1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
/*
* utils.c
*
* Utility stuff
*
* (c) 2006-2009 Thomas White <thomas.white@desy.de>
*
* pattern_sim - Simulate diffraction patterns from small crystals
*
*/
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "utils.h"
/* Angle between two vectors. Answer in radians */
double angle_between(double x1, double y1, double z1,
double x2, double y2, double z2)
{
double mod1 = modulus(x1, y1, z1);
double mod2 = modulus(x2, y2, z2);
return acos( (x1*x2 + y1*y2 + z1*z2) / (mod1*mod2) );
}
size_t skipspace(const char *s)
{
size_t i;
for ( i=0; i<strlen(s); i++ ) {
if ( (s[i] != ' ') && (s[i] != '\t') ) return i;
}
return strlen(s);
}
void chomp(char *s)
{
size_t i;
if ( !s ) return;
for ( i=0; i<strlen(s); i++ ) {
if ( (s[i] == '\n') || (s[i] == '\r') ) {
s[i] = '\0';
return;
}
}
}
void progress_bar(int val, int total, const char *text)
{
double frac;
int n, i;
char s[1024];
const int width = 50;
frac = (double)val/total;
n = (int)(frac*width);
for ( i=0; i<n; i++ ) s[i] = '=';
for ( i=n; i<width; i++ ) s[i] = '.';
s[width] = '\0';
STATUS("\r%s: |%s|", text, s);
if ( val == total ) STATUS("\n");
fflush(stdout);
}
int poisson_noise(double expected)
{
double L;
int k = 0;
double p = 1.0;
L = exp(-expected);
do {
double r;
k++;
r = (double)random()/RAND_MAX;
p *= r;
} while ( p > L );
return k - 1;
}
double quaternion_modulus(struct quaternion q)
{
return sqrt(q.w*q.w + q.x*q.x + q.y*q.y + q.z*q.z);
}
struct quaternion normalise_quaternion(struct quaternion q)
{
double mod;
struct quaternion r;
mod = quaternion_modulus(q);
r.w = q.w / mod;
r.x = q.x / mod;
r.y = q.y / mod;
r.z = q.z / mod;
return r;
}
struct quaternion random_quaternion()
{
struct quaternion q;
q.w = 2.0*(double)random()/RAND_MAX - 1.0;
q.x = 2.0*(double)random()/RAND_MAX - 1.0;
q.y = 2.0*(double)random()/RAND_MAX - 1.0;
q.z = 2.0*(double)random()/RAND_MAX - 1.0;
q = normalise_quaternion(q);
return q;
}
int quaternion_valid(struct quaternion q)
{
double qmod;
qmod = quaternion_modulus(q);
/* Modulus = 1 to within some tolerance?
* Nasty allowance for floating-point accuracy follows... */
if ( (qmod > 0.999) && (qmod < 1.001) ) return 1;
return 0;
}
|