aboutsummaryrefslogtreecommitdiff
path: root/src/im-zmq.c
blob: 0923093803a0054c825b8c29e9cae85953702eb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*
 * zmq.c
 *
 * ZMQ data interface
 *
 * Copyright © 2017-2020 Deutsches Elektronen-Synchrotron DESY,
 *                       a research centre of the Helmholtz Association.
 *
 * Authors:
 *   2018 Thomas White <taw@physics.org>
 *   2014 Valerio Mariani
 *   2017 Stijn de Graaf
 *
 * This file is part of CrystFEL.
 *
 * CrystFEL is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * CrystFEL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with CrystFEL.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <hdf5.h>
#include <assert.h>
#include <unistd.h>
#include <zmq.h>
#include <msgpack.h>

#include "events.h"
#include "image.h"
#include "hdf5-file.h"
#include "utils.h"
#include "im-zmq.h"
#include "datatemplate_priv.h"


struct im_zmq
{
	void *ctx;
	void *socket;
	zmq_msg_t msg;
	msgpack_unpacked unpacked;
	int unpacked_set;
};


struct im_zmq *im_zmq_connect(const char *zmq_address)
{
	struct im_zmq *z;

	z = malloc(sizeof(struct im_zmq));
	if ( z == NULL ) return NULL;

	z->unpacked_set = 0;

	z->ctx = zmq_ctx_new();
	if ( z->ctx == NULL ) return NULL;

	z->socket = zmq_socket(z->ctx, ZMQ_REQ);
	if ( z->socket == NULL ) return NULL;

	STATUS("Connecting to ZMQ at '%s'\n", zmq_address);
	if ( zmq_connect(z->socket, zmq_address) == -1 ) {
		ERROR("ZMQ connection failed: %s\n", zmq_strerror(errno));
		return NULL;
	}
	STATUS("ZMQ connected.\n");

	return z;
}


msgpack_object *im_zmq_fetch(struct im_zmq *z)
{
	int msg_size;
	int r;

	if ( zmq_send(z->socket, "m", 1, 0) == -1 ) {
		ERROR("ZMQ message send failed: %s\n", zmq_strerror(errno));
		return NULL;
	}

	zmq_msg_init(&z->msg);
	msg_size = zmq_msg_recv(&z->msg, z->socket, 0);
	if ( msg_size == -1 ) {
		ERROR("ZMQ recieve failed: %s\n", zmq_strerror(errno));
		zmq_msg_close(&z->msg);
		return NULL;
	}

	msgpack_unpacked_init(&z->unpacked);
	r = msgpack_unpack_next(&z->unpacked, zmq_msg_data(&z->msg),
	                        msg_size, NULL);
	if ( r != MSGPACK_UNPACK_SUCCESS ) {
		ERROR("Msgpack unpack failed: %i\n", r);
		zmq_msg_close(&z->msg);
		return NULL;
	}
	z->unpacked_set = 1;

	return &z->unpacked.data;
}


/* Clean structures ready for next frame */
void im_zmq_clean(struct im_zmq *z)
{
	if ( z->unpacked_set ) {
		msgpack_unpacked_destroy(&z->unpacked);
		zmq_msg_close(&z->msg);
		z->unpacked_set = 0;
	}
}


void im_zmq_shutdown(struct im_zmq *z)
{
	if ( z == NULL ) return;

	zmq_msg_close(&z->msg);
	zmq_close(z->socket);
	zmq_ctx_destroy(z->ctx);
}


static msgpack_object *find_msgpack_kv(msgpack_object *obj, const char *key)
{
	int i;

	if ( obj == NULL ) return NULL;
	if ( obj->type != MSGPACK_OBJECT_MAP ) return NULL;

	for ( i=0; i<obj->via.map.size; i++ ) {
		const char *kstr;
		size_t klen;
		assert(obj->via.map.ptr[i].key.type == MSGPACK_OBJECT_STR);
		kstr = obj->via.map.ptr[i].key.via.str.ptr;
		klen = obj->via.map.ptr[i].key.via.str.size;
		if ( strncmp(kstr, key, klen) == 0 ) {
			return &obj->via.map.ptr[i].val;
		}
	}
	return NULL;
}


