1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
|
/*
* detector.c
*
* Detector properties
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "image.h"
#include "utils.h"
#include "diffraction.h"
#include "detector.h"
#include "beam-parameters.h"
#include "hdf5-file.h"
static int atob(const char *a)
{
if ( strcasecmp(a, "true") == 0 ) return 1;
if ( strcasecmp(a, "false") == 0 ) return 0;
return atoi(a);
}
static int dir_conv(const char *a, double *sx, double *sy)
{
if ( strcmp(a, "-x") == 0 ) {
*sx = -1; *sy = 0;
return 0;
}
if ( strcmp(a, "x") == 0 ) {
*sx = 1; *sy = 0;
return 0;
}
if ( strcmp(a, "+x") == 0 ) {
*sx = 1; *sy = 0;
return 0;
}
if ( strcmp(a, "-y") == 0 ) {
*sx = 0; *sy = -1;
return 0;
}
if ( strcmp(a, "y") == 0 ) {
*sx = 0; *sy = 1;
return 0;
}
if ( strcmp(a, "+y") == 0 ) {
*sx = 0; *sy = 1;
return 0;
}
return 1;
}
struct rvec get_q(struct image *image, double fs, double ss,
double *ttp, double k)
{
struct rvec q;
double twotheta, r, az;
double rx, ry;
struct panel *p;
double xs, ys;
/* Determine which panel to use */
const unsigned int x = fs;
const unsigned int y = ss;
p = find_panel(image->det, x, y);
assert(p != NULL);
/* Convert xs and ys, which are in fast scan/slow scan coordinates,
* to x and y */
xs = (fs-(double)p->min_fs)*p->fsx + (ss-(double)p->min_ss)*p->ssx;
ys = (fs-(double)p->min_fs)*p->fsy + (ss-(double)p->min_ss)*p->ssy;
rx = (xs + p->cnx) / p->res;
ry = (ys + p->cny) / p->res;
/* Calculate q-vector for this sub-pixel */
r = sqrt(pow(rx, 2.0) + pow(ry, 2.0));
twotheta = atan2(r, p->clen);
az = atan2(ry, rx);
if ( ttp != NULL ) *ttp = twotheta;
q.u = k * sin(twotheta)*cos(az);
q.v = k * sin(twotheta)*sin(az);
q.w = k * (cos(twotheta) - 1.0);
return q;
}
double get_tt(struct image *image, double fs, double ss)
{
double r, rx, ry;
struct panel *p;
double xs, ys;
p = find_panel(image->det, fs, ss);
/* Convert xs and ys, which are in fast scan/slow scan coordinates,
* to x and y */
xs = (fs-p->min_fs)*p->fsx + (ss-p->min_ss)*p->ssx;
ys = (fs-p->min_fs)*p->fsy + (ss-p->min_ss)*p->ssy;
rx = (xs + p->cnx) / p->res;
ry = (ys + p->cny) / p->res;
r = sqrt(pow(rx, 2.0) + pow(ry, 2.0));
return atan2(r, p->clen);
}
void record_image(struct image *image, int do_poisson)
{
int x, y;
double total_energy, energy_density;
double ph_per_e;
double area;
double max_tt = 0.0;
int n_inf1 = 0;
int n_neg1 = 0;
int n_nan1 = 0;
int n_inf2 = 0;
int n_neg2 = 0;
int n_nan2 = 0;
/* How many photons are scattered per electron? */
area = M_PI*pow(image->beam->beam_radius, 2.0);
total_energy = image->beam->fluence * ph_lambda_to_en(image->lambda);
energy_density = total_energy / area;
ph_per_e = (image->beam->fluence /area) * pow(THOMSON_LENGTH, 2.0);
STATUS("Fluence = %8.2e photons, "
"Energy density = %5.3f kJ/cm^2, "
"Total energy = %5.3f microJ\n",
image->beam->fluence, energy_density/1e7, total_energy*1e6);
for ( x=0; x<image->width; x++ ) {
for ( y=0; y<image->height; y++ ) {
double counts;
double cf;
double intensity, sa;
double pix_area, Lsq;
double xs, ys, rx, ry;
double dsq, proj_area;
