1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
|
/*
* symmetry.c
*
* Symmetry
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "utils.h"
#ifdef DEBUG
#define SYM_DEBUG STATUS
#else /* DEBUG */
#define SYM_DEBUG(...)
#endif /* DEBUG */
/* Check if a reflection is in the asymmetric unit cell */
static int check_cond(signed int h, signed int k, signed int l, const char *sym)
{
if ( strcmp(sym, "1") == 0 )
return ( 1 );
if ( strcmp(sym, "-1") == 0 )
return ( (l>0)
|| ( (l==0) && (k>0) )
|| ( (l==0) && (k==0) && (h>=0) ) );
if ( strcmp(sym, "6") == 0 )
return ( ((h>0) && (k>=0)) || ((h==0) && (k==0)) );
if ( strcmp(sym, "6/m") == 0 )
return ( (((h>0) && (k>=0)) || ((h==0) && (k==0))) && (l>=0) );
if ( strcmp(sym, "6/mmm") == 0 )
return ( (((h>0) && (k>=0)) || ((h==0) && (k==0))) && (l>=0)
&& (h>=k) );
/* TODO: Add more groups here */
return 1;
}
/* Macros for checking the above conditions and returning if satisfied */
#define CHECK_COND(h, k, l, sym) \
if ( check_cond((h), (k), (l), (sym)) ) { \
*hp = (h); *kp = (k); *lp = (l); \
return; \
}
int num_general_equivs(const char *sym)
{
/* Triclinic */
if ( strcmp(sym, "1") == 0 ) return 1;
if ( strcmp(sym, "-1") == 0 ) return 2;
/* Hexagonal */
if ( strcmp(sym, "6") == 0 ) return 6;
if ( strcmp(sym, "6/m") == 0 ) return 12;
if ( strcmp(sym, "6/mmm") == 0 ) return 24;
/* TODO: Add more groups here */
return 1;
}
void get_general_equiv(signed int h, signed int k, signed int l,
signed int *he, signed int *ke, signed int *le,
const char *sym, int idx)
{
signed int i = -h-k;
/* The returned indices when idx=0 *must* be the same as the input.
* After that, the order does not matter. */
if ( strcmp(sym, "1") == 0 ) {
*he = h; *ke = k; *le = l; return;
}
if ( strcmp(sym, "-1") == 0 ) {
switch ( idx ) {
case 0 : *he = h; *ke = k; *le = l; return;
case 1 : *he = -h; *ke = -k; *le = -l; return;
}
}
if ( strcmp(sym, "6") == 0 ) {
switch ( idx ) {
case 0 : *he = h; *ke = k; *le = l; return;
case 1 : *he = i; *ke = h; *le = l; return;
case 2 : *he = k; *ke = i; *le = l; return;
case 3 : *he = -h; *ke = -k; *le = l; return;
case 4 : *he = -i; *ke = -h; *le = l; return;
case 5 : *he = -k; *ke = -i; *le = l; return;
}
}
if ( strcmp(sym, "6/m") == 0 ) {
switch ( idx ) {
case 0 : *he = h; *ke = k; *le = l; return;
case 1 : *he = i; *ke = h; *le = l; return;
case 2 : *he = k; *ke = i; *le = l; return;
case 3 : *he = -h; *ke = -k; *le = l; return;
case 4 : *he = -i; *ke = -h; *le = l; return;
case 5 : *he = -k; *ke = -i; *le = l; return;
case 6 : *he = h; *ke = k; *le = -l; return;
case 7 : *he = i; *ke = h; *le = -l; return;
case 8 : *he = k; *ke = i; *le = -l; return;
case 9 : *he = -h; *ke = -k; *le = -l; return;
case 10 : *he = -i; *ke = -h; *le = -l; return;
case 11 : *he = -k; *ke = -i; *le = -l; return;
}
}
if ( strcmp(sym, "6/mmm") == 0 ) {
switch ( idx ) {
case 0 : *he = h; *ke = k; *le = l; return;
case 1 : *he = i; *ke = h; *le = l; return;
case 2 : *he = k; *ke = i; *le = l; return;
case 3 : *he = -h; *ke = -k; *le = l; return;
case 4 : *he = -i; *ke = -h; *le = l; return;
case 5 : *he = -k; *ke = -i; *le = l; return;
case 6 : *he = k; *ke = h; *le = -l; return;
case 7 : *he = h; *ke = i; *le = -l; return;
case 8 : *he = i; *ke = k; *le = -l; return;
