1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
|
/*
* post-refinement.c
*
* Post refinement
*
* Copyright © 2012-2013 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2010-2013 Thomas White <taw@physics.org>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <assert.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_eigen.h>
#include "image.h"
#include "post-refinement.h"
#include "peaks.h"
#include "symmetry.h"
#include "geometry.h"
#include "cell.h"
#include "cell-utils.h"
/* Maximum number of iterations of NLSq to do for each image per macrocycle. */
#define MAX_CYCLES (10)
/* Returns dp/dr at "r" */
static double partiality_gradient(double r, double profile_radius)
{
double q, dpdq, dqdr;
/* Calculate degree of penetration */
q = (r + profile_radius)/(2.0*profile_radius);
/* dp/dq */
dpdq = 6.0*(q-pow(q, 2.0));
/* dq/dr */
dqdr = 1.0 / (2.0*profile_radius);
return dpdq * dqdr;
}
/* Returns dp/drad at "r" */
static double partiality_rgradient(double r, double profile_radius)
{
double q, dpdq, dqdrad;
/* Calculate degree of penetration */
q = (r + profile_radius)/(2.0*profile_radius);
/* dp/dq */
dpdq = 6.0*(q-pow(q, 2.0));
/* dq/drad */
dqdrad = -0.5 * r * pow(profile_radius, -2.0);
return dpdq * dqdrad;
}
/* Return the gradient of parameter 'k' given the current status of 'image'. */
double gradient(Crystal *cr, int k, Reflection *refl, PartialityModel pmodel)
{
double ds, azi;
double glow, ghigh;
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
double xl, yl, zl;
signed int hs, ks, ls;
double rlow, rhigh, p;
int clamp_low, clamp_high;
double philow, phihigh, phi;
double khigh, klow;
double tl, cet, cez;
double gr;
struct image *image = crystal_get_image(cr);
double r = crystal_get_profile_radius(cr);
get_symmetric_indices(refl, &hs, &ks, &ls);
cell_get_reciprocal(crystal_get_cell(cr), &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
xl = hs*asx + ks*bsx + ls*csx;
yl = hs*asy + ks*bsy + ls*csy;
zl = hs*asz + ks*bsz + ls*csz;
ds = 2.0 * resolution(crystal_get_cell(cr), hs, ks, ls);
get_partial(refl, &rlow, &rhigh, &p, &clamp_low, &clamp_high);
/* "low" gives the largest Ewald sphere (wavelength short => k large)
* "high" gives the smallest Ewald sphere (wavelength long => k small)
*/
klow = 1.0/(image->lambda - image->lambda*image->bw/2.0);
khigh = 1.0/(image->lambda + image->lambda*image->bw/2.0);
tl = sqrt(xl*xl + yl*yl);
ds = modulus(xl, yl, zl);
cet = -sin(image->div/2.0) * klow;
cez = -cos(image->div/2.0) * klow;
philow = M_PI_2 - angle_between_2d(tl-cet, zl-cez, 1.0, 0.0);
cet = -sin(image->div/2.0) * khigh;
cez = -cos(image->div/2.0) * khigh;
phihigh = M_PI_2 - angle_between_2d(tl-cet, zl-cez, 1.0, 0.0);
/* Approximation: philow and phihigh are very similar */
phi = (philow + phihigh) / 2.0;
azi = atan2(yl, xl);
/* Calculate the gradient of partiality wrt excitation error. */
if ( clamp_low == 0 ) {
glow = partiality_gradient(rlow, r);
} else {
glow = 0.0;
}
if ( clamp_high == 0 ) {
ghigh = partiality_gradient(rhigh, r);
} else {
ghigh = 0.0;
}
/* For many gradients, just multiply the above number by the gradient
* of excitation error wrt whatever. */
switch ( k ) {
case REF_DIV :
/* Small angle approximation */
return (ds*glow + ds*ghigh) / 2.0;
case REF_R :
gr = partiality_rgradient(rlow, r);
gr -= partiality_rgradient(rhigh, r);
return gr;
/* Cell parameters and orientation */
case REF_ASX :
return hs * sin(phi) * cos(azi) * (ghigh-glow);
case REF_BSX :
return ks * sin(phi) * cos(azi) * (ghigh-glow);
case REF_CSX :
return ls * sin(phi) * cos(azi) * (ghigh-glow);
case REF_ASY :
return hs * sin(phi) * sin(azi) * (ghigh-glow);
case REF_BSY :
return ks * sin(phi) * sin(azi) * (ghigh-glow);
case REF_CSY :
return ls * sin(phi) * sin(azi) * (ghigh-glow);
case REF_ASZ :