struct panel *p;
intensity = (double)image->data[x + image->width*y];
if ( isinf(intensity) ) n_inf1++;
if ( intensity < 0.0 ) n_neg1++;
if ( isnan(intensity) ) n_nan1++;
p = find_panel(image->det, x, y);
/* Area of one pixel */
pix_area = pow(1.0/p->res, 2.0);
Lsq = pow(p->clen, 2.0);
/* Area of pixel as seen from crystal (approximate) */
proj_area = pix_area * cos(image->twotheta[x + image->width*y]);
/* Calculate distance from crystal to pixel */
xs = (x-p->min_fs)*p->fsx + (y-p->min_ss)*p->ssx;
ys = (x-p->min_fs)*p->fsy + (y-p->min_ss)*p->ssy;
rx = (xs + p->cnx) / p->res;
ry = (ys + p->cny) / p->res;
dsq = sqrt(pow(rx, 2.0) + pow(ry, 2.0));
/* Projected area of pixel divided by distance squared */
sa = proj_area / (dsq + Lsq);
if ( do_poisson ) {
counts = poisson_noise(intensity * ph_per_e
* sa * image->beam->dqe );
} else {
cf = intensity * ph_per_e * sa * image->beam->dqe;
counts = cf;
}
image->data[x + image->width*y] = counts
* image->beam->adu_per_photon;
/* Sanity checks */
if ( isinf(image->data[x+image->width*y]) ) n_inf2++;
if ( isnan(image->data[x+image->width*y]) ) n_nan2++;
if ( image->data[x+image->width*y] < 0.0 ) n_neg2++;
if ( image->twotheta[x + image->width*y] > max_tt ) {
max_tt = image->twotheta[x + image->width*y];
}
}
progress_bar(x, image->width-1, "Post-processing");
}
STATUS("Max 2theta = %.2f deg, min d = %.2f nm\n",
rad2deg(max_tt), (image->lambda/(2.0*sin(max_tt/2.0)))/1e-9);
double tt_side = image->twotheta[(image->width/2)+image->width*0];
STATUS("At middle of bottom edge: %.2f deg, min d = %.2f nm\n",
rad2deg(tt_side), (image->lambda/(2.0*sin(tt_side/2.0)))/1e-9);
tt_side = image->twotheta[0+image->width*(image->height/2)];
STATUS("At middle of left edge: %.2f deg, min d = %.2f nm\n",
rad2deg(tt_side), (image->lambda/(2.0*sin(tt_side/2.0)))/1e-9);
STATUS("Halve the d values to get the voxel size for a synthesis.\n");
if ( n_neg1 + n_inf1 + n_nan1 + n_neg2 + n_inf2 + n_nan2 ) {
ERROR("WARNING: The raw calculation produced %i negative"
" values, %i infinities and %i NaNs.\n",
n_neg1, n_inf1, n_nan1);
ERROR("WARNING: After processing, there were %i negative"
" values, %i infinities and %i NaNs.\n",
n_neg2, n_inf2, n_nan2);
}
}
struct panel *find_panel(struct detector *det, int x, int y)
{
int p;
for ( p=0; p<det->n_panels; p++ ) {
if ( (x >= det->panels[p].min_fs)
&& (x <= det->panels[p].max_fs)
&& (y >= det->panels[p].min_ss)
&& (y <= det->panels[p].max_ss) ) {
return &det->panels[p];
}
}
return NULL;
}
void fill_in_values(struct detector *det, struct hdfile *f)
{
int i;
for ( i=0; i<det->n_panels; i++ ) {
struct panel *p = &det->panels[i];
if ( p->clen_from != NULL ) {
p->clen = get_value(f, p->clen_from) * 1.0e-3;
free(p->clen_from);
p->clen_from = NULL;
}
}
}
struct detector *get_detector_geometry(const char *filename)
{
FILE *fh;
struct detector *det;
char *rval;
char **bits;
int i;
int reject = 0;
int x, y, max_fs, max_ss;
fh = fopen(filename, "r");
if ( fh == NULL ) return NULL;
det = malloc(sizeof(struct detector));
if ( det == NULL ) {
fclose(fh);
return NULL;
}