case 9 : *he = -k; *ke = -h; *le = -l; return;
case 10 : *he = -h; *ke = -i; *le = -l; return;
case 11 : *he = -i; *ke = -k; *le = -l; return;
case 12 : *he = -h; *ke = -k; *le = -l; return;
case 13 : *he = -i; *ke = -h; *le = -l; return;
case 14 : *he = -k; *ke = -i; *le = -l; return;
case 15 : *he = h; *ke = k; *le = -l; return;
case 16 : *he = i; *ke = h; *le = -l; return;
case 17 : *he = k; *ke = i; *le = -l; return;
case 18 : *he = -k; *ke = -h; *le = l; return;
case 19 : *he = -h; *ke = -i; *le = l; return;
case 20 : *he = -i; *ke = -k; *le = l; return;
case 21 : *he = k; *ke = h; *le = l; return;
case 22 : *he = h; *ke = i; *le = l; return;
case 23 : *he = i; *ke = k; *le = l; return;
}
}
/* TODO: Add more groups here */
ERROR("Unrecognised symmetry '%s'\n", sym);
abort();
}
/* Given a reflection and a point group, this returns (by reference) the indices
* of the "idx"th equivalent reflection, taking special positions into account.
* It returns "idx" if successful. Otherwise, it returns the number of
* equivalents for the particular reflection (taking special positions into
* account). Therefore, set idx=-1 to get the number of equivalents. */
static int special_position(signed int hs, signed int ks, signed int ls,
signed int *hp, signed int *kp, signed int *lp,
const char *sym, signed int idx)
{
int n_general;
int i;
ReflItemList *equivs;
int n_equivs = 0;
if ( idx == 0 ) {
/* Index zero is always the original reflection */
*hp = hs; *kp = ks; *lp = ls;
return 0;
}
equivs = new_items();
n_general = num_general_equivs(sym);
for ( i=0; i<n_general; i++ ) {
signed int h, k, l;
/* Get equivalent according to the holohedral group */
get_general_equiv(hs, ks, ls, &h, &k, &l, sym, i);
/* Already got this one? */
if ( find_item(equivs, h, k, l) ) continue;
if ( n_equivs == idx ) {
*hp = h;
*kp = k;
*lp = l;
delete_items(equivs);
return n_equivs;
}
add_item(equivs, h, k, l);
n_equivs++;
}
delete_items(equivs);
return n_equivs;
}
void get_equiv(signed int h, signed int k, signed int l,
signed int *he, signed int *ke, signed int *le,
const char *sym, int idx)
{
special_position(h, k, l, he, ke, le, sym, idx);
}
int num_equivs(signed int h, signed int k, signed int l, const char *sym)
{
return special_position(h, k, l, NULL, NULL, NULL, sym, -1);
}
void get_asymm(signed int h, signed int k, signed int l,
signed int *hp, signed int *kp, signed int *lp,
const char *sym)
{
int nequiv = num_equivs(h, k, l, sym);
int p;
SYM_DEBUG("------ %i %i %i\n", h, k, l);
for ( p=0; p<nequiv; p++ ) {
signed int he, ke, le;
get_equiv(h, k, l, &he, &ke, &le, sym, p);
SYM_DEBUG("%i : %i %i %i\n", p, he, ke, le);
CHECK_COND(he, ke, le, sym);
}
/* Should never reach here */
ERROR("No match found in %s for %i %i %i\n", sym, h, k, l);
abort();
}
const char *get_holohedral(const char *sym)
{
/* Triclinic */
if ( strcmp(sym, "1") == 0 ) return "-1";
if ( strcmp(sym, "-1") == 0 ) return "-1";
/* Hexagonal */
if ( strcmp(sym, "6") == 0 ) return "6/mmm";
if ( strcmp(sym, "6/m") == 0 ) return "6/mmm";
if ( strcmp(sym, "6/mmm") == 0 ) return "6/mmm";
/* TODO: Add more groups here */
ERROR("Couldn't find holohedral point group for '%s'\n", sym);
abort();
}
/* This is kind of like a "numerical" left coset decomposition.
