1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
/*
* detector.c
*
* Detector properties
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "image.h"
#include "utils.h"
#include "diffraction.h"
#include "detector.h"
/* Number of photons in pulse */
#define FLUENCE (1.0e13)
/* Detector's quantum efficiency (ADU per photon, front detector) */
#define DQE (167.0)
/* Radius of the water column */
#define WATER_RADIUS (3.0e-6 / 2.0)
/* Radius of X-ray beam */
#define BEAM_RADIUS (3.0e-6 / 2.0)
void record_image(struct image *image, int do_water, int do_poisson)
{
int x, y;
double total_energy, energy_density;
double ph_per_e;
double area;
/* How many photons are scattered per electron? */
area = M_PI*pow(BEAM_RADIUS, 2.0);
total_energy = FLUENCE * ph_lambda_to_en(image->lambda);
energy_density = total_energy / area;
ph_per_e = (FLUENCE/area) * pow(THOMSON_LENGTH, 2.0);
STATUS("Fluence = %8.2e photons, "
"Energy density = %5.3f kJ/cm^2, "
"Total energy = %5.3f microJ\n",
FLUENCE, energy_density/1e7, total_energy*1e6);
image->hdr = malloc(image->width * image->height * sizeof(double));
for ( x=0; x<image->width; x++ ) {
for ( y=0; y<image->height; y++ ) {
int counts;
double cf;
double intensity, sa, water;
double complex val;
double pix_area, Lsq;
double dsq, proj_area;
struct panel *p;
val = image->sfacs[x + image->width*y];
intensity = pow(cabs(val), 2.0);
p = find_panel(&image->det, x, y);
/* FIXME: Move to diffraction.c somehow */
if ( do_water ) {
struct rvec q;
q = get_q(image, x, y, 1, NULL, 1.0/image->lambda);
/* Add intensity contribution from water */
water = water_intensity(q,
ph_lambda_to_en(image->lambda),
BEAM_RADIUS, WATER_RADIUS);
intensity += water;
}
/* Area of one pixel */
pix_area = pow(1.0/p->res, 2.0);
Lsq = pow(p->clen, 2.0);
/* Area of pixel as seen from crystal (approximate) */
proj_area = pix_area * cos(image->twotheta[x + image->width*y]);
/* Calculate distance from crystal to pixel */
dsq = pow(((double)x - p->cx) / p->res, 2.0);
dsq += pow(((double)y - p->cy) / p->res, 2.0);
/* Projected area of pixel divided by distance squared */
sa = proj_area / (dsq + Lsq);
if ( do_poisson ) {
counts = poisson_noise(intensity * ph_per_e * sa * DQE);
} else {
double rounded;
cf = intensity * ph_per_e * sa * DQE;
rounded = rint(cf);
counts = (int)rounded;
}
image->hdr[x + image->width*y] = counts;
}
progress_bar(x, image->width-1, "Post-processing");
}
image->data = malloc(image->width * image->height * sizeof(float));
for ( x=0; x<image->width; x++ ) {
for ( y=0; y<image->height; y++ ) {
int val;
val = image->hdr[x + image->width*y];
image->data[x + image->width*y] = val;
}
}
}
struct panel *find_panel(struct detector *det, int x, int y)
{
int p;
for ( p=0; p<det->n_panels; p++ ) {
if ( (x >= det->panels[p].min_x)
&& (x <= det->panels[p].max_x)
&& (y >= det->panels[p].min_y)
&& (y <= det->panels[p].max_y) ) {
return &det->panels[p];
}
}
ERROR("No mapping found for %i,%i\n", x, y);
return NULL;
}
|