det->n_panels = -1;
det->panels = NULL;
do {
int n1, n2;
char **path;
char line[1024];
int np;
rval = fgets(line, 1023, fh);
if ( rval == NULL ) break;
chomp(line);
n1 = assplode(line, " \t", &bits, ASSPLODE_NONE);
if ( n1 < 3 ) {
for ( i=0; i<n1; i++ ) free(bits[i]);
free(bits);
continue;
}
if ( bits[1][0] != '=' ) {
for ( i=0; i<n1; i++ ) free(bits[i]);
free(bits);
continue;
}
if ( strcmp(bits[0], "n_panels") == 0 ) {
if ( det->n_panels != -1 ) {
ERROR("Duplicate n_panels statement.\n");
fclose(fh);
free(det);
for ( i=0; i<n1; i++ ) free(bits[i]);
free(bits);
return NULL;
}
det->n_panels = atoi(bits[2]);
det->panels = malloc(det->n_panels
* sizeof(struct panel));
for ( i=0; i<n1; i++ ) free(bits[i]);
free(bits);
for ( i=0; i<det->n_panels; i++ ) {
det->panels[i].min_fs = -1;
det->panels[i].min_ss = -1;
det->panels[i].max_fs = -1;
det->panels[i].max_ss = -1;
det->panels[i].cnx = -1;
det->panels[i].cny = -1;
det->panels[i].clen = -1;
det->panels[i].res = -1;
det->panels[i].badrow = '-';
det->panels[i].no_index = 0;
det->panels[i].peak_sep = 50.0;
det->panels[i].fsx = 1;
det->panels[i].fsy = 0;
det->panels[i].ssx = 0;
det->panels[i].ssy = 1;
}
continue;
}
n2 = assplode(bits[0], "/\\.", &path, ASSPLODE_NONE);
if ( n2 < 2 ) {
/* This was a top-level option, but not handled above. */
for ( i=0; i<n1; i++ ) free(bits[i]);
free(bits);
for ( i=0; i<n2; i++ ) free(path[i]);
free(path);
continue;
}
np = atoi(path[0]);
if ( det->n_panels == -1 ) {
ERROR("n_panels statement must come first in "
"detector geometry file.\n");
return NULL;
}
if ( np > det->n_panels ) {
ERROR("The detector geometry file said there were %i "
"panels, but then tried to specify number %i\n",
det->n_panels, np);
ERROR("Note: panel indices are counted from zero.\n");
return NULL;
}
if ( strcmp(path[1], "min_fs") == 0 ) {
det->panels[np].min_fs = atof(bits[2]);
} else if ( strcmp(path[1], "max_fs") == 0 ) {
det->panels[np].max_fs = atof(bits[2]);
} else if ( strcmp(path[1], "min_ss") == 0 ) {
det->panels[np].min_ss = atof(bits[2]);
} else if ( strcmp(path[1], "max_ss") == 0 ) {
det->panels[np].max_ss = atof(bits[2]);
} else if ( strcmp(path[1], "corner_x") == 0 ) {
det->panels[np].cnx = atof(bits[2]);
} else if ( strcmp(path[1], "corner_y") == 0 ) {
det->panels[np].cny = atof(bits[2]);
} else if ( strcmp(path[1], "clen") == 0 ) {
char *end;
double v = strtod(bits[2], &end);
if ( end == bits[2] ) {
/* This means "fill in later" */
det->panels[np].clen = -1.0;
det->panels[np].clen_from = strdup(bits[2]);
} else {
det->panels[np].clen = v;
det->panels[np].clen_from = NULL;
}
} else if ( strcmp(path[1], "res") == 0 ) {
det->panels[np].res = atof(bits[2]);
} else if ( strcmp(path[1], "peak_sep") == 0 ) {
det->panels[np].peak_sep = atof(bits[2]);
} else if ( strcmp(path[1], "badrow_direction") == 0 ) {
det->panels[np].badrow = bits[2][0];
if ( (det->panels[np].badrow != 'x')
&& (det->panels[np].badrow != 'y')
&& (det->panels[np].badrow != '-') ) {
ERROR("badrow_direction must be x, y or '-'\n");
ERROR("Assuming '-'\n.");
det->panels[np].badrow = '-';
}
