1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
/*
* main.c
*
* (c) 2006-2009 Thomas White <thomas.white@desy.de>
*
* pattern_sim - Simulate diffraction patterns from small crystals
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include "image.h"
#include "diffraction.h"
#include "cell.h"
#include "utils.h"
#include "hdf5-file.h"
#include "detector.h"
static void show_help(const char *s)
{
printf("Syntax: %s\n\n", s);
printf("Simulate diffraction patterns from small crystals\n");
printf(" probed with femosecond pulses from a free electron laser.\n\n");
printf(" -h, --help Display this help message\n");
printf(" --simulation-details Show details of the simulation\n");
printf(" --near-bragg Output h,k,l,I near Bragg conditions\n");
printf(" -r, --random-orientation Use a randomly generated orientation\n");
printf(" (a new orientation will be used for each image)\n");
printf(" -n, --number=<N> Generate N images. Default 1\n");
}
static void show_details()
{
printf("This program simulates diffraction patterns from small crystals illuminated\n");
printf("with femtosecond X-ray pulses from a free electron laser.\n\n");
printf("Scattering Factors\n");
printf("------------------\n");
printf("Scattering factors\n");
}
static struct quaternion read_quaternion()
{
do {
int r;
float w, x, y, z;
char line[1024];
char *rval;
printf("Please input quaternion: w x y z\n");
rval = fgets(line, 1023, stdin);
if ( rval == NULL ) return invalid_quaternion();
chomp(line);
r = sscanf(line, "%f %f %f %f", &w, &x, &y, &z);
if ( r == 4 ) {
struct quaternion quat;
quat.w = w;
quat.x = x;
quat.y = y;
quat.z = z;
return quat;
} else {
fprintf(stderr, "Invalid rotation '%s'\n", line);
}
} while ( 1 );
}
int main(int argc, char *argv[])
{
int c;
struct image image;
char filename[1024];
int config_simdetails = 0;
int config_nearbragg = 0;
int config_randomquat = 0;
int number = 1; /* Index for the current image */
int n_images = 1; /* Generate one image by default */
int done = 0;
/* Long options */
const struct option longopts[] = {
{"help", 0, NULL, 'h'},
{"simulation-details", 0, &config_simdetails, 1},
{"near-bragg", 0, &config_nearbragg, 1},
{"random-orientation", 0, NULL, 'r'},
{"number", 1, NULL, 'n'},
{0, 0, NULL, 0}
};
/* Short options */
while ((c = getopt_long(argc, argv, "hrn:", longopts, NULL)) != -1) {
switch (c) {
case 'h' : {
show_help(argv[0]);
return 0;
}
case 'r' : {
config_randomquat = 1;
break;
}
case 'n' : {
n_images = atoi(optarg);
break;
}
case 0 : {
break;
}
default : {
return 1;
}
}
}
if ( config_simdetails ) {
show_details();
return 0;
}
/* Define image parameters */
image.width = 1024;
image.height = 1024;
image.fmode = FORMULATION_CLEN;
image.x_centre = 512.5;
image.y_centre = 512.5;
image.camera_len = 0.10; /* 10 cm (front CCD can move from 5cm-20cm) */
image.resolution = 13333.3; /* 75 micron pixel size */
image.xray_energy = eV_to_J(2.0e3); /* 2 keV energy */
image.lambda = ph_en_to_lambda(image.xray_energy); /* Wavelength */
image.molecule = NULL;
/* Splurge a few useful numbers */
printf("Wavelength is %f nm\n", image.lambda/1.0e-9);
do {
/* Read quaternion from stdin */
if ( config_randomquat ) {
image.orientation = random_quaternion();
} else {
image.orientation = read_quaternion();
}
if ( quaternion_valid(image.orientation) ) {
fprintf(stderr, "Orientation modulus is not zero!\n");
return 1;
}
/* Ensure no residual information */
image.qvecs = NULL;
image.sfacs = NULL;
image.data = NULL;
image.twotheta = NULL;
image.hdr = NULL;
get_diffraction(&image);
record_image(&image);
snprintf(filename, 1023, "results/sim-%i.h5", number);
number++;
/* Write the output file */
hdf5_write(filename, image.data, image.width, image.height);
/* Clean up */
free(image.data);
free(image.qvecs);
free(image.hdr);
free(image.sfacs);
free(image.twotheta);
if ( n_images && (number >= n_images) ) done = 1;
} while ( !done );
return 0;
}
|