs[idx_k].obsvec,
obs_vecs[i].obsvec,
member_match,
a_match);
double trace = 0;
int ok = rot_mats_are_similar(rot, test_rot,
sub, mul,
&trace);
gsl_matrix_free(test_rot);
if (!ok) {
all_ok = 0;
break;
}
}
if (all_ok) {
*match_found = test_idx[j];
free(member_idx);
free(test_idx);
gsl_matrix_free(sub);
gsl_matrix_free(mul);
return i;
}
}
free(member_idx); member_idx = NULL;
free(test_idx); member_idx = NULL;
}
gsl_matrix_free(sub);
gsl_matrix_free(mul);
/* give up. */
return -1;
}
static int grow_network(gsl_matrix *rot, struct SpotVec *obs_vecs,
int obs_vec_count, int obs_idx1, int obs_idx2,
int match_idx1, int match_idx2, int *max_members)
{
/* indices of members of the self-consistent network of vectors */
int obs_members[MAX_NETWORK_MEMBERS];
int match_members[MAX_NETWORK_MEMBERS];
/* initialise the ones we know already */
obs_members[0] = obs_idx1;
obs_members[1] = obs_idx2;
match_members[0] = match_idx1;
match_members[1] = match_idx2;
int member_num = 2;
*max_members = 2;
/* counter for dead ends which must not exceed MAX_DEAD_ENDS
* before it is reset in an additional branch */
int dead_ends = 0;
/* we start from 0 */
int start = 0;
while ( 1 ) {
if (start > obs_vec_count) {
return 0;
}
int match_found = -1;
signed int next_index = find_next_index(rot, obs_vecs,
obs_vec_count, obs_members,
match_members,
start, member_num,
&match_found);
if ( member_num < 2 ) {
return 0;
}
if ( next_index < 0 ) {
/* If there have been too many dead ends, give up
* on indexing altogether.
**/
if ( dead_ends > MAX_DEAD_ENDS ) {
break;
}
/* We have not had too many dead ends. Try removing
the last member and continue. */
start++;
member_num--;
dead_ends++;
continue;
}
/* we have elongated membership - so reset dead_ends counter */
dead_ends = 0;
obs_members[member_num] = next_index;
match_members[member_num] = match_found;
start = next_index + 1;
member_num++;
if (member_num > *max_members) {
*max_members = member_num;
}
/* If member_num is high enough, we want to return a yes */
if ( member_num > NETWORK_MEMBER_THRESHOLD ) break;
}
/*
int i;
for (i = 0; i < member_num; i++)
{
STATUS(".");
}
if ( member_num > NETWORK_MEMBER_THRESHOLD ) {
STATUS(" yes (%i)\n", member_num);
} else {
STATUS(" nope (%i)\n", member_num);
}*/
finish_solution(rot, obs_vecs, obs_members,
match_members, member_num);
return ( member_num > NETWORK_MEMBER_THRESHOLD );
}
static int start_seed(struct SpotVec *obs_vecs, int obs_vec_count, int i,
int j, int i_match, int j_match, gsl_matrix **rotation,
int *max_members)
{
gsl_matrix *rot_mat;
rot_mat = generate_rot_mat(obs_vecs[i].obsvec,
obs_vecs[j].obsvec,
obs_vecs[i].matches[i_match],
obs_vecs[j].matches[j_match]);
/* Try to expand this rotation matrix to a larger network */
int success = grow_network(rot_mat, obs_vecs, obs_vec_count,
i, j, i_match, j_match, max_members);
/* return this matrix and if it was immediately successful */
*rotation = rot_mat;
return success;
}
static int weed_duplicate_matches(struct SpotVec *her_obs,
struct SpotVec *his_obs,
int **her_match_idxs, int **his_match_idxs,
int *match_count, struct TakeTwoCell *cell)
{
int num_occupied = 0;
gsl_matrix **old_mats = calloc(*match_count, sizeof(gsl_matrix *));
if (old_mats == NULL)
{
apologise();
return 0;
}
signed int i, j;
int duplicates = 0;
for (i = *match_count - 1; i >= 0; i--) {
int her_match = (*her_match_idxs)[i];
int his_match = (*his_match_idxs)[i];
struct rvec i_obsvec = her_obs->obsvec;
struct rvec j_obsvec = his_obs->obsvec;
struct rvec i_cellvec = her_obs->matches[her_match];
struct rvec j_cellvec = his_obs->matches[his_match];
gsl_matrix *mat = generate_rot_mat(i_obsvec, j_obsvec,
i_cellvec, j_cellvec);
int found = 0;
for (j = 0; j < num_occupied; j++) {
if (old_mats[j] && mat &&
symm_rot_mats_are_similar(old_mats[j], mat, cell))
{
// we have found a duplicate, so flag as bad.
