aboutsummaryrefslogtreecommitdiff
path: root/src/partialator.c
blob: db25a8cad333adeda3dac2d4d8a86f783e72fbf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
/*
 * partialator.c
 *
 * Scaling and post refinement for coherent nanocrystallography
 *
 * Copyright © 2012-2013 Deutsches Elektronen-Synchrotron DESY,
 *                       a research centre of the Helmholtz Association.
 *
 * Authors:
 *   2010-2013 Thomas White <taw@physics.org>
 *
 * This file is part of CrystFEL.
 *
 * CrystFEL is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * CrystFEL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with CrystFEL.  If not, see <http://www.gnu.org/licenses/>.
 *
 */


#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include <pthread.h>
#include <gsl/gsl_errno.h>

#include <utils.h>
#include <hdf5-file.h>
#include <symmetry.h>
#include <stream.h>
#include <geometry.h>
#include <peaks.h>
#include <thread-pool.h>
#include <beam-parameters.h>
#include <reflist.h>
#include <reflist-utils.h>

#include "post-refinement.h"
#include "hrs-scaling.h"
#include "scaling-report.h"


static void show_help(const char *s)
{
	printf("Syntax: %s [options]\n\n", s);
	printf(
"Scaling and post refinement for coherent nanocrystallography.\n"
"\n"
"  -h, --help                 Display this help message.\n"
"\n"
"  -i, --input=<filename>     Specify the name of the input 'stream'.\n"
"                              (must be a file, not e.g. stdin)\n"
"  -o, --output=<filename>    Output filename.  Default: partialator.hkl.\n"
"  -g. --geometry=<file>      Get detector geometry from file.\n"
"  -b, --beam=<file>          Get beam parameters from file, which provides\n"
"                              initial values for parameters, and nominal\n"
"                              wavelengths if no per-shot value is found in \n"
"                              an HDF5 file.\n"
"  -y, --symmetry=<sym>       Merge according to symmetry <sym>.\n"
"  -n, --iterations=<n>       Run <n> cycles of scaling and post-refinement.\n"
"      --no-scale             Fix all the scaling factors at unity.\n"
"  -r, --reference=<file>     Refine images against reflections in <file>,\n"
"                              instead of taking the mean of the intensity\n"
"                              estimates.\n"
"  -m, --model=<model>        Specify partiality model.\n"
"      --min-measurements=<n> Require at least <n> measurements before a\n"
"                             reflection appears in the output.  Default: 2\n"
"\n"
"  -j <n>                     Run <n> analyses in parallel.\n");
}


struct refine_args
{
	RefList *full;
	Crystal *crystal;
	PartialityModel pmodel;
};


struct queue_args
{
	int n_started;
	int n_done;
	Crystal **crystals;
	int n_crystals;
	struct refine_args task_defaults;
};


static void refine_image(void *task, int id)
{
	struct refine_args *pargs = task;
	Crystal *cr = pargs->crystal;

	pr_refine(cr, pargs->full, pargs->pmodel);
}


static void *get_image(void *vqargs)
{
	struct refine_args *task;
	struct queue_args *qargs = vqargs;

	task = malloc(sizeof(struct refine_args));
	memcpy(task, &qargs->task_defaults, sizeof(struct refine_args));

	task->crystal = qargs->crystals[qargs->n_started];

	qargs->n_started++;

	return task;
}


static void done_image(void *vqargs, void *task)
{
	struct queue_args *qargs = vqargs;

	qargs->n_done++;

	progress_bar(qargs->n_done, qargs->n_crystals, "Refining");
	free(task);
}


static void refine_all(Crystal **crystals, int n_crystals,
                       struct detector *det,
                       RefList *full, int nthreads, PartialityModel pmodel)
{
	struct refine_args task_defaults;
	struct queue_args qargs;

	/* If the partiality model is "p=1", this refinement is really, really
	 * easy... */
	if ( pmodel == PMODEL_UNITY ) return;

	task_defaults.full = full;
	task_defaults.crystal = NULL;
	task_defaults.pmodel = pmodel;

	qargs.task_defaults = task_defaults;
	qargs.n_started = 0;
	qargs.n_done = 0;
	qargs.n_crystals = n_crystals;
	qargs.crystals = crystals;

	/* Don't have threads which are doing nothing */
	if ( n_crystals < nthreads ) nthreads = n_crystals;

	run_threads(nthreads, refine_image, get_image, done_image,
	            &qargs, n_crystals, 0, 0, 0);
}