} else if ( strcmp(path[1], "no_index") == 0 ) {
det->panels[np].no_index = atob(bits[2]);
} else if ( strcmp(path[1], "fs") == 0 ) {
if ( dir_conv(bits[2], &det->panels[np].fsx,
&det->panels[np].fsy) != 0 ) {
ERROR("Invalid fast scan direction '%s'\n",
bits[2]);
reject = 1;
}
} else if ( strcmp(path[1], "ss") == 0 ) {
if ( dir_conv(bits[2], &det->panels[np].ssx,
&det->panels[np].ssy) != 0 ) {
ERROR("Invalid slow scan direction '%s'\n",
bits[2]);
reject = 1;
}
} else {
ERROR("Unrecognised field '%s'\n", path[1]);
}
for ( i=0; i<n1; i++ ) free(bits[i]);
for ( i=0; i<n2; i++ ) free(path[i]);
free(bits);
free(path);
} while ( rval != NULL );
if ( det->n_panels == -1 ) {
ERROR("No panel descriptions in geometry file.\n");
fclose(fh);
if ( det->panels != NULL ) free(det->panels);
free(det);
return NULL;
}
max_fs = 0;
max_ss = 0;
for ( i=0; i<det->n_panels; i++ ) {
if ( det->panels[i].min_fs == -1 ) {
ERROR("Please specify the minimum FS coordinate for"
" panel %i\n", i);
reject = 1;
}
if ( det->panels[i].max_fs == -1 ) {
ERROR("Please specify the maximum FS coordinate for"
" panel %i\n", i);
reject = 1;
}
if ( det->panels[i].min_ss == -1 ) {
ERROR("Please specify the minimum SS coordinate for"
" panel %i\n", i);
reject = 1;
}
if ( det->panels[i].max_ss == -1 ) {
ERROR("Please specify the maximum SS coordinate for"
" panel %i\n", i);
reject = 1;
}
if ( det->panels[i].cnx == -1 ) {
ERROR("Please specify the corner X coordinate for"
" panel %i\n", i);
reject = 1;
}
if ( det->panels[i].cny == -1 ) {
ERROR("Please specify the corner Y coordinate for"
" panel %i\n", i);
reject = 1;
}
if ( (det->panels[i].clen < 0.0)
&& (det->panels[i].clen_from == NULL) ) {
ERROR("Please specify the camera length for"
" panel %i\n", i);
reject = 1;
}
if ( det->panels[i].res == -1 ) {
ERROR("Please specify the resolution for"
" panel %i\n", i);
reject = 1;
}
/* It's OK if the badrow direction is '0' */
/* It's not a problem if "no_index" is still zero */
/* The default peak_sep is OK (maybe) */
if ( det->panels[i].max_fs > max_fs ) {
max_fs = det->panels[i].max_fs;
}
if ( det->panels[i].max_ss > max_ss ) {
max_ss = det->panels[i].max_ss;
}
}
for ( x=0; x<=max_fs; x++ ) {
for ( y=0; y<=max_ss; y++ ) {
if ( find_panel(det, x, y) == NULL ) {
ERROR("Detector geometry invalid: contains gaps.\n");
reject = 1;
goto out;
}
}
}
out:
det->max_fs = max_fs;
det->max_ss = max_ss;
/* Calculate matrix inverse */
for ( i=0; i<det->n_panels; i++ ) {
struct panel *p;
double d;
p = &det->panels[i];
if ( p->fsx*p->ssy == p->ssx*p->fsy ) {
ERROR("Panel %i transformation singular.\n", i);
reject = 1;
}
d = (double)p->fsx*p->ssy - p->ssx*p->fsy;
p->xfs = p->ssy / d;
p->yfs = -p->ssx / d;
p->xss = -p->fsy / d;
p->yss = p->fsx / d;
}
if ( reject ) return NULL;
fclose(fh);
return det;
}
void free_detector_geometry(struct detector *det)
{
free(det->panels);
free(det);
}
struct detector *copy_geom(const struct detector *in)
{
struct detector *out;
int i;
out = malloc(sizeof(struct detector));
memcpy(out, in, sizeof(struct detector));
