1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
/*
* predict-refine.c
*
* Prediction refinement
*
* Copyright © 2012-2015 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2010-2015 Thomas White <taw@physics.org>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <assert.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include "image.h"
#include "post-refinement.h"
#include "cell-utils.h"
/* Maximum number of iterations of NLSq to do for each image per macrocycle. */
#define MAX_CYCLES (10)
/* Weighting of excitation error term (m^-1) compared to position term (m) */
#define EXC_WEIGHT (2e-11)
struct reflpeak {
Reflection *refl;
struct imagefeature *peak;
double Ih; /* normalised */
struct panel *panel; /* panel the reflection appears on
* (we assume this never changes) */
};
static int pair_peaks(ImageFeatureList *flist, UnitCell *cell, RefList *reflist,
struct reflpeak *rps, struct detector *det)
{
int i;
const double min_dist = 0.25;
int n_acc = 0;
int n_notintegrated = 0;
for ( i=0; i<image_feature_count(flist); i++ ) {
struct imagefeature *f;
double h, k, l, hd, kd, ld;
/* Assume all image "features" are genuine peaks */
f = image_get_feature(flist, i);
if ( f == NULL ) continue;
double ax, ay, az;
double bx, by, bz;
double cx, cy, cz;
cell_get_cartesian(cell,
&ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);
/* Decimal and fractional Miller indices of nearest
* reciprocal lattice point */
hd = f->rx * ax + f->ry * ay + f->rz * az;
kd = f->rx * bx + f->ry * by + f->rz * bz;
ld = f->rx * cx + f->ry * cy + f->rz * cz;
h = lrint(hd);
k = lrint(kd);
l = lrint(ld);
/* Check distance */
if ( (fabs(h - hd) < min_dist)
&& (fabs(k - kd) < min_dist)
&& (fabs(l - ld) < min_dist) )
{
Reflection *refl;
/* Dig out the reflection */
refl = find_refl(reflist, h, k, l);
if ( refl == NULL ) {
n_notintegrated++;
continue;
}
rps[n_acc].refl = refl;
rps[n_acc].peak = f;
rps[n_acc].panel = find_panel(det, f->fs, f->ss);
n_acc++;
}
}
return n_acc;
}
static void twod_mapping(double fs, double ss, double *px, double *py,
struct panel *p)
{
double xs, ys;
xs = fs*p->fsx + ss*p->ssx;
ys = fs*p->fsy + ss*p->ssy;
*px = (xs + p->cnx) / p->res;
*py = (ys + p->cny) / p->res;
}
static double r_gradient(UnitCell *cell, int k, Reflection *refl,
struct image *image)
{
double azi;
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
double xl, yl, zl;
signed int hs, ks, ls;
double rlow, rhigh, p;
double philow, phihigh, phi;
double khigh, klow;
double tl, cet, cez;
get_partial(refl, &rlow, &rhigh, &p);
get_symmetric_indices(refl, &hs, &ks, &ls);
cell_get_reciprocal(cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
xl = hs*asx + ks*bsx + ls*csx;
yl = hs*asy + ks*bsy + ls*csy;
zl = hs*asz + ks*bsz + ls*csz;
/* "low" gives the largest Ewald sphere (wavelength short => k large)
* "high" gives the smallest Ewald sphere (wavelength long => k small)
*/
klow = 1.0/(image->lambda - image->lambda*image->bw/2.0);
khigh = 1.0/(image->lambda + image->lambda*image->bw/2.0);