/* Decide which reflections can be scaled */
static int select_scalable_reflections(RefList *list, RefList *reference)
{
	Reflection *refl;
	RefListIterator *iter;
	int n_acc = 0;
	int n_red = 0;
	int n_par = 0;
	int n_ref = 0;

	for ( refl = first_refl(list, &iter);
	      refl != NULL;
	      refl = next_refl(refl, iter) ) {

		int sc = 1;

		/* This means the reflection was not found on the last check */
		if ( get_redundancy(refl) == 0 ) {
			sc = 0;
			n_red++;
		}

		/* Don't try to scale up reflections which are hardly there */
		if ( get_partiality(refl) < 0.1 ) {
			sc = 0;
			n_par++;
		}

		/* If we are scaling against a reference set, we additionally
		 * require that this reflection is in the reference list. */
		if ( reference != NULL ) {
			signed int h, k, l;
			get_indices(refl, &h, &k, &l);
			if ( find_refl(reference, h, k, l) == NULL ) {
				sc = 0;
				n_ref++;
			}
		}

		set_scalable(refl, sc);

		if ( sc ) n_acc++;
	}

	//STATUS("List %p: %i accepted, %i red zero, %i small part, %i no ref\n",
	//       list, n_acc, n_red, n_par, n_ref);

	return n_acc;
}


static void select_reflections_for_refinement(Crystal **crystals, int n,
                                              RefList *full, int have_reference)
{
	int i;

	for ( i=0; i<n; i++ ) {

		RefList *reflist;
		Reflection *refl;
		RefListIterator *iter;
		int n_acc = 0;
		int n_noscale = 0;
		int n_fewmatch = 0;
		int n_ref = 0;

		reflist = crystal_get_reflections(crystals[i]);
		for ( refl = first_refl(reflist, &iter);
		      refl != NULL;
		      refl = next_refl(refl, iter) )
		{
			signed int h, k, l;
			int sc;

			n_ref++;

			/* We require that the reflection itself is scalable
			 * (i.e. sensible partiality and intensity) and that
			 * the "full" estimate of this reflection is made from
			 * at least two parts. */
			get_indices(refl, &h, &k, &l);
			sc = get_scalable(refl);
			if ( !sc ) {

				n_noscale++;
				set_refinable(refl, 0);

			} else {

				Reflection *f = find_refl(full, h, k, l);

				if ( f != NULL ) {

					int r = get_redundancy(f);
					if ( (r >= 2) || have_reference ) {
						set_refinable(refl, 1);
						n_acc++;
					} else {
						n_fewmatch++;
					}

				} else {
					ERROR("%3i %3i %3i is scalable, but is"
					      " not in the reference list.\n",
					      h, k, l);
					abort();
				}

			}
		}

		//STATUS("Image %4i: %i guide reflections accepted "
		//       "(%i not scalable, %i few matches, %i total)\n",
		//       i, n_acc, n_noscale, n_fewmatch, n_ref);

	}
}


static void display_progress(int n_images, int n_crystals)
{
	if ( !isatty(STDERR_FILENO) ) return;
	if ( tcgetpgrp(STDERR_FILENO) != getpgrp() ) return;

	pthread_mutex_lock(&stderr_lock);
	fprintf(stderr, "\r%i images loaded, %i crystals.",
	        n_images, n_crystals);
	pthread_mutex_unlock(&stderr_lock);

	fflush(stdout);
}


int main(int argc, char *argv[])
{
	int c;
	char *infile = NULL;
	char *outfile = NULL;
	char *geomfile = NULL;
	char *sym_str = NULL;
	SymOpList *sym;
	int nthreads = 1;
	struct detector *det;
	int i;
	struct image *images;
	int n_iter = 10;
	struct beam_params *beam = NULL;
	RefList *full;
	int n_images = 0;
	int n_crystals = 0;
	int nobs;
	char *reference_file = NULL;
	RefList *reference = NULL;
	int have_reference = 0;
	char cmdline[1024];
	SRContext *sr;
	int noscale = 0;
	Stream *st;
	Crystal **crystals;
	char *pmodel_str = NULL;
	PartialityModel pmodel = PMODEL_SPHERE;
	int min_measurements = 2;
	char *rval;

