1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/*
* utils.c
*
* Utility stuff
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include "utils.h"
#include "image.h"
size_t skipspace(const char *s)
{
size_t i;
for ( i=0; i<strlen(s); i++ ) {
if ( (s[i] != ' ') && (s[i] != '\t') ) return i;
}
return strlen(s);
}
void chomp(char *s)
{
size_t i;
if ( !s ) return;
for ( i=0; i<strlen(s); i++ ) {
if ( (s[i] == '\n') || (s[i] == '\r') ) {
s[i] = '\0';
return;
}
}
}
void progress_bar(int val, int total, const char *text)
{
double frac;
int n, i;
char s[1024];
const int width = 50;
if ( !isatty(STDERR_FILENO) ) return;
if ( tcgetpgrp(STDERR_FILENO) != getpgrp() ) return;
frac = (double)val/total;
n = (int)(frac*width);
for ( i=0; i<n; i++ ) s[i] = '=';
for ( i=n; i<width; i++ ) s[i] = '.';
s[width] = '\0';
STATUS("\r%s: |%s|", text, s);
if ( val == total ) STATUS("\n");
fflush(stdout);
}
static int fake_poisson_noise(double expected)
{
double x1, x2, w;
double noise, rf;
do {
x1 = 2.0 * ((double)random()/RAND_MAX) - 1.0;
x2 = 2.0 * ((double)random()/RAND_MAX) - 1.0;
w = pow(x1, 2.0) + pow(x2, 2.0);
} while ( w >= 1.0 );
w = sqrt((-2.0*log(w))/w);
noise = w * x1;
rf = expected + noise*sqrt(expected);
return (int)rf;
}
int poisson_noise(double expected)
{
double L;
int k = 0;
double p = 1.0;
/* For large values of the mean, we get big problems with arithmetic.
* In such cases, fall back on a Gaussian with the right variance. */
if ( expected > 100.0 ) return fake_poisson_noise(expected);
L = exp(-expected);
do {
double r;
k++;
r = (double)random()/(double)RAND_MAX;
p *= r;
} while ( p > L );
return k - 1;
}
double quaternion_modulus(struct quaternion q)
{
return sqrt(q.w*q.w + q.x*q.x + q.y*q.y + q.z*q.z);
}
struct quaternion normalise_quaternion(struct quaternion q)
{
double mod;
struct quaternion r;
mod = quaternion_modulus(q);
r.w = q.w / mod;
r.x = q.x / mod;
r.y = q.y / mod;
r.z = q.z / mod;
return r;
}
struct quaternion random_quaternion()
{
struct quaternion q;
q.w = 2.0*(double)random()/RAND_MAX - 1.0;
q.x = 2.0*(double)random()/RAND_MAX - 1.0;
q.y = 2.0*(double)random()/RAND_MAX - 1.0;
q.z = 2.0*(double)random()/RAND_MAX - 1.0;
q = normalise_quaternion(q);
return q;
}
int quaternion_valid(struct quaternion q)
{
double qmod;
qmod = quaternion_modulus(q);
/* Modulus = 1 to within some tolerance?
* Nasty allowance for floating-point accuracy follows... */
if ( (qmod > 0.999) && (qmod < 1.001) ) return 1;
return 0;
}
struct rvec quat_rot(struct rvec q, struct quaternion z)
{
struct rvec res;
double t01, t02, t03, t11, t12, t13, t22, t23, t33;
t01 = z.w*z.x;
t02 = z.w*z.y;
t03 = z.w*z.z;
t11 = z.x*z.x;
t12 = z.x*z.y;
t13 = z.x*z.z;
t22 = z.y*z.y;
t23 = z.y*z.z;
t33 = z.z*z.z;
res.u = (1.0 - 2.0 * (t22 + t33)) * q.u
+ (2.0 * (t12 + t03)) * q.v
+ (2.0 * (t13 - t02)) * q.w;
res.v = (2.0 * (t12 - t03)) * q.u
+ (1.0 - 2.0 * (t11 + t33)) * q.v
+ (2.0 * (t01 + t23)) * q.w;
res.w = (2.0 * (t02 + t13)) * q.u
+ (2.0 * (t23 - t01)) * q.v
+ (1.0 - 2.0 * (t11 + t22)) * q.w;
return res;
}
/* Return non-zero if c is in delims */
static int assplode_isdelim(const char c, const char *delims)
{
size_t i;
for ( i=0; i<strlen(delims); i++ ) {
if ( c == delims[i] ) return 1;
}
return 0;
}
static int assplode_extract(char ***pbits, int n, size_t n_captured,
size_t start, const char *a)
{
char **bits = *pbits;
bits = realloc(bits, sizeof(char *)*(n+1));
bits[n] = malloc(n_captured+1);
memcpy(bits[n], a+start, n_captured);
bits[n][n_captured] = '\0';
n++;
*pbits = bits;
return n;
}
/* Split the string 'a' using 'delims' as a zero-terminated list of
* deliminators.