(*her_match_idxs)[i] = -1;
(*his_match_idxs)[i] = -1;
found = 1;
duplicates++;
}
}
if (!found) {
// we have not found a duplicate, add to list.
old_mats[num_occupied] = mat;
num_occupied++;
} else {
gsl_matrix_free(mat);
}
}
for (i = 0; i < num_occupied; i++) {
if (old_mats[i]) {
gsl_matrix_free(old_mats[i]);
}
}
free(old_mats);
return 1;
}
static int find_seed(struct SpotVec *obs_vecs, int obs_vec_count,
gsl_matrix **rotation, struct TakeTwoCell *cell)
{
/* META: Maximum achieved maximum network membership */
int max_max_members = 0;
gsl_matrix *best_rotation = NULL;
// unsigned long start_time = time(NULL);
/* loop round pairs of vectors to try and find a suitable
* seed to start building a self-consistent network of vectors
*/
int i, j;
for ( i=0; i<obs_vec_count; i++ ) {
for ( j=0; j<i; j++ ) {
/** Check to see if there is a shared spot - opportunity
* for optimisation by generating a look-up table
* by spot instead of by vector.
*/
int shared = obs_vecs_share_spot(&obs_vecs[i], &obs_vecs[j]);
if ( !shared ) continue;
/* cell vector index matches stored in i, j and total number
* stored in int matches.
*/
int *i_idx = 0;
int *j_idx = 0;
int matches;
// double dist1Pc = 100 * obs_vecs[i].distance / MAX_RECIP_DISTANCE;
// double dist2Pc = 100 * obs_vecs[j].distance / MAX_RECIP_DISTANCE;
/* Check to see if any angles match from the cell vectors */
obs_vecs_match_angles(&obs_vecs[i], &obs_vecs[j],
&i_idx, &j_idx, &matches);
if ( matches == 0 ) {
free(i_idx);
free(j_idx);
continue;
}
/* Weed out the duplicate seeds (from symmetric
* reflection pairs)
*/
weed_duplicate_matches(&obs_vecs[i], &obs_vecs[j],
&i_idx, &j_idx, &matches, cell);
/* We have seeds! Pass each of them through the seed-starter */
/* If a seed has the highest achieved membership, make note...*/
int k;
for ( k=0; k<matches; k++ ) {
if (i_idx[k] < 0 || j_idx[k] < 0) {
continue;
}
int max_members = 0;
int success = start_seed(obs_vecs, obs_vec_count, i, j,
i_idx[k], j_idx[k],
rotation, &max_members);
if (success) {
free(i_idx); free(j_idx);
gsl_matrix_free(best_rotation);
return success;
} else {
if (max_members > max_max_members) {
max_max_members = max_members;
gsl_matrix_free(best_rotation);
best_rotation = *rotation;
*rotation = NULL;
} else {
gsl_matrix_free(*rotation);
*rotation = NULL;
}
}
// unsigned long now_time = time(NULL);
// unsigned int seconds = now_time - start_time;
// Commented out for the time being.
/*
if (seconds > 30) {
// Heading towards CrystFEL cutoff so
// return your best guess and run
free(i_idx); free(j_idx);
*rotation = best_rotation;
return (best_rotation != NULL);
}
*/
}
free(i_idx);
free(j_idx);
}
} /* yes this } is meant to be here */
*rotation = best_rotation;
return (best_rotation != NULL);
}
static void set_gsl_matrix(gsl_matrix *mat, double asx, double asy, double asz,
double bsx, double bsy, double bsz,
double csx, double csy, double csz)
{
gsl_matrix_set(mat, 0, 0, asx);
gsl_matrix_set(mat, 0, 1, asy);
gsl_matrix_set(mat, 0, 2, asz);
gsl_matrix_set(mat, 1, 0, bsx);
gsl_matrix_set(mat, 1, 1, bsy);
gsl_matrix_set(mat, 1, 2, bsz);
gsl_matrix_set(mat, 2, 0, csx);
gsl_matrix_set(mat, 2, 1, csy);
gsl_matrix_set(mat, 2, 2, csz);
}
static int generate_rotation_sym_ops(struct TakeTwoCell *ttCell)
{
SymOpList *rawList = sym_ops_for_cell(ttCell->cell);
/* Now we must convert these into rotation matrices rather than hkl
* transformations (affects triclinic, monoclinic, rhombohedral and
* hexagonal space groups only) */
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
gsl_matrix *recip = gsl_matrix_alloc(3, 3);
gsl_matrix *cart = gsl_matrix_alloc(3, 3);
cell_get_reciprocal(ttCell->cell, &asx, &asy, &asz, &bsx, &bsy,
&bsz, &csx, &csy, &csz);
set_gsl_matrix(recip, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz);
cell_get_cartesian(ttCell->cell, &asx, &asy, &asz, &bsx, &bsy,
&bsz, &csx, &csy, &csz);