	/* Long options */
	const struct option longopts[] = {
		{"help",               0, NULL,               'h'},
		{"input",              1, NULL,               'i'},
		{"output",             1, NULL,               'o'},
		{"geometry",           1, NULL,               'g'},
		{"beam",               1, NULL,               'b'},
		{"symmetry",           1, NULL,               'y'},
		{"iterations",         1, NULL,               'n'},
		{"no-scale",           0, &noscale,            1},
		{"reference",          1, NULL,               'r'},
		{"model",              1, NULL,               'm'},
		{"min-measurements",   1, NULL,                2},

		{0, 0, NULL, 0}
	};

	cmdline[0] = '\0';
	for ( i=1; i<argc; i++ ) {
		strncat(cmdline, argv[i], 1023-strlen(cmdline));
		strncat(cmdline, " ", 1023-strlen(cmdline));
	}

	/* Short options */
	while ((c = getopt_long(argc, argv, "hi:o:g:b:y:n:r:j:m:",
	                        longopts, NULL)) != -1)
	{

		switch (c) {

			case 'h' :
			show_help(argv[0]);
			return 0;

			case 'i' :
			infile = strdup(optarg);
			break;

			case 'g' :
			geomfile = strdup(optarg);
			break;

			case 'j' :
			nthreads = atoi(optarg);
			break;

			case 'y' :
			sym_str = strdup(optarg);
			break;

			case 'o' :
			outfile = strdup(optarg);
			break;

			case 'n' :
			n_iter = atoi(optarg);
			break;

			case 'm' :
			pmodel_str = strdup(optarg);
			break;

			case 'b' :
			beam = get_beam_parameters(optarg);
			if ( beam == NULL ) {
				ERROR("Failed to load beam parameters"
				      " from '%s'\n", optarg);
				return 1;
			}
			break;

			case 'r' :
			reference_file = strdup(optarg);
			break;

			case 2 :
			errno = 0;
			min_measurements = strtod(optarg, &rval);
			if ( *rval != '\0' ) {
				ERROR("Invalid value for --min-measurements.\n");
				return 1;
			}
			break;

			case 0 :
			break;

			case '?' :
			break;

			default :
			ERROR("Unhandled option '%c'\n", c);
			break;

		}

	}

	if ( nthreads < 1 ) {
		ERROR("Invalid number of threads.\n");
		return 1;
	}

	if ( infile == NULL ) {
		infile = strdup("-");
	}
	st = open_stream_for_read(infile);
	if ( st == NULL ) {
		ERROR("Failed to open input stream '%s'\n", infile);
		return 1;
	}
	/* Don't free "infile", because it's needed for the scaling report */

	/* Sanitise output filename */
	if ( outfile == NULL ) {
		outfile = strdup("partialator.hkl");
	}

	if ( sym_str == NULL ) sym_str = strdup("1");
	sym = get_pointgroup(sym_str);
	free(sym_str);

	/* Get detector geometry */
	det = get_detector_geometry(geomfile);
	if ( det == NULL ) {
		ERROR("Failed to read detector geometry from '%s'\n", geomfile);
		return 1;
	}
	free(geomfile);

	if ( beam == NULL ) {
		ERROR("You must provide a beam parameters file.\n");
		return 1;
	}

	if ( pmodel_str != NULL ) {
		if ( strcmp(pmodel_str, "sphere") == 0 ) {
			pmodel = PMODEL_SPHERE;
		} else if ( strcmp(pmodel_str, "unity") == 0 ) {
			pmodel = PMODEL_UNITY;
		} else {
			ERROR("Unknown partiality model '%s'.\n", pmodel_str);
			return 1;
		}
	}

	if ( reference_file != NULL ) {

		RefList *list;

		list = read_reflections(reference_file);
		if ( list == NULL ) {
			ERROR("Failed to read '%s'\n", reference_file);
			return 1;
		}
		free(reference_file);
		reference = asymmetric_indices(list, sym);
		reflist_free(list);
		have_reference = 1;

	}

	gsl_set_error_handler_off();

	/* Fill in what we know about the images so far */
	n_images = 0;
	n_crystals = 0;
	images = NULL;
	crystals = NULL;

	do {

		RefList *as;
		int i;
		struct image *images_new;
		struct image *cur;

		images_new = realloc(images, (n_images+1)*sizeof(struct image));
		if ( images_new == NULL ) {
			ERROR("Failed to allocate memory for image list.\n");
			return 1;
		}
		images = images_new;
		cur = &images[n_images];

		cur->det = det;
		if ( read_chunk(st, cur) != 0 ) {
			break;
		}

		/* Won't be needing this, if it exists */
		image_feature_list_free(cur->features);
		cur->features = NULL;
		cur->div = beam->divergence;
		cur->bw = beam->bandwidth;
		cur->width = det->max_fs;
		cur->height = det->max_ss;
		cur->data = NULL;
		cur->flags = NULL;
		cur->beam = NULL;