return hs * cos(phi) * (ghigh-glow);
case REF_BSZ :
return ks * cos(phi) * (ghigh-glow);
case REF_CSZ :
return ls * cos(phi) * (ghigh-glow);
}
ERROR("No gradient defined for parameter %i\n", k);
abort();
}
static void apply_cell_shift(UnitCell *cell, int k, double shift)
{
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
cell_get_reciprocal(cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
switch ( k )
{
case REF_ASX : asx += shift; break;
case REF_ASY : asy += shift; break;
case REF_ASZ : asz += shift; break;
case REF_BSX : bsx += shift; break;
case REF_BSY : bsy += shift; break;
case REF_BSZ : bsz += shift; break;
case REF_CSX : csx += shift; break;
case REF_CSY : csy += shift; break;
case REF_CSZ : csz += shift; break;
}
cell_set_reciprocal(cell, asx, asy, asz,
bsx, bsy, bsz,
csx, csy, csz);
}
/* Apply the given shift to the 'k'th parameter of 'image'. */
static void apply_shift(Crystal *cr, int k, double shift)
{
double t;
struct image *image = crystal_get_image(cr);
switch ( k ) {
case REF_DIV :
if ( isnan(shift) ) {
ERROR("NaN divergence shift\n");
} else {
image->div += shift;
if ( image->div < 0.0 ) image->div = 0.0;
}
break;
case REF_R :
t = crystal_get_profile_radius(cr);
t += shift;
crystal_set_profile_radius(cr, t);
break;
case REF_ASX :
case REF_ASY :
case REF_ASZ :
case REF_BSX :
case REF_BSY :
case REF_BSZ :
case REF_CSX :
case REF_CSY :
case REF_CSZ :
apply_cell_shift(crystal_get_cell(cr), k, shift);
break;
default :
ERROR("No shift defined for parameter %i\n", k);
abort();
}
}
static void check_eigen(gsl_vector *e_val)
{
int i;
double vmax, vmin;
const int n = e_val->size;
const double max_condition = 1e6;
const int verbose = 0;
if ( verbose ) STATUS("Eigenvalues:\n");
vmin = +INFINITY;
vmax = 0.0;
for ( i=0; i<n; i++ ) {
double val = gsl_vector_get(e_val, i);
if ( verbose ) STATUS("%i: %e\n", i, val);
if ( val > vmax ) vmax = val;
if ( val < vmin ) vmin = val;
}
for ( i=0; i<n; i++ ) {
double val = gsl_vector_get(e_val, i);
if ( val < vmax/max_condition ) {
gsl_vector_set(e_val, i, 0.0);
}
}
vmin = +INFINITY;
vmax = 0.0;
for ( i=0; i<n; i++ ) {
double val = gsl_vector_get(e_val, i);
if ( val == 0.0 ) continue;
if ( val > vmax ) vmax = val;
if ( val < vmin ) vmin = val;
}
if ( verbose ) {
STATUS("Condition number: %e / %e = %5.2f\n",
vmax, vmin, vmax/vmin);
}
}
static gsl_vector *solve_svd(gsl_vector *v, gsl_matrix *M)
{
gsl_matrix *s_vec;
gsl_vector *s_val;
int err, n;
gsl_vector *shifts;
n = v->size;
if ( v->size != M->size1 ) return NULL;
if ( v->size != M->size2 ) return NULL;
s_val = gsl_vector_calloc(n);
s_vec = gsl_matrix_calloc(n, n);
err = gsl_linalg_SV_decomp_jacobi(M, s_vec, s_val);
if ( err ) {
ERROR("SVD failed: %s\n", gsl_strerror(err));
gsl_matrix_free(s_vec);
gsl_vector_free(s_val);
return NULL;
}
/* "M" is now "U" */
check_eigen(s_val);
shifts = gsl_vector_calloc(n);
err = gsl_linalg_SV_solve(M, s_vec, s_val, v, shifts);
if ( err ) {
ERROR("Matrix solution failed: %s\n", gsl_strerror(err));
gsl_matrix_free(s_vec);
gsl_vector_free(s_val);
gsl_vector_free(shifts);
return NULL;
}
gsl_matrix_free(s_vec);
gsl_vector_free(s_val);
return shifts;
}
/* Perform one cycle of post refinement on 'image' against 'full' */
static double pr_iterate(Crystal *cr, const RefList *full,
PartialityModel pmodel)
{
gsl_matrix *M;
gsl_vector *v;
gsl_vector *shifts;
int param;
Reflection *refl;
RefListIterator *iter;
RefList *reflections;
double max_shift;
int nref = 0;
reflections = crystal_get_reflections(cr);
M = gsl_matrix_calloc(NUM_PARAMS, NUM_PARAMS);
v = gsl_vector_calloc(NUM_PARAMS);
/* Construct the equations, one per reflection in this image */
for ( refl = first_refl(reflections, &iter);
refl != NULL;
refl = next_refl(refl, iter) )
{
signed int ha, ka, la;
double I_full, delta_I;