set_gsl_matrix(cart, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz);
int i, j, k;
int numOps = num_equivs(rawList, NULL);
ttCell->rotSymOps = malloc(numOps * sizeof(gsl_matrix *));
ttCell->numOps = numOps;
if (ttCell->rotSymOps == NULL) {
apologise();
return 0;
}
for (i = 0; i < numOps; i++)
{
gsl_matrix *symOp = gsl_matrix_alloc(3, 3);
IntegerMatrix *op = get_symop(rawList, NULL, i);
for (j = 0; j < 3; j++) {
for (k = 0; k < 3; k++) {
gsl_matrix_set(symOp, j, k, intmat_get(op, j, k));
}
}
gsl_matrix *first = gsl_matrix_calloc(3, 3);
gsl_matrix *second = gsl_matrix_calloc(3, 3);
/* Each equivalence is of the form:
cartesian * symOp * reciprocal.
First multiplication: symOp * reciprocal */
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans,
1.0, symOp, recip,
0.0, first);
/* Second multiplication: cartesian * first */
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans,
1.0, cart, first,
0.0, second);
ttCell->rotSymOps[i] = second;
gsl_matrix_free(symOp);
gsl_matrix_free(first);
}
gsl_matrix_free(cart);
gsl_matrix_free(recip);
free_symoplist(rawList);
return 1;
}
struct sortme
{
struct rvec v;
double dist;
};
static int sort_func(const void *av, const void *bv)
{
struct sortme *a = (struct sortme *)av;
struct sortme *b = (struct sortme *)bv;
return a->dist > b->dist;
}
static int match_obs_to_cell_vecs(struct rvec *cell_vecs, int cell_vec_count,
struct SpotVec *obs_vecs, int obs_vec_count,
int is_asymmetric)
{
int i, j;
for ( i=0; i<obs_vec_count; i++ ) {
int count = 0;
struct sortme *for_sort = NULL;
for ( j=0; j<cell_vec_count; j++ ) {
/* get distance for unit cell vector */
double cell_length = rvec_length(cell_vecs[j]);
double obs_length = obs_vecs[i].distance;
/* check if this matches the observed length */
double dist_diff = fabs(cell_length - obs_length);
if ( dist_diff > RECIP_TOLERANCE ) continue;
/* we have a match, add to array! */
size_t new_size = (count+1)*sizeof(struct sortme);
for_sort = realloc(for_sort, new_size);
if ( for_sort == NULL ) return 0;
for_sort[count].v = cell_vecs[j];
for_sort[count].dist = dist_diff;
count++;
}
/* Pointers to relevant things */
struct rvec **match_array;
int *match_count;
if (!is_asymmetric) {
match_array = &(obs_vecs[i].matches);
match_count = &(obs_vecs[i].match_num);
} else {
match_array = &(obs_vecs[i].asym_matches);
match_count = &(obs_vecs[i].asym_match_num);
}
/* Sort in order to get most agreeable matches first */
qsort(for_sort, count, sizeof(struct sortme), sort_func);
*match_array = malloc(count*sizeof(struct rvec));
*match_count = count;
for ( j=0; j<count; j++ ) {
(*match_array)[j] = for_sort[j].v;
}
free(for_sort);
}
return 1;
}
static int compare_spot_vecs(const void *av, const void *bv)
{
struct SpotVec *a = (struct SpotVec *)av;
struct SpotVec *b = (struct SpotVec *)bv;
return a->distance > b->distance;
}
static int gen_observed_vecs(struct rvec *rlps, int rlp_count,
struct SpotVec **obs_vecs, int *obs_vec_count)
{
int i, j;
int count = 0;
/* maximum distance squared for comparisons */
double max_sq_length = pow(MAX_RECIP_DISTANCE, 2);
for ( i=0; i<rlp_count-1; i++ ) {
for ( j=i+1; j<rlp_count; j++ ) {
/* calculate difference vector between rlps */
struct rvec diff = diff_vec(rlps[i], rlps[j]);
/* are these two far from each other? */
double sqlength = sq_length(diff);
if ( sqlength > max_sq_length ) continue;
count++;
struct SpotVec *temp_obs_vecs;
temp_obs_vecs = realloc(*obs_vecs,
count*sizeof(struct SpotVec));
if ( temp_obs_vecs == NULL ) {
return 0;
} else {
*obs_vecs = temp_obs_vecs;
/* initialise all SpotVec struct members */
struct SpotVec spot_vec;
spot_vec.obsvec = diff;
spot_vec.distance = sqrt(sqlength);
spot_vec.matches = NULL;
spot_vec.match_num = 0;
spot_vec.her_rlp = &rlps[i];
spot_vec.his_rlp = &rlps[j];
(*obs_vecs)[count - 1] = spot_vec;
}
}
}
/* Sort such that the shortest and least error-prone distances
are searched first.