		n_images++;

		for ( i=0; i<cur->n_crystals; i++ ) {

			Crystal *cr;
			Crystal **crystals_new;
			RefList *cr_refl;

			crystals_new = realloc(crystals,
			                      (n_crystals+1)*sizeof(Crystal *));
			if ( crystals_new == NULL ) {
				ERROR("Failed to allocate memory for crystal "
				      "list.\n");
				return 1;
			}
			crystals = crystals_new;
			crystals[n_crystals] = cur->crystals[i];
			cr = crystals[n_crystals];

			/* Image pointer will change due to later reallocs */
			crystal_set_image(cr, NULL);

			/* Fill in initial estimates of stuff */
			crystal_set_osf(cr, 1.0);
			crystal_set_profile_radius(cr, beam->profile_radius);
			crystal_set_mosaicity(cr, 0.0);
			crystal_set_user_flag(cr, 0);

			/* This is the raw list of reflections */
			cr_refl = crystal_get_reflections(cr);
			as = asymmetric_indices(cr_refl, sym);
			crystal_set_reflections(cr, as);
			reflist_free(cr_refl);

			n_crystals++;

		}

		display_progress(n_images, n_crystals);

	} while ( 1 );
	fprintf(stderr, "\n");

	close_stream(st);

	/* Fill in image pointers */
	nobs = 0;
	for ( i=0; i<n_images; i++ ) {
		int j;
		for ( j=0; j<images[i].n_crystals; j++ ) {

			Crystal *cryst;
			RefList *as;
			int n_gained = 0;
			int n_lost = 0;

			cryst = images[i].crystals[j];
			crystal_set_image(cryst, &images[i]);

			/* Now it's safe to do the following */
			update_partialities_2(cryst, pmodel,
			                      &n_gained, &n_lost);
			assert(n_gained == 0);  /* That'd just be silly */
			as = crystal_get_reflections(cryst);
			nobs += select_scalable_reflections(as, reference);

		}
	}
	STATUS("%i scalable observations.\n", nobs);

	/* Make initial estimates */
	STATUS("Performing initial scaling.\n");
	if ( noscale ) STATUS("Scale factors fixed at 1.\n");
	full = scale_intensities(crystals, n_crystals, reference,
	                         nthreads, noscale, pmodel, min_measurements);

	sr = sr_titlepage(crystals, n_crystals, "scaling-report.pdf",
	                  infile, cmdline);
	sr_iteration(sr, 0, crystals, n_crystals, full);

	/* Iterate */
	for ( i=0; i<n_iter; i++ ) {

		int n_dud = 0;
		int j;
		RefList *comp;

		STATUS("Post refinement cycle %i of %i\n", i+1, n_iter);

		if ( reference == NULL ) {
			comp = full;
		} else {
			comp = reference;
		}

		/* Refine the geometry of all patterns to get the best fit */
		select_reflections_for_refinement(crystals, n_crystals,
		                                  comp, have_reference);
		refine_all(crystals, n_crystals, det, comp, nthreads, pmodel);

		nobs = 0;
		for ( j=0; j<n_crystals; j++ ) {
			Crystal *cr = crystals[j];
			RefList *rf = crystal_get_reflections(cr);
			if ( crystal_get_user_flag(cr) ) n_dud++;
			nobs += select_scalable_reflections(rf, reference);
		}

		STATUS("%i crystals could not be refined this cycle.\n", n_dud);

		/* Re-estimate all the full intensities */
		reflist_free(full);
		full = scale_intensities(crystals, n_crystals,
		                         reference, nthreads, noscale, pmodel,
		                         min_measurements);

		sr_iteration(sr, i+1, crystals, n_crystals, full);

	}

	sr_finish(sr);

	/* Output results */
	write_reflist(outfile, full);

	/* Clean up */
	for ( i=0; i<n_crystals; i++ ) {
		reflist_free(crystal_get_reflections(crystals[i]));
		crystal_free(crystals[i]);
	}
	reflist_free(full);
	free(sym);
	free(outfile);
	free_detector_geometry(det);
	free(beam);
	free(crystals);
	if ( reference != NULL ) {
		reflist_free(reference);
	}
	for ( i=0; i<n_images; i++ ) {
		free(images[i].filename);
	}
	free(images);
	free(infile);

	return 0;
}