tl = sqrt(xl*xl + yl*yl);
cet = -sin(image->div/2.0) * klow;
cez = -cos(image->div/2.0) * klow;
philow = angle_between_2d(tl-cet, zl-cez, 0.0, 1.0);
cet = -sin(image->div/2.0) * khigh;
cez = -cos(image->div/2.0) * khigh;
phihigh = angle_between_2d(tl-cet, zl-cez, 0.0, 1.0);
/* Approximation: philow and phihigh are very similar */
phi = (philow + phihigh) / 2.0;
azi = atan2(yl, xl);
switch ( k ) {
case REF_ASX :
return - hs * sin(phi) * cos(azi);
case REF_BSX :
return - ks * sin(phi) * cos(azi);
case REF_CSX :
return - ls * sin(phi) * cos(azi);
case REF_ASY :
return - hs * sin(phi) * sin(azi);
case REF_BSY :
return - ks * sin(phi) * sin(azi);
case REF_CSY :
return - ls * sin(phi) * sin(azi);
case REF_ASZ :
return - hs * cos(phi);
case REF_BSZ :
return - ks * cos(phi);
case REF_CSZ :
return - ls * cos(phi);
}
ERROR("No gradient defined for parameter %i\n", k);
abort();
}
/* Returns d(xh-xpk)/dP + d(yh-ypk)/dP, where P = any parameter */
static double pos_gradient(int param, struct reflpeak *rp, struct detector *det,
double lambda, UnitCell *cell)
{
signed int h, k, l;
double xpk, ypk, xh, yh;
double fsh, ssh;
double tt, clen, azi, azf;
twod_mapping(rp->peak->fs, rp->peak->ss, &xpk, &ypk, rp->panel);
get_detector_pos(rp->refl, &fsh, &ssh);
twod_mapping(fsh, ssh, &xh, &yh, rp->panel);
get_indices(rp->refl, &h, &k, &l);
tt = asin(lambda * resolution(cell, h, k, l));
clen = rp->panel->clen;
azi = atan2(yh, xh);
azf = 2.0*(cos(azi) + sin(azi)); /* FIXME: Why factor of 2? */
switch ( param ) {
case REF_ASX :
return h * lambda * clen / cos(tt);
case REF_BSX :
return k * lambda * clen / cos(tt);
case REF_CSX :
return l * lambda * clen / cos(tt);
case REF_ASY :
return h * lambda * clen / cos(tt);
case REF_BSY :
return k * lambda * clen / cos(tt);
case REF_CSY :
return l * lambda * clen / cos(tt);
case REF_ASZ :
return -h * lambda * clen * azf * sin(tt) / (cos(tt)*cos(tt));
case REF_BSZ :
return -k * lambda * clen * azf * sin(tt) / (cos(tt)*cos(tt));
case REF_CSZ :
return -l * lambda * clen * azf * sin(tt) / (cos(tt)*cos(tt));
}
ERROR("Positional gradient requested for parameter %i?\n", param);
abort();
}
static double r_dev(struct reflpeak *rp)
{
/* Excitation error term */
double rlow, rhigh, p;
get_partial(rp->refl, &rlow, &rhigh, &p);
return (rlow+rhigh)/2.0;
}
static double pos_dev(struct reflpeak *rp, struct detector *det)
{
/* Peak position term */
double xpk, ypk, xh, yh;
double fsh, ssh;
twod_mapping(rp->peak->fs, rp->peak->ss, &xpk, &ypk, rp->panel);
get_detector_pos(rp->refl, &fsh, &ssh);
twod_mapping(fsh, ssh, &xh, &yh, rp->panel);
return (xh-xpk) + (yh-ypk);
}
static int iterate(struct reflpeak *rps, int n, UnitCell *cell,
struct image *image)
{
int i;
gsl_matrix *M;
gsl_vector *v;
gsl_vector *shifts;
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
/* Number of parameters to refine */
M = gsl_matrix_calloc(9, 9);
v = gsl_vector_calloc(9);
for ( i=0; i<n; i++ ) {
int k;
double gradients[9];
double w;
/* Excitation error terms */
w = EXC_WEIGHT * rps[i].Ih;
