1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
/*
* diffraction-gpu.c
*
* Calculate diffraction patterns by Fourier methods (GPU version)
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <complex.h>
#include <CL/cl.h>
#include "image.h"
#include "utils.h"
#include "cell.h"
#include "diffraction.h"
#include "sfac.h"
#define SAMPLING (5)
#define BWSAMPLING (10)
#define BANDWIDTH (1.0 / 100.0)
static const char *clError(cl_int err)
{
switch ( err ) {
case CL_SUCCESS : return "no error";
case CL_INVALID_PLATFORM : return "invalid platform";
case CL_INVALID_KERNEL : return "invalid kernel";
case CL_INVALID_ARG_INDEX : return "invalid argument index";
case CL_INVALID_ARG_VALUE : return "invalid argument value";
case CL_INVALID_MEM_OBJECT : return "invalid memory object";
case CL_INVALID_SAMPLER : return "invalid sampler";
case CL_INVALID_ARG_SIZE : return "invalid argument size";
case CL_INVALID_COMMAND_QUEUE : return "invalid command queue";
case CL_INVALID_CONTEXT : return "invalid context";
case CL_INVALID_VALUE : return "invalid value";
case CL_INVALID_EVENT_WAIT_LIST : return "invalid wait list";
case CL_MAP_FAILURE : return "map failure";
case CL_MEM_OBJECT_ALLOCATION_FAILURE : return "object allocation failure";
case CL_OUT_OF_HOST_MEMORY : return "out of host memory";
case CL_OUT_OF_RESOURCES : return "out of resources";
case CL_INVALID_KERNEL_NAME : return "invalid kernel name";
case CL_INVALID_KERNEL_ARGS : return "invalid kernel arguments";
default :
ERROR("Error code: %i\n", err);
return "unknown error";
}
}
static cl_device_id get_first_dev(cl_context ctx)
{
cl_device_id dev;
cl_int r;
r = clGetContextInfo(ctx, CL_CONTEXT_DEVICES, sizeof(dev), &dev, NULL);
if ( r != CL_SUCCESS ) {
ERROR("Couldn't get device\n");
return 0;
}
return dev;
}
static void show_build_log(cl_program prog, cl_device_id dev)
{
cl_int r;
char log[4096];
size_t s;
r = clGetProgramBuildInfo(prog, dev, CL_PROGRAM_BUILD_LOG, 4096, log,
&s);
STATUS("%s\n", log);
}
static cl_program load_program(const char *filename, cl_context ctx,
cl_device_id dev, cl_int *err)
{
FILE *fh;
cl_program prog;
char *source;
size_t len;
cl_int r;
fh = fopen(filename, "r");
if ( fh == NULL ) {
ERROR("Couldn't open '%s'\n", filename);
*err = CL_INVALID_PROGRAM;
return 0;
}
source = malloc(16384);
len = fread(source, 1, 16383, fh);
fclose(fh);
source[len] = '\0';
prog = clCreateProgramWithSource(ctx, 1, (const char **)&source,
NULL, err);
if ( *err != CL_SUCCESS ) {
ERROR("Couldn't load source\n");
return 0;
}
r = clBuildProgram(prog, 0, NULL, "-Werror", NULL, NULL);
if ( r != CL_SUCCESS ) {
ERROR("Couldn't build program '%s'\n", filename);
show_build_log(prog, dev);
*err = r;
return 0;
}
*err = CL_SUCCESS;
return prog;
}
void get_diffraction_gpu(struct image *image, int na, int nb, int nc,
int no_sfac)
{
cl_uint nplat;
cl_platform_id platforms[8];
cl_context_properties prop[3];
cl_context ctx;
cl_int err;
cl_command_queue cq;
cl_program prog;
cl_device_id dev;
cl_kernel kern;
double ax, ay, az;
double bx, by, bz;
double cx, cy, cz;
double a, b, c, d;
float kc;
const size_t dims[2] = {1024, 1024};
cl_event event_d;
cl_mem sfacs;
size_t sfac_size;
float *sfac_ptr;
cl_mem tt;
size_t tt_size;
float *tt_ptr;
int x, y;
cl_float16 cell;
cl_mem diff;
size_t diff_size;
float *diff_ptr;
int i;
cl_float4 orientation;
if ( image->molecule == NULL ) return;
/* Generate structure factors if required */
if ( !no_sfac ) {
if ( image->molecule->reflections == NULL ) {
get_reflections_cached(image->molecule,
ph_lambda_to_en(image->lambda));
}
}
cell_get_cartesian(image->molecule->cell, &ax, &ay, &az,
&bx, &by, &bz,
&cx, &cy, &cz);
cell[0] = ax; cell[1] = ay; cell[2] = az;
cell[3] = bx; cell[4] = by; cell[5] = bz;
cell[6] = cx; cell[7] = cy; cell[8] = cz;
cell_get_parameters(image->molecule->cell,
&a, &b, &c, &d, &d, &d);
STATUS("Particle size = %i x %i x %i (=%5.2f x %5.2f x %5.2f nm)\n",
na, nb, nc, na*a/1.0e-9, nb*b/1.0e-9, nc*c/1.0e-9);
err = clGetPlatformIDs(8, platforms, &nplat);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't get platform IDs: %i\n", err);
return;
}
if ( nplat == 0 ) {
ERROR("Couldn't find at least one platform!\n");
return;
}
prop[0] = CL_CONTEXT_PLATFORM;
prop[1] = (cl_context_properties)platforms[0];
prop[2] = 0;
ctx = clCreateContextFromType(prop, CL_DEVICE_TYPE_GPU, NULL, NULL, &err);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't create OpenCL context: %i\n", err);