out->panels = malloc(out->n_panels * sizeof(struct panel));
memcpy(out->panels, in->panels, out->n_panels * sizeof(struct panel));
for ( i=0; i<out->n_panels; i++ ) {
struct panel *p;
p = &out->panels[i];
if ( p->clen_from != NULL ) {
/* Make a copy of the clen_from fields unique to this
* copy of the structure. */
p->clen_from = strdup(p->clen_from);
}
}
return out;
}
struct detector *simple_geometry(const struct image *image)
{
struct detector *geom;
geom = calloc(1, sizeof(struct detector));
geom->n_panels = 1;
geom->panels = calloc(1, sizeof(struct panel));
geom->panels[0].min_fs = 0;
geom->panels[0].max_fs = image->width-1;
geom->panels[0].min_ss = 0;
geom->panels[0].max_ss = image->height-1;
geom->panels[0].cnx = -image->width / 2.0;
geom->panels[0].cny = -image->height / 2.0;
geom->panels[0].fsx = 1;
geom->panels[0].fsy = 0;
geom->panels[0].ssx = 0;
geom->panels[0].ssy = 1;
geom->panels[0].xfs = 1;
geom->panels[0].xss = 0;
geom->panels[0].yfs = 0;
geom->panels[0].yss = 1;
return geom;
}
int reverse_2d_mapping(double x, double y, double *pfs, double *pss,
struct detector *det)
{
int i;
for ( i=0; i<det->n_panels; i++ ) {
struct panel *p = &det->panels[i];
double cx, cy, fs, ss;
/* Get position relative to corner */
cx = x - p->cnx;
cy = y - p->cny;
/* Reverse the transformation matrix */
fs = cx*p->xfs + cy*p->yfs;
ss = cx*p->xss + cy*p->yss;
/* In range? */
if ( fs < 0 ) continue;
if ( ss < 0 ) continue;
if ( fs > (p->max_fs-p->min_fs+1) ) continue;
if ( ss > (p->max_ss-p->min_ss+1) ) continue;
*pfs = fs + p->min_fs;
*pss = ss + p->min_ss;
return 0;
}
return 1;
}
static void check_extents(struct panel p, double *min_x, double *min_y,
double *max_x, double *max_y, double fs, double ss)
{
double xs, ys, rx, ry;
xs = fs*p.fsx + ss*p.ssx;
ys = fs*p.fsy + ss*p.ssy;
rx = xs + p.cnx;
ry = ys + p.cny;
if ( rx > *max_x ) *max_x = rx;
if ( ry > *max_y ) *max_y = ry;
if ( rx < *min_x ) *min_x = rx;
if ( ry < *min_y ) *min_y = ry;
}
double largest_q(struct image *image)
{
int fs, ss;
double ttm = 0.0;
double qmax = 0.0;
for ( fs=0; fs<image->width; fs++ ) {
for ( ss=0; ss<image->height; ss++ ) {
struct rvec q;
double tt;
q = get_q(image, fs, ss, &tt, 1.0/image->lambda);
if ( tt > ttm ) {
qmax = modulus(q.u, q.v, q.w);
ttm = tt;
}
}
}
return qmax;
}
void get_pixel_extents(struct detector *det,
double *min_x, double *min_y,
double *max_x, double *max_y)
{
int i;
*min_x = 0.0;
*max_x = 0.0;
*min_y = 0.0;
*max_y = 0.0;
/* To determine the maximum extents of the detector, put all four
* corners of each panel through the transformations and watch for the
* biggest */
for ( i=0; i<det->n_panels; i++ ) {
check_extents(det->panels[i], min_x, min_y, max_x, max_y,
0.0,
0.0);
check_extents(det->panels[i], min_x, min_y, max_x, max_y,
0.0,
det->panels[i].max_ss-det->panels[i].min_ss+1);
check_extents(det->panels[i], min_x, min_y, max_x, max_y,
det->panels[i].max_fs-det->panels[i].min_fs+1,
0.0);
check_extents(det->panels[i], min_x, min_y, max_x, max_y,
det->panels[i].max_fs-det->panels[i].min_fs+1,
det->panels[i].max_ss-det->panels[i].min_ss+1);
}
}
|