for ( k=0; k<9; k++ ) {
gradients[k] = r_gradient(cell, k, rps[i].refl, image);
}
for ( k=0; k<9; k++ ) {
int g;
double v_c, v_curr;
for ( g=0; g<9; g++ ) {
double M_c, M_curr;
/* Matrix is symmetric */
if ( g > k ) continue;
M_c = w * gradients[g] * gradients[k];
M_curr = gsl_matrix_get(M, k, g);
gsl_matrix_set(M, k, g, M_curr + M_c);
gsl_matrix_set(M, g, k, M_curr + M_c);
}
v_c = w * r_dev(&rps[i]);
v_c *= -gradients[k];
v_curr = gsl_vector_get(v, k);
gsl_vector_set(v, k, v_curr + v_c);
}
/* Positional terms */
for ( k=0; k<9; k++ ) {
gradients[k] = pos_gradient(k, &rps[i], image->det,
image->lambda, cell);
}
for ( k=0; k<9; k++ ) {
int g;
double v_c, v_curr;
for ( g=0; g<9; g++ ) {
double M_c, M_curr;
/* Matrix is symmetric */
if ( g > k ) continue;
M_c = gradients[g] * gradients[k];
M_curr = gsl_matrix_get(M, k, g);
gsl_matrix_set(M, k, g, M_curr + M_c);
gsl_matrix_set(M, g, k, M_curr + M_c);
}
v_c = pos_dev(&rps[i], image->det);
v_c *= -gradients[k];
v_curr = gsl_vector_get(v, k);
gsl_vector_set(v, k, v_curr + v_c);
}
}
show_matrix_eqn(M, v);
shifts = solve_svd(v, M, NULL, 1);
for ( i=0; i<9; i++ ) {
STATUS("Shift %i = %e\n", i, gsl_vector_get(shifts, i));
}
/* Apply shifts */
cell_get_reciprocal(cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
asx += gsl_vector_get(shifts, 0);
asy += gsl_vector_get(shifts, 1);
asz += gsl_vector_get(shifts, 2);
bsx += gsl_vector_get(shifts, 3);
bsy += gsl_vector_get(shifts, 4);
bsz += gsl_vector_get(shifts, 5);
csx += gsl_vector_get(shifts, 6);
csy += gsl_vector_get(shifts, 7);
csz += gsl_vector_get(shifts, 8);
cell_set_reciprocal(cell, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz);
gsl_vector_free(shifts);
gsl_matrix_free(M);
gsl_vector_free(v);
return 0;
}
static double residual(struct reflpeak *rps, int n, struct detector *det)
{
int i;
double res = 0.0;
for ( i=0; i<n; i++ ) {
res += EXC_WEIGHT * rps[i].Ih * pow(r_dev(&rps[i]), 2.0);
res += pow(pos_dev(&rps[i], det), 2.0);
}
return res;
}
int refine_prediction(struct image *image, Crystal *cr)
{
int n;
int i;
struct reflpeak *rps;
double max_I;
rps = malloc(image_feature_count(image->features)
* sizeof(struct reflpeak));
if ( rps == NULL ) return 1;
n = pair_peaks(image->features, crystal_get_cell(cr),
crystal_get_reflections(cr), rps, image->det);
STATUS("%i peaks\n", n);
if ( n < 10 ) {
ERROR("Too few paired peaks to refine orientation.\n");
free(rps);
return 1;
}
/* Normalise the intensities to max 1 */
max_I = -INFINITY;
for ( i=0; i<n; i++ ) {
double cur_I = rps[i].peak->intensity;
if ( cur_I > max_I ) max_I = cur_I;
}
if ( max_I <= 0.0 ) {
ERROR("All peaks negative?\n");
free(rps);
return 1;
}
for ( i=0; i<n; i++ ) {
rps[i].Ih = rps[i].peak->intensity / max_I;
}
/* Refine */
STATUS("Initial residual = %e\n", residual(rps, n, image->det));
for ( i=0; i<MAX_CYCLES; i++ ) {
iterate(rps, n, crystal_get_cell(cr), image);
update_partialities(cr, PMODEL_SCSPHERE);
STATUS("Residual after iteration %i = %e\n",
i, residual(rps, n, image->det));
}
free(rps);
return 0;
}
|