* Given a reflection index and a point group, it returns the list of twinning
* possibilities.
*
* To count the number of possibilities, use num_items() on the result.
*/
static ReflItemList *coset_decomp(signed int hs, signed int ks, signed int ls,
const char *holo, const char *mero)
{
int n_mero, n_holo;
int i;
signed int h, k, l;
ReflItemList *twins = new_items();
/* Start by putting the given reflection into the asymmetric cell
* for its (probably merohedral) point group. */
get_asymm(hs, ks, ls, &h, &k, &l, mero);
/* How many equivalents in the holohedral point group are not
* equivalents according to the (possibly) merohedral group? */
n_holo = num_general_equivs(holo);
n_mero = num_general_equivs(mero);
for ( i=0; i<n_holo; i++ ) {
signed int h_holo, k_holo, l_holo;
signed int hs_holo, ks_holo, ls_holo;
/* Get equivalent according to the holohedral group */
get_general_equiv(h, k, l, &hs_holo, &ks_holo, &ls_holo,
holo, i);
/* Put it into the asymmetric cell for the merohedral group */
get_asymm(hs_holo, ks_holo, ls_holo,
&h_holo, &k_holo, &l_holo, mero);
/* Already got this one?
* Note: The list "twins" starts empty, so the first iteration
* (i=0) will add the original reflection to the list along with
* the identity operation. */
if ( find_item(twins, h_holo, k_holo, l_holo) ) continue;
add_item_with_op(twins, h_holo, k_holo, l_holo, i);
}
return twins;
}
/* Work out the twinning possibilities for this pattern.
* To use the result, call get_general_equiv() on each reflection using
* the holohedral point group (use get_holohedral() for this), and for "idx"
* give each "op" field from the list returned by this function. */
ReflItemList *get_twins(ReflItemList *items, const char *holo, const char *mero)
{
int i;
ReflItemList *ops = new_items();
int expected, actual;
/* Run the coset decomposition for every reflection in the "pattern",
* and see which gives the highest number of possibilities. This
* approach takes into account that a pattern consisting entirely of
* special reflections might have fewer twin possibilities. */
for ( i=0; i<num_items(items); i++ ) {
signed int h, k, l;
struct refl_item *item;
ReflItemList *new_ops;
item = get_item(items, i);
h = item->h;
k = item->k;
l = item->l;
new_ops = coset_decomp(h, k, l, holo, mero);
union_op_items(ops, new_ops);
delete_items(new_ops);
}
/* Idiot check */
actual = num_items(ops);
expected = num_general_equivs(holo) / num_general_equivs(mero);
if ( actual != expected ) {
ERROR("I couldn't find the number of twin laws that I expected."
" This is an internal error, and shouldn't happen. "
"Sorry.\n");
abort();
}
return ops;
}
static void scold_user_about_symmetry(signed int h, signed int k, signed int l,
signed int he, signed int ke,
signed int le)
{
ERROR("Symmetrically equivalent reflection (%i %i %i) found for "
"%i %i %i in the input.\n", he, ke, le, h, k, l);
ERROR("This indicates that you lied to me about the symmetry of the "
"input reflections. ");
ERROR("I won't be able to give you a meaningful result in this "
"situation, so I'm going to give up right now. ");
ERROR("Please reconsider your previous processing of the data, and "
"perhaps try again with a lower symmetry for the '-y' option.\n");
abort();
}
int find_unique_equiv(ReflItemList *items, signed int h, signed int k,
signed int l, const char *mero, signed int *hu,
signed int *ku, signed int *lu)
{
int i;
int found = 0;
for ( i=0; i<num_equivs(h, k, l, mero); i++ ) {
signed int he, ke, le;
int f;
get_equiv(h, k, l, &he, &ke, &le, mero, i);
f = find_item(items, he, ke, le);
/* There must only be one equivalent. If there are more, it
* indicates that the user lied about the input symmetry. */
if ( f && found ) {
scold_user_about_symmetry(he, ke, le, *hu, *ku, *lu);
}
if ( f && !found ) {
*hu = he; *ku = ke; *lu = le;
found = 1;
}
}
return found;
}
|