*/
qsort(*obs_vecs, count, sizeof(struct SpotVec), compare_spot_vecs);
*obs_vec_count = count;
return 1;
}
static int gen_theoretical_vecs(UnitCell *cell, struct rvec **cell_vecs,
struct rvec **asym_vecs, int *vec_count,
int *asym_vec_count)
{
double a, b, c, alpha, beta, gamma;
int h_max, k_max, l_max;
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
cell_get_reciprocal(cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
SymOpList *rawList = sym_ops_for_cell(cell);
cell_get_parameters(cell, &a, &b, &c, &alpha, &beta, &gamma);
/* find maximum Miller (h, k, l) indices for a given resolution */
h_max = MAX_RECIP_DISTANCE * a;
k_max = MAX_RECIP_DISTANCE * b;
l_max = MAX_RECIP_DISTANCE * c;
int h, k, l;
int _h, _k, _l;
int count = 0;
int asym_count = 0;
for ( h=-h_max; h<=+h_max; h++ ) {
for ( k=-k_max; k<=+k_max; k++ ) {
for ( l=-l_max; l<=+l_max; l++ ) {
struct rvec cell_vec;
/* Exclude systematic absences from centering concerns */
if ( forbidden_reflection(cell, h, k, l) ) continue;
int asymmetric = 0;
get_asymm(rawList, h, k, l, &_h, &_k, &_l);
if (h == _h && k == _k && l == _l) {
asymmetric = 1;
asym_count++;
}
cell_vec.u = h*asx + k*bsx + l*csx;
cell_vec.v = h*asy + k*bsy + l*csy;
cell_vec.w = h*asz + k*bsz + l*csz;
/* add this to our array - which may require expanding */
count++;
struct rvec *temp_cell_vecs;
temp_cell_vecs = realloc(*cell_vecs, count*sizeof(struct rvec));
struct rvec *temp_asym_vecs = NULL;
if (asymmetric) {
temp_asym_vecs = realloc(*asym_vecs,
count*sizeof(struct rvec));
}
if ( temp_cell_vecs == NULL ) {
return 0;
} else if (asymmetric && temp_asym_vecs == NULL) {
return 0;
} else {
*cell_vecs = temp_cell_vecs;
(*cell_vecs)[count - 1] = cell_vec;
if (!asymmetric) {
continue;
}
*asym_vecs = temp_asym_vecs;
(*asym_vecs)[asym_count - 1] = cell_vec;
}
}
}
}
*vec_count = count;
*asym_vec_count = asym_count;
free_symoplist(rawList);
return 1;
}
/* ------------------------------------------------------------------------
* cleanup functions - called from run_taketwo().
* ------------------------------------------------------------------------*/
static void cleanup_taketwo_obs_vecs(struct SpotVec *obs_vecs,
int obs_vec_count)
{
int i;
for ( i=0; i<obs_vec_count; i++ ) {
free(obs_vecs[i].matches);
free(obs_vecs[i].asym_matches);
}
free(obs_vecs);
}
static void cleanup_taketwo_cell(struct TakeTwoCell *ttCell)
{
int i;
for ( i=0; i<ttCell->numOps; i++ ) {
gsl_matrix_free(ttCell->rotSymOps[i]);
}
free(ttCell->rotSymOps);
}
/* ------------------------------------------------------------------------
* external functions - top level functions (Level 1)
* ------------------------------------------------------------------------*/
/**
* @cell: target unit cell
* @rlps: spot positions on detector back-projected into recripocal
* space depending on detector geometry etc.
* @rlp_count: number of rlps in rlps array.
* @rot: pointer to be given an assignment (hopefully) if indexing is
* successful.
