1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
/*
* partial_sim.c
*
* Generate partials for testing scaling
*
* Copyright © 2012 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2011-2012 Thomas White <taw@physics.org>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include <pthread.h>
#include <utils.h>
#include <reflist-utils.h>
#include <symmetry.h>
#include <beam-parameters.h>
#include <detector.h>
#include <geometry.h>
#include <stream.h>
#include <thread-pool.h>
/* Number of bins for partiality graph */
#define NBINS 50
static void mess_up_cell(UnitCell *cell, double cnoise)
{
double ax, ay, az;
double bx, by, bz;
double cx, cy, cz;
//STATUS("Real:\n");
//cell_print(cell);
cell_get_reciprocal(cell, &ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);
ax = flat_noise(ax, cnoise*fabs(ax)/100.0);
ay = flat_noise(ay, cnoise*fabs(ay)/100.0);
az = flat_noise(az, cnoise*fabs(az)/100.0);
bx = flat_noise(bx, cnoise*fabs(bx)/100.0);
by = flat_noise(by, cnoise*fabs(by)/100.0);
bz = flat_noise(bz, cnoise*fabs(bz)/100.0);
cx = flat_noise(cx, cnoise*fabs(cx)/100.0);
cy = flat_noise(cy, cnoise*fabs(cy)/100.0);
cz = flat_noise(cz, cnoise*fabs(cz)/100.0);
cell_set_reciprocal(cell, ax, ay, az, bx, by, bz, cx, cy, cz);
//STATUS("Changed:\n");
//cell_print(cell);
}
/* For each reflection in "partial", fill in what the intensity would be
* according to "full" */
static void calculate_partials(RefList *partial, double osf,
RefList *full, const SymOpList *sym,
int random_intensities,
pthread_mutex_t *full_lock,
unsigned long int *n_ref, double *p_hist,
double *p_max, double max_q, UnitCell *cell)
{
Reflection *refl;
RefListIterator *iter;
for ( refl = first_refl(partial, &iter);
refl != NULL;
refl = next_refl(refl, iter) )
{
signed int h, k, l;
Reflection *rfull;
double p, Ip, If;
int bin;
get_indices(refl, &h, &k, &l);
get_asymm(sym, h, k, l, &h, &k, &l);
p = get_partiality(refl);
pthread_mutex_lock(full_lock);
rfull = find_refl(full, h, k, l);
pthread_mutex_unlock(full_lock);
if ( rfull == NULL ) {
if ( random_intensities ) {
/* The full reflection is immutable (in this
* program) once created, but creating it must
* be an atomic operation. So do the whole
* thing under lock. */
pthread_mutex_lock(full_lock);
rfull = add_refl(full, h, k, l);
If = fabs(gaussian_noise(0.0, 1000.0));
set_intensity(rfull, If);
set_redundancy(rfull, 1);
pthread_mutex_unlock(full_lock);
} else {
set_redundancy(refl, 0);
If = 0.0;
}
} else {
If = get_intensity(rfull);
if ( random_intensities ) {
lock_reflection(rfull);
int red = get_redundancy(rfull);
set_redundancy(rfull, red+1);
unlock_reflection(rfull);
}
}
Ip = osf * p * If;
bin = NBINS*2.0*resolution(cell, h, k, l) / max_q;
if ( (bin < NBINS) && (bin>=0) ) {
p_hist[bin] += p;
n_ref[bin]++;
if ( p > p_max[bin] ) p_max[bin] = p;
} else {
STATUS("Reflection out of histogram range: %e %i %f\n",
resolution(cell, h, k, l), bin, p);
}
Ip = gaussian_noise(Ip, 100.0);
set_intensity(refl, Ip);
set_esd_intensity(refl, 100.0);
}
}
static void show_help(const char *s)
{
printf("Syntax: %s [options]\n\n", s);
printf(
"Generate a stream containing partials from a reflection list.\n"
"\n"
" -h, --help Display this help message.\n"
"\n"
"You need to provide the following basic options:\n"
" -i, --input=<file> Read reflections from <file>.\n"
" Default: generate random ones instead (see -r).\n"
" -o, --output=<file> Write partials in stream format to <file>.\n"
" -g. --geometry=<file> Get detector geometry from file.\n"
" -b, --beam=<file> Get beam parameters from file\n"
" -p, --pdb=<file> PDB file from which to get the unit cell.\n"
"\n"
" -y, --symmetry=<sym> Symmetry of the input reflection list.\n"
" -n <n> Simulate <n> patterns. Default: 2.\n"