/**
 * get_peaks_msgpack:
 * @obj: A %msgpack_object containing data in OnDA format
 * @image: An %image structure
 * @half_pixel_shift: Non-zero if 0.5 should be added to all peak coordinates
 *
 * Get peaks from msgpack_object. The data should be in a map, with the value
 * given by "peak_list" as an array of arrays. The first of these should contain
 * the list of fs positions of the peaks, the second the ss positions, and the
 * third the intensities of the peaks.
 *
 * http://c.msgpack.org/c/ provides documentation on msgpack objects
 *
 * CrystFEL considers all peak locations to be distances from the corner of the
 * detector panel, in pixel units, consistent with its description of detector
 * geometry (see 'man crystfel_geometry').  The software which generates the
 * CXI files, including Cheetah, may instead consider the peak locations to be
 * pixel indices in the data array.  In this case, the peak coordinates should
 * have 0.5 added to them.  This will be done if @half_pixel_shift is non-zero.
 *
 * Returns: non-zero on error, zero otherwise.
 *
 */
ImageFeatureList *get_peaks_msgpack(msgpack_object *obj,
                                    const DataTemplate *dtempl,
                                    int half_pixel_shift)
{
	ImageFeatureList *features;
	int num_peaks;
	int pk;
	msgpack_object *peak_list;
	msgpack_object *peak_x;
	msgpack_object *peak_y;
	msgpack_object *peak_i;
	double peak_offset = half_pixel_shift ? 0.5 : 0.0;

	if ( obj == NULL ) {
		ERROR("No MessagePack object to get peaks from.\n");
		return NULL;
	}

	/* Object has structure:
	 *   {
	 *    "peak_list": [[peak_x], [peak_y], [peak_i]]
	 *    "key2":val2,
	 *    ...
	 *   }
	 */
	peak_list = find_msgpack_kv(obj, "peak_list");
	peak_x = &peak_list->via.array.ptr[0];
	peak_y = &peak_list->via.array.ptr[1];
	peak_i = &peak_list->via.array.ptr[2];

	/* Length of peak_x  array gives number of peaks */
	num_peaks = peak_x->via.array.size;

	features = image_feature_list_new();

	for ( pk=0; pk<num_peaks; pk++ ) {

		float fs, ss, val;
		int pn;

		/* Retrieve data from peak_list and apply half_pixel_shift,
		 * if appropriate */
		fs = peak_x->via.array.ptr[pk].via.f64 + peak_offset;
		ss = peak_y->via.array.ptr[pk].via.f64 + peak_offset;
		val = peak_i->via.array.ptr[pk].via.f64;

		/* Convert coordinates to panel-relative */
		if ( data_template_file_to_panel_coords(dtempl, &fs, &ss, &pn) ) {
			ERROR("Peak not in panel!\n");
		} else {
			image_add_feature(features, fs, ss, pn,
			                  NULL, val, NULL);
		}
	}

	return features;
}


static void im_zmq_fill_in_clen(struct detector *det)
{
	int i = 0;
	for ( i=0; i<det->n_panels; i++) {
		struct panel *p = &det->panels[i];
		if ( p->clen_from != NULL ) {
			ERROR("Can't get clen over ZMQ yet.\n");
		}
		adjust_centering_for_rail(p);
	}
}


static void im_zmq_fill_in_beam_parameters(struct beam_params *beam,
                                           struct image *image)
{
	double eV;
	if ( beam->photon_energy_from == NULL ) {
		/* Explicit value given */
		eV = beam->photon_energy;
	} else {
		ERROR("Can't get photon energy over ZMQ yet.\n");
		eV = 0.0;
	}
	image->lambda = ph_en_to_lambda(eV_to_J(eV))*beam->photon_energy_scale;
}


static int unpack_slab(struct image *image, double *data,
                       int data_width, int data_height)
{
	uint16_t *flags = NULL;
	float *sat = NULL;
	int pi;

	image->dp = malloc(image->det->n_panels*sizeof(float *));
	image->bad = malloc(image->det->n_panels*sizeof(int *));
	image->sat = malloc(image->det->n_panels*sizeof(float *));
	if ( (image->dp == NULL) || (image->bad == NULL) || (image->sat == NULL) ) {
		ERROR("Failed to allocate data arrays.\n");
		return 1;
	}

	for ( pi=0; pi<image->det->n_panels; pi++ ) {

		struct panel *p;
		int fs, ss;

		p = &image->det->panels[pi];
		image->dp[pi] = malloc(p->w*p->h*sizeof(float));
		image->bad[pi] = malloc(p->w*p->h*sizeof(int));
		image->sat[pi] = malloc(p->w*p->h*sizeof(float));
		if ( (image->dp[pi] == NULL) || (image->bad[pi] == NULL)
		  || (image->sat[pi] == NULL) )
		{
			ERROR("Failed to allocate panel\n");
			return 1;
		}

		if ( (p->orig_min_fs + p->w > data_width)
		  || (p->orig_min_ss + p->h > data_height) )
		{
			ERROR("Panel %s is outside range of data provided\n",
			      p->name);
			return 1;
		}

		for ( ss=0; ss<p->h; ss++) {
		for ( fs=0; fs<p->w; fs++) {

			int idx;
			int cfs, css;
			int bad = 0;

			cfs = fs+p->orig_min_fs;
			css = ss+p->orig_min_ss;
			idx = cfs + css*data_width;

			image->dp[pi][fs+p->w*ss] = data[idx];

			if ( sat != NULL ) {
				image->sat[pi][fs+p->w*ss] = sat[idx];
			} else {
				image->sat[pi][fs+p->w*ss] = INFINITY;
			}

			if ( p->no_index ) bad = 1;

			if ( in_bad_region(image->det, p, cfs, css) ) {
				bad = 1;
			}

			if ( isnan(data[idx]) || isinf(data[idx]) ) bad = 1;

			if ( flags != NULL ) {

				int f;

				f = flags[idx];

				if ( (f & image->det->mask_good)
				    != image->det->mask_good ) bad = 1;

				if ( f & image->det->mask_bad ) bad = 1;