double w;
double I_partial;
int k;
double p;
Reflection *match;
double gradients[NUM_PARAMS];
const double osf = crystal_get_osf(cr);
if ( !get_refinable(refl) ) continue;
/* Find the full version */
get_indices(refl, &ha, &ka, &la);
match = find_refl(full, ha, ka, la);
if ( match == NULL ) {
ERROR("%3i %3i %3i isn't in the reference list, so why "
" is it marked as refinable?\n", ha, ka, la);
continue;
}
I_full = osf * get_intensity(match);
/* Actual measurement of this reflection from this pattern? */
I_partial = get_intensity(refl);
p = get_partiality(refl);
/* Calculate the weight for this reflection */
w = pow(get_esd_intensity(refl), 2.0);
w += p * I_full * pow(get_esd_intensity(match), 2.0);
w = pow(w, -1.0);
/* Calculate all gradients for this reflection */
for ( k=0; k<NUM_PARAMS; k++ ) {
double gr;
gr = gradient(cr, k, refl, pmodel);
gradients[k] = gr;
}
for ( k=0; k<NUM_PARAMS; k++ ) {
int g;
double v_c, v_curr;
for ( g=0; g<NUM_PARAMS; g++ ) {
double M_c, M_curr;
/* Matrix is symmetric */
if ( g > k ) continue;
M_c = gradients[g] * gradients[k];
M_c *= w * pow(osf * I_full, 2.0);
M_curr = gsl_matrix_get(M, k, g);
gsl_matrix_set(M, k, g, M_curr + M_c);
gsl_matrix_set(M, g, k, M_curr + M_c);
}
delta_I = I_partial - (p * I_full);
v_c = w * delta_I * I_full * gradients[k];
v_curr = gsl_vector_get(v, k);
gsl_vector_set(v, k, v_curr + v_c);
}
nref++;
}
//show_matrix_eqn(M, v, NUM_PARAMS);
//STATUS("%i reflections went into the equations.\n", nref);
if ( nref == 0 ) {
crystal_set_user_flag(cr, 1);
gsl_matrix_free(M);
gsl_vector_free(v);
return 0.0;
}
max_shift = 0.0;
shifts = solve_svd(v, M);
if ( shifts != NULL ) {
for ( param=0; param<NUM_PARAMS; param++ ) {
double shift = gsl_vector_get(shifts, param);
apply_shift(cr, param, shift);
//STATUS("Shift %i: %e\n", param, shift);
if ( fabs(shift) > max_shift ) max_shift = fabs(shift);
}
} else {
ERROR("Problem solving equations.\n");
/* Leave things as they were */
}
gsl_matrix_free(M);
gsl_vector_free(v);
gsl_vector_free(shifts);
return max_shift;
}
static double guide_dev(Crystal *cr, const RefList *full)
{
double dev = 0.0;
/* For each reflection */
Reflection *refl;
RefListIterator *iter;
for ( refl = first_refl(crystal_get_reflections(cr), &iter);
refl != NULL;
refl = next_refl(refl, iter) ) {
double G, p;
signed int h, k, l;
Reflection *full_version;
double I_full, I_partial;
if ( !get_refinable(refl) ) continue;
get_indices(refl, &h, &k, &l);
assert((h!=0) || (k!=0) || (l!=0));
full_version = find_refl(full, h, k, l);
if ( full_version == NULL ) continue;
/* Some reflections may have recently become scalable, but
* scale_intensities() might not yet have been called, so the
* full version may not have been calculated yet. */
G = crystal_get_osf(cr);
p = get_partiality(refl);
I_partial = get_intensity(refl);
I_full = get_intensity(full_version);
//STATUS("%3i %3i %3i %5.2f %5.2f %5.2f %5.2f %5.2f\n",
// h, k, l, G, p, I_partial, I_full,
// I_partial - p*G*I_full);
dev += pow(I_partial - p*G*I_full, 2.0);
}
return dev;
}
void pr_refine(Crystal *cr, const RefList *full, PartialityModel pmodel)
{
double max_shift, dev;
int i;
const int verbose = 0;
if ( verbose ) {
dev = guide_dev(cr, full);
STATUS("\n"); /* Deal with progress bar */
STATUS("Before iteration: dev = %10.5e\n",
dev);
}
i = 0;
crystal_set_user_flag(cr, 0);
do {
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
double dev;
cell_get_reciprocal(crystal_get_cell(cr), &asx, &asy, &asz,
&bsx, &bsy, &bsz, &csx, &csy, &csz);
max_shift = pr_iterate(cr, full, pmodel);
update_partialities(cr, pmodel);
if ( verbose ) {
dev = guide_dev(cr, full);
STATUS("PR Iteration %2i: max shift = %10.2f"
" dev = %10.5e\n", i+1, max_shift, dev);
}
i++;
} while ( (max_shift > 50.0) && (i < MAX_CYCLES) );
}
|