" -r, --save-random=<file> Save randomly generated intensities to file.\n"
" -c, --cnoise=<val> Add random noise, with a flat distribution, to the\n"
" reciprocal lattice vector components given in the\n"
" stream, with maximum error +/- <val> percent.\n"
" --pgraph=<file> Write reflection counts and partiality statistics\n"
" to <file>.\n"
"\n"
);
}
struct queue_args
{
RefList *full;
pthread_mutex_t full_lock;
int n_done;
int n_to_do;
SymOpList *sym;
int random_intensities;
UnitCell *cell;
double cnoise;
struct image *template_image;
double max_q;
/* The overall histogram */
double p_hist[NBINS];
unsigned long int n_ref[NBINS];
double p_max[NBINS];
FILE *stream;
};
struct worker_args
{
struct queue_args *qargs;
struct image image;
/* Histogram for this image */
double p_hist[NBINS];
unsigned long int n_ref[NBINS];
double p_max[NBINS];
};
static void *create_job(void *vqargs)
{
struct worker_args *wargs;
struct queue_args *qargs = vqargs;
wargs = malloc(sizeof(struct worker_args));
wargs->qargs = qargs;
wargs->image = *qargs->template_image;
return wargs;
}
static void run_job(void *vwargs, int cookie)
{
double osf;
struct quaternion orientation;
struct worker_args *wargs = vwargs;
struct queue_args *qargs = wargs->qargs;
int i;
osf = gaussian_noise(1.0, 0.3);
/* Set up a random orientation */
orientation = random_quaternion();
wargs->image.indexed_cell = cell_rotate(qargs->cell, orientation);
snprintf(wargs->image.filename, 255, "dummy.h5");
wargs->image.reflections = find_intersections(&wargs->image,
wargs->image.indexed_cell);
for ( i=0; i<NBINS; i++ ) {
wargs->n_ref[i] = 0;
wargs->p_hist[i] = 0.0;
wargs->p_max[i] = 0.0;
}
calculate_partials(wargs->image.reflections, osf, qargs->full,
qargs->sym, qargs->random_intensities,
&qargs->full_lock,
wargs->n_ref, wargs->p_hist, wargs->p_max,
qargs->max_q, wargs->image.indexed_cell);
/* Give a slightly incorrect cell in the stream */
mess_up_cell(wargs->image.indexed_cell, qargs->cnoise);
}
static void finalise_job(void *vqargs, void *vwargs)
{
struct worker_args *wargs = vwargs;
struct queue_args *qargs = vqargs;
int i;
write_chunk(qargs->stream, &wargs->image, NULL, STREAM_INTEGRATED);
for ( i=0; i<NBINS; i++ ) {
qargs->n_ref[i] += wargs->n_ref[i];
qargs->p_hist[i] += wargs->p_hist[i];
if ( wargs->p_max[i] > qargs->p_max[i] ) {
qargs->p_max[i] = wargs->p_max[i];
}
}
qargs->n_done++;
progress_bar(qargs->n_done, qargs->n_to_do, "Simulating");
reflist_free(wargs->image.reflections);
cell_free(wargs->image.indexed_cell);
free(wargs);
}
int main(int argc, char *argv[])
{
int c;
char *input_file = NULL;
char *output_file = NULL;
char *beamfile = NULL;
char *geomfile = NULL;
char *cellfile = NULL;
struct detector *det = NULL;
struct beam_params *beam = NULL;
RefList *full = NULL;
char *sym_str = NULL;
SymOpList *sym;
UnitCell *cell = NULL;
FILE *ofh;
int n = 2;
int random_intensities = 0;
char *save_file = NULL;
struct queue_args qargs;
struct image image;
int n_threads = 1;
double cnoise = 0.0;
char *rval;
int i;
FILE *fh;
char *phist_file = NULL;
/* Long options */
const struct option longopts[] = {
{"help", 0, NULL, 'h'},
{"output", 1, NULL, 'o'},
{"input", 1, NULL, 'i'},
{"beam", 1, NULL, 'b'},
{"pdb", 1, NULL, 'p'},
{"geometry", 1, NULL, 'g'},
{"symmetry", 1, NULL, 'y'},
{"save-random", 1, NULL, 'r'},
{"pgraph", 1, NULL, 2},
{"cnoise", 1, NULL, 'c'},
{0, 0, NULL, 0}
};
/* Short options */
while ((c = getopt_long(argc, argv, "hi:o:b:p:g:y:n:r:j:c:",
longopts, NULL)) != -1)
{
switch (c) {
case 'h' :
show_help(argv[0]);
return 0;
case 'o' :
output_file = strdup(optarg);
break;
case 'i' :
input_file = strdup(optarg);
break;
case 'b' :
beamfile = strdup(optarg);
break;
case 'p' :
cellfile = strdup(optarg);
break;