			}
			image->bad[pi][fs+p->w*ss] = bad;
		}
		}

	}

	return 0;
}


static double *find_msgpack_data(msgpack_object *obj, int *width, int *height)
{
	msgpack_object *corr_data_obj;
	msgpack_object *data_obj;
	msgpack_object *shape_obj;
	double *data;

	corr_data_obj = find_msgpack_kv(obj, "corr_data");
	if ( corr_data_obj == NULL ) {
		ERROR("No corr_data MessagePack object found.\n");
		return NULL;
	}

	data_obj = find_msgpack_kv(corr_data_obj, "data");
	if ( data_obj == NULL ) {
		ERROR("No data MessagePack object found inside corr_data.\n");
		return NULL;
	}
	if ( data_obj->type != MSGPACK_OBJECT_STR ) {
		ERROR("corr_data.data isn't a binary object.\n");
		return NULL;
	}
	data = (double *)data_obj->via.str.ptr;

	shape_obj = find_msgpack_kv(corr_data_obj, "shape");
	if ( shape_obj == NULL ) {
		ERROR("No shape MessagePack object found inside corr_data.\n");
		return NULL;
	}
	if ( shape_obj->type != MSGPACK_OBJECT_ARRAY ) {
		ERROR("corr_data.shape isn't an array object.\n");
		return NULL;
	}
	if ( shape_obj->via.array.size != 2 ) {
		ERROR("corr_data.shape is wrong size (%i, should be 2)\n",
		      shape_obj->via.array.size);
		return NULL;
	}
	if ( shape_obj->via.array.ptr[0].type != MSGPACK_OBJECT_POSITIVE_INTEGER ) {
		ERROR("corr_data.shape contains wrong type of element.\n");
		return NULL;
	}
	*height = shape_obj->via.array.ptr[0].via.i64;
	*width = shape_obj->via.array.ptr[1].via.i64;
	return data;
}


static double *zero_array(const DataTemplate *dtempl, int *dw, int *dh)
{
	int max_fs = 0;
	int max_ss = 0;
	int pi;
	double *data;

	for ( pi=0; pi<dtempl->n_panels; pi++ ) {
		if ( dtempl->panels[pi].orig_max_fs > max_fs ) {
			max_fs = dtempl->panels[pi].orig_max_fs;
		}
		if ( dtempl->panels[pi].orig_max_ss > max_ss ) {
			max_ss = dtempl->panels[pi].orig_max_ss;
		}
	}

	data = calloc((max_fs+1)*(max_ss+1), sizeof(double));
	*dw = max_fs+1;
	*dh = max_ss+1;
	return data;
}


/* Unpacks the raw panel data from a msgpack_object, applies panel geometry,
 * and stores the resulting data in an image struct. Object has structure
 * {
 * "corr_data":
 *   {
 *     "data": binary_data,
 *     "shape": [data_height, data_width],
 *           ...
 *           ...
 *   },
 *   "key2": val2,
 *        ...
 *        ...
 * }
 */
struct image *unpack_msgpack_data(msgpack_object *obj,
                                  const DataTemplate *dtempl,
                                  int no_image_data)
{
	struct image *image;
	int data_width, data_height;
	double *data;

	if ( obj == NULL ) {
		ERROR("No MessagePack object!\n");
		return NULL;
	}

	if ( !no_image_data ) {
		data = find_msgpack_data(obj, &data_width, &data_height);
		if ( data == NULL ) {
			ERROR("No image data in MessagePack object.\n");
			return NULL;
		}
	} else {
		data = zero_array(dtempl, &data_width, &data_height);
	}

	image = image_new();
	if ( image == NULL ) return NULL;

	if ( unpack_slab(image, data, data_width, data_height) ) {
		ERROR("Failed to unpack data slab.\n");
		return NULL;
	}

	im_zmq_fill_in_beam_parameters(image->beam, image);
	if ( image->lambda > 1000 ) {
		ERROR("Warning: Missing or nonsensical wavelength "
		      "(%e m).\n", image->lambda);
	}
	im_zmq_fill_in_clen(image->det);
	fill_in_adu(image);

	return image;
}