**/
static UnitCell *run_taketwo(UnitCell *cell, struct rvec *rlps, int rlp_count)
{
int cell_vec_count = 0;
int asym_vec_count = 0;
struct rvec *cell_vecs = NULL;
struct rvec *asym_vecs = NULL;
UnitCell *result;
int obs_vec_count = 0;
struct SpotVec *obs_vecs = NULL;
int success = 0;
gsl_matrix *solution = NULL;
struct TakeTwoCell ttCell;
ttCell.cell = cell;
ttCell.rotSymOps = NULL;
ttCell.numOps = 0;
success = generate_rotation_sym_ops(&ttCell);
success = gen_theoretical_vecs(cell, &cell_vecs, &asym_vecs,
&cell_vec_count, &asym_vec_count);
if ( !success ) return NULL;
success = gen_observed_vecs(rlps, rlp_count, &obs_vecs, &obs_vec_count);
if ( !success ) return NULL;
success = match_obs_to_cell_vecs(asym_vecs, asym_vec_count,
obs_vecs, obs_vec_count, 1);
success = match_obs_to_cell_vecs(cell_vecs, cell_vec_count,
obs_vecs, obs_vec_count, 0);
free(cell_vecs);
free(asym_vecs);
if ( !success ) return NULL;
find_seed(obs_vecs, obs_vec_count, &solution, &ttCell);
if ( solution == NULL ) {
cleanup_taketwo_obs_vecs(obs_vecs, obs_vec_count);
return NULL;
}
// STATUS("Returning result.\n");
result = transform_cell_gsl(cell, solution);
gsl_matrix_free(solution);
cleanup_taketwo_obs_vecs(obs_vecs, obs_vec_count);
cleanup_taketwo_cell(&ttCell);
return result;
}
/* CrystFEL interface hooks */
int taketwo_index(struct image *image, IndexingPrivate *ipriv)
{
Crystal *cr;
UnitCell *cell;
struct rvec *rlps;
int n_rlps = 0;
int i;
struct taketwo_private *tp = (struct taketwo_private *)ipriv;
rlps = malloc((image_feature_count(image->features)+1)*sizeof(struct rvec));
for ( i=0; i<image_feature_count(image->features); i++ ) {
struct imagefeature *pk = image_get_feature(image->features, i);
if ( pk == NULL ) continue;
rlps[n_rlps].u = pk->rx;
rlps[n_rlps].v = pk->ry;
rlps[n_rlps].w = pk->rz;
n_rlps++;
}
rlps[n_rlps].u = 0.0;
rlps[n_rlps].v = 0.0;
rlps[n_rlps++].w = 0.0;
cell = run_taketwo(tp->cell, rlps, n_rlps);
free(rlps);
if ( cell == NULL ) return 0;
cr = crystal_new();
if ( cr == NULL ) {
ERROR("Failed to allocate crystal.\n");
return 0;
}
crystal_set_cell(cr, cell);
if ( tp->indm & INDEXING_CHECK_PEAKS ) {
if ( !peak_sanity_check(image, &cr, 1) ) {
cell_free(cell);
crystal_free(cr);
return 0;
}
}
image_add_crystal(image, cr);
return 1;
}
IndexingPrivate *taketwo_prepare(IndexingMethod *indm, UnitCell *cell,
struct detector *det, float *ltl)
{
struct taketwo_private *tp;
/* Flags that TakeTwo knows about */
*indm &= INDEXING_METHOD_MASK | INDEXING_CHECK_PEAKS
| INDEXING_USE_LATTICE_TYPE | INDEXING_USE_CELL_PARAMETERS
| INDEXING_CONTROL_FLAGS;
if ( !( (*indm & INDEXING_USE_LATTICE_TYPE)
&& (*indm & INDEXING_USE_CELL_PARAMETERS)) )
{
ERROR("TakeTwo indexing requires cell and lattice type "
"information.\n");
return NULL;
}
if ( cell == NULL ) {
ERROR("TakeTwo indexing requires a unit cell.\n");
return NULL;
}
STATUS("************************************\n");
STATUS("***** Welcome to TakeTwo *****\n");
STATUS("************************************\n\n");
STATUS("If you use these indexing results, please keep a roof\n");
STATUS("over my head by citing:\n");
STATUS("Ginn et al., Acta Cryst. (2016). D72, 956-965\n");
STATUS("\n");
tp = malloc(sizeof(struct taketwo_private));
if ( tp == NULL ) return NULL;
tp->ltl = ltl;
tp->cell = cell;
tp->indm = *indm;
return (IndexingPrivate *)tp;
}
void taketwo_cleanup(IndexingPrivate *pp)
{
struct taketwo_private *tp = (struct taketwo_private *)pp;
free(tp);
}
#endif
|