case 'g' :
geomfile = strdup(optarg);
break;
case 'y' :
sym_str = strdup(optarg);
break;
case 'n' :
n = atoi(optarg);
break;
case 'r' :
save_file = strdup(optarg);
break;
case 'j' :
n_threads = atoi(optarg);
break;
case 'c' :
cnoise = strtod(optarg, &rval);
if ( *rval != '\0' ) {
ERROR("Invalid cell noise value.\n");
return 1;
}
break;
case 2 :
phist_file = strdup(optarg);
break;
case 0 :
break;
default :
return 1;
}
}
if ( n_threads < 1 ) {
ERROR("Invalid number of threads.\n");
return 1;
}
/* Load beam */
if ( beamfile == NULL ) {
ERROR("You need to provide a beam parameters file.\n");
return 1;
}
beam = get_beam_parameters(beamfile);
if ( beam == NULL ) {
ERROR("Failed to load beam parameters from '%s'\n", beamfile);
return 1;
}
free(beamfile);
/* Load cell */
if ( cellfile == NULL ) {
ERROR("You need to give a PDB file with the unit cell.\n");
return 1;
}
cell = load_cell_from_pdb(cellfile);
if ( cell == NULL ) {
ERROR("Failed to get cell from '%s'\n", cellfile);
return 1;
}
free(cellfile);
if ( !cell_is_sensible(cell) ) {
ERROR("Invalid unit cell parameters:\n");
cell_print(cell);
return 1;
}
/* Load geometry */
if ( geomfile == NULL ) {
ERROR("You need to give a geometry file.\n");
return 1;
}
det = get_detector_geometry(geomfile);
if ( det == NULL ) {
ERROR("Failed to read geometry from '%s'\n", geomfile);
return 1;
}
free(geomfile);
if ( sym_str == NULL ) sym_str = strdup("1");
sym = get_pointgroup(sym_str);
free(sym_str);
if ( save_file == NULL ) save_file = strdup("partial_sim.hkl");
/* Load (full) reflections */
if ( input_file != NULL ) {
full = read_reflections(input_file);
if ( full == NULL ) {
ERROR("Failed to read reflections from '%s'\n",
input_file);
return 1;
}
free(input_file);
if ( check_list_symmetry(full, sym) ) {
ERROR("The input reflection list does not appear to"
" have symmetry %s\n", symmetry_name(sym));
return 1;
}
} else {
random_intensities = 1;
}
if ( n < 1 ) {
ERROR("Number of patterns must be at least 1.\n");
return 1;
}
if ( output_file == NULL ) {
ERROR("You must pgive a filename for the output.\n");
return 1;
}
ofh = fopen(output_file, "w");
if ( ofh == NULL ) {
ERROR("Couldn't open output file '%s'\n", output_file);
return 1;
}
free(output_file);
write_stream_header(ofh, argc, argv);
image.det = det;
image.width = det->max_fs;
image.height = det->max_ss;
image.lambda = ph_en_to_lambda(eV_to_J(beam->photon_energy));
image.div = beam->divergence;
image.bw = beam->bandwidth;
image.profile_radius = 0.003e9;
image.filename = malloc(256);
image.copyme = NULL;
if ( random_intensities ) {
full = reflist_new();
}
qargs.full = full;
pthread_mutex_init(&qargs.full_lock, NULL);
qargs.n_to_do = n;
qargs.n_done = 0;
qargs.sym = sym;
qargs.random_intensities = random_intensities;
qargs.cell = cell;
qargs.template_image = ℑ
qargs.stream = ofh;
qargs.cnoise = cnoise;
qargs.max_q = largest_q(&image);
for ( i=0; i<NBINS; i++ ) {
qargs.n_ref[i] = 0;
qargs.p_hist[i] = 0.0;
qargs.p_max[i] = 0.0;
}
run_threads(n_threads, run_job, create_job, finalise_job,
&qargs, n, 0, 0, 0);
if ( random_intensities ) {
STATUS("Writing full intensities to %s\n", save_file);
write_reflist(save_file, full);
}
if ( phist_file != NULL ) {
fh = fopen(phist_file, "w");
if ( fh != NULL ) {
fprintf(fh, "1/d_nm #refl pmean pmax\n");
for ( i=0; i<NBINS; i++ ) {
double rcen;
rcen = i/(double)NBINS*qargs.max_q
+ qargs.max_q/(2.0*NBINS);
fprintf(fh, "%.2f %7li %.3f %.3f\n", rcen/1.0e9,
qargs.n_ref[i],
qargs.p_hist[i]/qargs.n_ref[i],
qargs.p_max[i]);
}
fclose(fh);
} else {
ERROR("Failed to open file '%s' for writing.\n",
phist_file);
}
}
fclose(ofh);
cell_free(cell);
free_detector_geometry(det);
free(beam);
free_symoplist(sym);
reflist_free(full);
free(image.filename);
return 0;
}
|