return;
}
dev = get_first_dev(ctx);
cq = clCreateCommandQueue(ctx, dev, 0, &err);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't create OpenCL command queue\n");
return;
}
/* Create buffer for the picture */
diff_size = image->width*image->height*sizeof(cl_float)*2; /* complex */
diff = clCreateBuffer(ctx, CL_MEM_WRITE_ONLY, diff_size, NULL, &err);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't allocate diffraction memory\n");
return;
}
/* Create a single-precision version of the scattering factors */
sfac_size = IDIM*IDIM*IDIM*sizeof(cl_float)*2; /* complex */
sfac_ptr = malloc(sfac_size);
for ( i=0; i<IDIM*IDIM*IDIM; i++ ) {
sfac_ptr[2*i+0] = creal(image->molecule->reflections[i]);
sfac_ptr[2*i+1] = cimag(image->molecule->reflections[i]);
}
sfacs = clCreateBuffer(ctx, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sfac_size, sfac_ptr, &err);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't allocate sfac memory\n");
return;
}
tt_size = image->width*image->height*sizeof(cl_float);
tt = clCreateBuffer(ctx, CL_MEM_WRITE_ONLY, tt_size, NULL, &err);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't allocate twotheta memory\n");
return;
}
prog = load_program(DATADIR"/crystfel/diffraction.cl", ctx, dev, &err);
if ( err != CL_SUCCESS ) {
return;
}
kern = clCreateKernel(prog, "diffraction", &err);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't create kernel\n");
return;
}
/* Calculate wavelength */
kc = 1.0/image->lambda; /* Centre value */
/* Orientation */
orientation[0] = image->orientation.w;
orientation[1] = image->orientation.x;
orientation[2] = image->orientation.y;
orientation[3] = image->orientation.z;
err = clSetKernelArg(kern, 0, sizeof(cl_mem), &diff);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 0: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 1, sizeof(cl_mem), &tt);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 1: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 2, sizeof(cl_float), &kc);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 2: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 3, sizeof(cl_int), &image->width);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 3: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 4, sizeof(cl_float), &image->det.panels[0].cx);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 4: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 5, sizeof(cl_float), &image->det.panels[0].cy);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 5: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 6, sizeof(cl_float), &image->det.panels[0].res);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 6: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 7, sizeof(cl_float), &image->det.panels[0].clen);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 7: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 8, sizeof(cl_float16), &cell);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 8: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 9, sizeof(cl_mem), &sfacs);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 9: %s\n", clError(err));
return;
}
clSetKernelArg(kern, 10, sizeof(cl_float4), &orientation);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't set arg 10: %s\n", clError(err));
return;
}
err = clEnqueueNDRangeKernel(cq, kern, 2, NULL, dims, NULL,
0, NULL, &event_d);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't enqueue diffraction kernel: %s\n", clError(err));
return;
}
diff_ptr = clEnqueueMapBuffer(cq, diff, CL_TRUE, CL_MAP_READ, 0,
diff_size, 1, &event_d, NULL, &err);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't map diffraction buffer: %s\n", clError(err));
return;
}
tt_ptr = clEnqueueMapBuffer(cq, tt, CL_TRUE, CL_MAP_READ, 0,
tt_size, 1, &event_d, NULL, &err);
if ( err != CL_SUCCESS ) {
ERROR("Couldn't map tt buffer\n");
return;
}
image->sfacs = calloc(image->width * image->height,
sizeof(double complex));
image->twotheta = calloc(image->width * image->height, sizeof(double));
for ( x=0; x<image->width; x++ ) {
for ( y=0; y<image->height; y++ ) {
float re, im, tt;
re = diff_ptr[2*(x + image->width*y)+0];
im = diff_ptr[2*(x + image->width*y)+1];
tt = tt_ptr[x + image->width*y];
image->sfacs[x + image->width*y] = re + I*im;
image->twotheta[x + image->width*y] = tt;
}
}
clReleaseProgram(prog);
clReleaseMemObject(sfacs);
clReleaseCommandQueue(cq);
clReleaseContext(ctx);
}
|