aboutsummaryrefslogtreecommitdiff
path: root/src/detector.c
blob: 7a7f594239d1bcf8dd9ccbe99021c8efc32cb973 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
 * detector.c
 *
 * Detector properties
 *
 * (c) 2006-2010 Thomas White <taw@physics.org>
 *
 * Part of CrystFEL - crystallography with a FEL
 *
 */


#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>

#include "image.h"
#include "utils.h"
#include "diffraction.h"
#include "detector.h"
#include "parameters-lcls.tmp"


/* x,y in pixels relative to central beam */
int map_position(struct image *image, double dx, double dy,
                 double *rx, double *ry, double *rz)
{
	double d;
	double twotheta, psi;
	const double k = 1.0 / image->lambda;
	struct panel *p;
	double x = 0.0;
	double y = 0.0;

	p = find_panel(&image->det, dx, dy);

	x = ((double)dx - p->cx);
	y = ((double)dy - p->cy);

	/* Convert pixels to metres */
	x /= p->res;
	y /= p->res;	/* Convert pixels to metres */
	d = sqrt((x*x) + (y*y));
	twotheta = atan2(d, p->clen);

	psi = atan2(y, x);

	*rx = k*sin(twotheta)*cos(psi);
	*ry = k*sin(twotheta)*sin(psi);
	*rz = k - k*cos(twotheta);

	return 0;
}


void record_image(struct image *image, int do_poisson)
{
	int x, y;
	double total_energy, energy_density;
	double ph_per_e;
	double area;

	/* How many photons are scattered per electron? */
	area = M_PI*pow(BEAM_RADIUS, 2.0);
	total_energy = FLUENCE * ph_lambda_to_en(image->lambda);
	energy_density = total_energy / area;
	ph_per_e = (FLUENCE/area) * pow(THOMSON_LENGTH, 2.0);
	STATUS("Fluence = %8.2e photons, "
	       "Energy density = %5.3f kJ/cm^2, "
	       "Total energy = %5.3f microJ\n",
	       FLUENCE, energy_density/1e7, total_energy*1e6);

	for ( x=0; x<image->width; x++ ) {
	for ( y=0; y<image->height; y++ ) {

		int counts;
		double cf;
		double intensity, sa;
		double pix_area, Lsq;
		double dsq, proj_area;
		struct panel *p;

		intensity = image->data[x + image->width*y];

		p = find_panel(&image->det, x, y);

		/* Area of one pixel */
		pix_area = pow(1.0/p->res, 2.0);
		Lsq = pow(p->clen, 2.0);

		/* Area of pixel as seen from crystal (approximate) */
		proj_area = pix_area * cos(image->twotheta[x + image->width*y]);

		/* Calculate distance from crystal to pixel */
		dsq = pow(((double)x - p->cx) / p->res, 2.0);
		dsq += pow(((double)y - p->cy) / p->res, 2.0);

		/* Projected area of pixel divided by distance squared */
		sa = proj_area / (dsq + Lsq);

		if ( do_poisson ) {
			counts = poisson_noise(intensity * ph_per_e * sa * DQE);
		} else {
			double rounded;
			cf = intensity * ph_per_e * sa * DQE;
			rounded = rint(cf);
			counts = (int)rounded;
		}

		image->data[x + image->width*y] = counts;

	}
	progress_bar(x, image->width-1, "Post-processing");
	}
}


struct panel *find_panel(struct detector *det, int x, int y)
{
	int p;

	for ( p=0; p<det->n_panels; p++ ) {
		if ( (x >= det->panels[p].min_x)
		  && (x <= det->panels[p].max_x)
		  && (y >= det->panels[p].min_y)
		  && (y <= det->panels[p].max_y) ) {
			return &det->panels[p];
		}
	}
	ERROR("No mapping found for %i,%i\n", x, y);

	return NULL;
}