1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
/*
* diffraction.c
*
* Calculate diffraction patterns by Fourier methods
*
* (c) 2007-2009 Thomas White <thomas.white@desy.de>
*
* pattern_sim - Simulate diffraction patterns from small crystals
*
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <complex.h>
#include "image.h"
#include "utils.h"
#include "cell.h"
#include "ewald.h"
#include "diffraction.h"
static double lattice_factor(struct threevec q, double ax, double ay, double az,
double bx, double by, double bz,
double cx, double cy, double cz)
{
struct threevec Udotq;
double f1, f2, f3;
int na = 8;
int nb = 8;
int nc = 8;
Udotq.u = (ax*q.u + ay*q.v + az*q.w)/2.0;
Udotq.v = (bx*q.u + by*q.v + bz*q.w)/2.0;
Udotq.w = (cx*q.u + cy*q.v + cz*q.w)/2.0;
if ( na > 1 ) {
f1 = sin(2.0*M_PI*(double)na*Udotq.u) / sin(2.0*M_PI*Udotq.u);
} else {
f1 = 1.0;
}
if ( nb > 1 ) {
f2 = sin(2.0*M_PI*(double)nb*Udotq.v) / sin(2.0*M_PI*Udotq.v);
} else {
f2 = 1.0;
}
if ( nc > 1 ) {
f3 = sin(2.0*M_PI*(double)nc*Udotq.w) / sin(2.0*M_PI*Udotq.w);
} else {
f3 = 1.0;
}
return f1 * f2 * f3;
}
/* Look up f1 and f2 for this atom at this energy (in J/photon) */
static double complex get_f1f2(const char *n, double en)
{
FILE *fh;
char filename[64];
char line[1024];
char *rval;
float last_E, last_f1, last_f2;
snprintf(filename, 63, "scattering-factors/%s.nff", n);
fh = fopen(filename, "r");
if ( fh == NULL ) {
fprintf(stderr, "Couldn't open file '%s'\n", filename);
return 0.0;
}
en = J_to_eV(en);
/* Discard first line */
fgets(line, 1023, fh);
last_E = 0.0;
last_f1 = 0.0;
last_f2 = 0.0;
do {
int r;
float E, f1, f2;
rval = fgets(line, 1023, fh);
r = sscanf(line, "%f %f %f", &E, &f1, &f2);
if ( r != 3 ) {
fprintf(stderr, "WTF?\n");
abort();
}
/* Find the first energy greater than the required value */
if ( E < en ) {
/* Store old values ready for interpolation*/
last_E = E;
last_f1 = f1;
last_f2 = f2;
} else {
/* Perform (linear) interpolation */
float f;
float actual_f1, actual_f2;
f = (en - last_E) / (E - last_E);
actual_f1 = last_f1 + f * (f1 - last_f1);
actual_f2 = last_f2 + f * (f2 - last_f2);
fclose(fh);
return actual_f1 + I*actual_f2;
}
} while ( rval != NULL );
fclose(fh);
fprintf(stderr, "Couldn't find scattering factors for '%s' at %f eV!\n",
n, en);
return 0.0;
}
/* s = sin(theta)/lambda */
static double get_waas_kirf(const char *n, double s)
{
FILE *fh;
char *rval;
double f;
float a1, a2, a3, a4, a5, c, b1, b2, b3, b4, b5;
double s2;
fh = fopen("scattering-factors/f0_WaasKirf.dat", "r");
if ( fh == NULL ) {
fprintf(stderr, "Couldn't open f0_WaasKirf.dat\n");
return 0.0;
}
do {
int r;
char line[1024];
char sp[1024];
int Z;
rval = fgets(line, 1023, fh);
if ( (line[0] != '#') || (line[1] != 'S') ) continue;
r = sscanf(line, "#S %i %s", &Z, sp);
if ( (r != 2) || (strcmp(sp, n) != 0) ) continue;
/* Skip two lines */
fgets(line, 1023, fh);
fgets(line, 1023, fh);
/* Read scattering coefficients */
rval = fgets(line, 1023, fh);
r = sscanf(line, " %f %f %f %f %f %f %f %f %f %f %f",
&a1, &a2, &a3, &a4, &a5, &c, &b1, &b2, &b3, &b4, &b5);
if ( r != 11 ) {
fprintf(stderr, "Couldn't read scattering factors\n");
return 0.0;
}
break;
} while ( rval != NULL );
fclose(fh);
s2 = pow(s/1e10, 2.0); /* s2 is s squared in Angstroms squared */
f = c + a1*exp(-b1*s2) + a2*exp(-b2*s2) + a3*exp(-b3*s2)
+ a4*exp(-b4*s2) + a5*exp(-b5*s2);
return f;
}
/* Get complex scattering factors for element 'n' at energy 'en' (J/photon),
* at resolution 's' = sin(theta)/lambda (in m^-1) */
static double complex get_sfac(const char *n, double s, double en)