* Store each segment in bits[0...n] where n is the number of segments and is
* the return value. pbits = &bits
* Each segment needs to be freed with free() when finished with.
* The array of bits also needs to be freed with free() when finished with,
* unless n=0 in which case bits==NULL
*/
int assplode(const char *a, const char *delims, char ***pbits,
AssplodeFlag flags)
{
size_t i, start, n_captured;
int n, last_was_delim;
char **bits;
n = 0;
i = 0;
n_captured = 0;
start = 0;
last_was_delim = 0;
bits = NULL;
while ( i < strlen(a) ) {
if ( assplode_isdelim(a[i], delims) ) {
if ( n_captured > 0 ) {
/* This is a deliminator after a sequence of
* non-deliminator chars */
n = assplode_extract(&bits, n, n_captured,
start, a);
}
n_captured = 0;
if ( (flags & ASSPLODE_DUPS) && last_was_delim ) {
n = assplode_extract(&bits, n, 0, start, a);
}
last_was_delim = 1;
} else {
if ( n_captured == 0 ) {
/* No characters currently found, so this is the
* start */
start = i;
}
n_captured++;
last_was_delim = 0;
}
i++;
}
/* Left over characters at the end? */
if ( n_captured > 0 ) {
n = assplode_extract(&bits, n, n_captured, start, a);
}
*pbits = bits;
return n;
}
struct _reflitemlist {
struct refl_item *items;
int n_items;
int max_items;
};
void clear_items(ReflItemList *items)
{
items->n_items = 0;
}
static void alloc_items(ReflItemList *items)
{
items->items = realloc(items->items,
items->max_items*sizeof(struct refl_item));
}
ReflItemList *new_items()
{
ReflItemList *new;
new = malloc(sizeof(ReflItemList));
new->max_items = 1024;
new->n_items = 0;
new->items = NULL;
alloc_items(new);
return new;
}
void delete_items(ReflItemList *items)
{
if ( items->items != NULL ) free(items->items);
free(items);
}
void add_item(ReflItemList *items,
signed int h, signed int k, signed int l)
{
if ( items->n_items == items->max_items ) {
items->max_items += 1024;
alloc_items(items);
}
items->items[items->n_items].h = h;
items->items[items->n_items].k = k;
items->items[items->n_items].l = l;
items->n_items++;
}
int find_item(ReflItemList *items,
signed int h, signed int k, signed int l)
{
int i;
for ( i=0; i<items->n_items; i++ ) {
if ( items->items[i].h != h ) continue;
if ( items->items[i].k != k ) continue;
if ( items->items[i].l != l ) continue;
return 1;
}
return 0;
}
struct refl_item *get_item(ReflItemList *items, int i)
{
if ( i >= items->n_items ) return NULL;
return &items->items[i];
}
int num_items(const ReflItemList *items)
{
return items->n_items;
}
unsigned int *items_to_counts(ReflItemList *items)
{
unsigned int *c;
int i;
c = new_list_count();
for ( i=0; i<num_items(items); i++ ) {
struct refl_item *r;
r = get_item(items, i);
set_count(c, r->h, r->k, r->l, 1);
}
return c;
}
|