{
double complex f1f2;
double fq, fq0;
f1f2 = get_f1f2(n, en);
fq = get_waas_kirf(n, s);
fq0 = get_waas_kirf(n, 0.0);
return fq - fq0 + f1f2;
}
/* Return structure factor for molecule 'mol' at energy en' (J/photon) at
* scattering vector 'q' */
static double complex molecule_factor(struct molecule *mol, struct threevec q,
double en)
{
int i;
double F = 0.0;
double s;
/* s = sin(theta)/lambda = 1/2d = (1/d)/2.0 */
s = modulus(q.u, q.v, q.w) / 2.0;
for ( i=0; i<mol->n_species; i++ ) {
double complex sfac;
double complex contrib = 0.0;
struct mol_species *spec;
int j;
spec = mol->species[i];
for ( j=0; j<spec->n_atoms; j++ ) {
double ph;
ph= q.u*spec->x[j] + q.v*spec->y[j] + q.w*spec->z[j];
/* Conversion from revolutions to radians is required */
contrib += cos(2.0*M_PI*ph) + I*sin(2.0*M_PI*ph);
}
sfac = get_sfac(spec->species, s, en);
F += sfac * contrib * exp(-2.0 * spec->B[j] * s);
}
return F;
}
/* Load PDB file into a memory format suitable for efficient(ish) structure
* factor calculation */
static struct molecule *load_molecule()
{
struct molecule *mol;
FILE *fh;
char line[1024];
char *rval;
int i;
mol = malloc(sizeof(struct molecule));
if ( mol == NULL ) return NULL;
mol->n_species = 0;
fh = fopen("molecule.pdb", "r");
if ( fh == NULL ) {
fprintf(stderr, "Couldn't open file\n");
return NULL;
}
do {
char el[4];
int j, r;
int done = 0;
float x, y, z, occ, B;
char *coords;
rval = fgets(line, 1023, fh);
/* Only interested in atoms */
if ( strncmp(line, "HETATM", 6) != 0 ) continue;
/* The following crimes against programming style
* were brought to you by Wizbit Enterprises, Inc. */
if ( line[76] == ' ' ) {
el[0] = line[77];
el[1] = '\0';
} else {
el[0] = line[76];
el[1] = line[77];
el[2] = '\0';
}
coords = line + 29;
r = sscanf(coords, "%f %f %f %f %f", &x, &y, &z, &occ, &B);
if ( r != 5 ) {
fprintf(stderr, "WTF?\n");
abort();
}
for ( j=0; j<mol->n_species; j++ ) {
struct mol_species *spec;
int n;
spec = mol->species[j];
if ( strcmp(spec->species, el) != 0 ) continue;
n = mol->species[j]->n_atoms;
spec->x[n] = x;
spec->y[n] = y;
spec->z[n] = z;
spec->occ[n] = occ;
spec->B[n] = B;
mol->species[j]->n_atoms++;
done = 1;
}
if ( !done ) {
/* Need to create record for this species */
struct mol_species *spec;
spec = malloc(sizeof(struct mol_species));
memcpy(spec->species, el, 4);
spec->x[0] = x;
spec->y[0] = y;
spec->z[0] = z;
spec->occ[0] = occ;
spec->B[0] = B;
spec->n_atoms = 1;
mol->species[mol->n_species] = spec;
mol->n_species++;
}
} while ( rval != NULL );
fclose(fh);
printf("There are %i species\n", mol->n_species);
for ( i=0; i<mol->n_species; i++ ) {
printf("'%s': %i\n", mol->species[i]->species,
mol->species[i]->n_atoms);
}
return mol;
}
void get_diffraction(struct image *image, UnitCell *cell)
{
int x, y;
double ax, ay, az;
double bx, by, bz;
double cx, cy, cz;
/* Generate the array of reciprocal space vectors in image->qvecs */
get_ewald(image);
image->molecule = load_molecule();
if ( image->molecule == NULL ) return;
cell_get_cartesian(cell, &ax, &ay, &az,
&bx, &by, &bz,
&cx, &cy, &cz);
image->sfacs = malloc(image->width * image->height
* sizeof(double complex));
for ( x=0; x<image->width; x++ ) {
for ( y=0; y<image->height; y++ ) {
double f_lattice;
double complex f_molecule;
struct threevec q;
q = image->qvecs[x + image->width*y];
f_lattice = lattice_factor(q, ax,ay,az,bx,by,bz,cx,cy,cz);
f_molecule = molecule_factor(image->molecule, q,
image->xray_energy);
image->sfacs[x + image->width*y] = f_lattice * f_molecule;
}
printf("x=%i\n", x);
}
}
|