1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/*
* pr_gradient_check.c
*
* Check gradients for post refinement
*
* (c) 2011 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include "../src/image.h"
#include "../src/cell.h"
#include "../src/geometry.h"
#include "../src/reflist.h"
#include "../src/post-refinement.h"
static void scan_partialities(RefList *reflections, RefList *compare,
int *valid, long double *vals[3], int idx)
{
int i;
Reflection *refl;
RefListIterator *iter;
i = 0;
for ( refl = first_refl(reflections, &iter);
refl != NULL;
refl = next_refl(refl, iter) )
{
signed int h, k, l;
Reflection *refl2;
double r1, r2, p;
int clamp_low, clamp_high;
get_indices(refl, &h, &k, &l);
refl2 = find_refl(compare, h, k, l);
if ( refl2 == NULL ) {
valid[i] = 0;
i++;
continue;
}
get_partial(refl2, &r1, &r2, &p, &clamp_low, &clamp_high);
if ( clamp_low && clamp_high ) {
if ( !within_tolerance(p, 1.0, 0.001) ) {
signed int h, k, l;
get_indices(refl, &h, &k, &l);
ERROR("%3i %3i %3i - double clamped but"
" partiality not close to 1.0 (%5.2f)\n",
h, k, l, p);
}
valid[i] = 0;
}
vals[idx][i] = p;
i++;
}
}
static UnitCell *new_shifted_cell(UnitCell *input, int k, double shift)
{
UnitCell *cell;
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
cell = cell_new();
cell_get_reciprocal(input, &asx, &asy, &asz, &bsx, &bsy, &bsz,
&csx, &csy, &csz);
switch ( k )
{
case REF_ASX : asx += shift; break;
case REF_ASY : asy += shift; break;
case REF_ASZ : asz += shift; break;
case REF_BSX : bsx += shift; break;
case REF_BSY : bsy += shift; break;
case REF_BSZ : bsz += shift; break;
case REF_CSX : csx += shift; break;
case REF_CSY : csy += shift; break;
case REF_CSZ : csz += shift; break;
}
cell_set_reciprocal(cell, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz);
return cell;
}
static void calc_either_side(struct image *image, double incr_val,
int *valid, long double *vals[3], int refine)
{
RefList *compare;
UnitCell *cell;
cell = new_shifted_cell(image->indexed_cell, refine, -incr_val);
compare = find_intersections(image, cell);
scan_partialities(image->reflections, compare, valid, vals, 0);
cell_free(cell);
cell = new_shifted_cell(image->indexed_cell, refine, +incr_val);
compare = find_intersections(image, cell);
scan_partialities(image->reflections, compare, valid, vals, 2);
cell_free(cell);
}
static int test_gradients(struct image *image, double incr_val, int refine,
const char *str)
{
Reflection *refl;
RefListIterator *iter;
long double *vals[3];
int i;
int *valid;
int nref;
int n_acc, n_valid;
FILE *fh;
image->reflections = find_intersections(image, image->indexed_cell);
nref = num_reflections(image->reflections);
if ( nref < 10 ) {
ERROR("Too few reflections found. Failing test by default.\n");
return -1;
}
vals[0] = malloc(nref*sizeof(long double));
vals[1] = malloc(nref*sizeof(long double));
vals[2] = malloc(nref*sizeof(long double));
if ( (vals[0] == NULL) || (vals[1] == NULL) || (vals[2] == NULL) ) {
ERROR("Couldn't allocate memory.\n");
return -1;
}
valid = malloc(nref*sizeof(int));
if ( valid == NULL ) {
ERROR("Couldn't allocate memory.\n");
return -1;
}
for ( i=0; i<nref; i++ ) valid[i] = 1;
scan_partialities(image->reflections, image->reflections,
valid, vals, 1);
calc_either_side(image, incr_val, valid, vals, refine);
fh = fopen("wrongness.dat", "a");
n_valid = nref; n_acc = 0;
i = 0;
for ( refl = first_refl(image->reflections, &iter);
refl != NULL;
refl = next_refl(refl, iter) )
{
long double grad1, grad2, grad;
double cgrad;
signed int h, k, l;
get_indices(refl, &h, &k, &l);
if ( !valid[i] ) {
n_valid--;
} else {
double r1, r2, p;
int cl, ch;
double tt, dstar;
dstar = 2.0 * resolution(image->indexed_cell, h, k, l),
tt = 2.0*asin(image->lambda/(2.0/dstar));
grad1 = (vals[1][i] - vals[0][i]) / incr_val;
grad2 = (vals[2][i] - vals[1][i]) / incr_val;
grad = (grad1 + grad2) / 2.0;
cgrad = gradient(image, refine, refl,
image->profile_radius);
get_partial(refl, &r1, &r2, &p, &cl, &ch);
if ( (fabs(cgrad) > 1e-9) &&
!within_tolerance(grad, cgrad, 10.0) )
{
STATUS("!- %s %3i %3i %3i"
" %10.2Le %10.2e ratio = %5.2Lf"
" %10.2e %10.2e\n",
str, h, k, l, grad, cgrad, cgrad/grad,
r1, r2);
} else {
//STATUS("OK %s %3i %3i %3i"
// " %10.2Le %10.2e ratio = %5.2Lf"
// " %10.2e %10.2e\n",
// str, h, k, l, grad, cgrad, cgrad/grad,
// r1, r2);
n_acc++;
}
fprintf(fh, "%e %f\n",
//resolution(image->indexed_cell, h, k, l),
//rad2deg(tt),
cgrad,
fabs((grad-cgrad)/grad));
}
i++;
}
STATUS("%s: %i out of %i valid gradients were accurate.\n",
str, n_acc, n_valid);
fclose(fh);
if ( n_acc != n_valid ) return 1;
return 0;
}
static void plot_graph(struct image *image, double incr_frac, int refine)
{
}
int main(int argc, char *argv[])
{
struct image image;
const double incr_frac = 1.0/1000000.0;
double incr_val;
double ax, ay, az;
double bx, by, bz;
double cx, cy, cz;
UnitCell *cell;
struct quaternion orientation;
int i;
image.width = 1024;
image.height = 1024;
image.det = simple_geometry(&image);
image.lambda = ph_en_to_lambda(eV_to_J(2000.0));
image.div = 0.009;
image.bw = 0.01;
image.m = 0.0;
image.profile_radius = 0.005e9;
image.i0_available = 0;
image.filename = malloc(256);
cell = cell_new_from_parameters(10.0e-9, 10.0e-9, 10.0e-9,
deg2rad(90.0),
deg2rad(90.0),
deg2rad(90.0));
for ( i=0; i<1; i++ ) {
orientation = random_quaternion();
image.indexed_cell = cell_rotate(cell, orientation);
cell_get_reciprocal(image.indexed_cell,
&ax, &ay, &az, &bx, &by,
&bz, &cx, &cy, &cz);
plot_graph(&image, incr_frac, REF_ASX);
incr_val = incr_frac * ax;
test_gradients(&image, incr_val, REF_ASX, "ax*");
incr_val = incr_frac * ay;
test_gradients(&image, incr_val, REF_ASY, "ay*");
incr_val = incr_frac * az;
test_gradients(&image, incr_val, REF_ASZ, "az*");
incr_val = incr_frac * bx;
test_gradients(&image, incr_val, REF_BSX, "bx*");
incr_val = incr_frac * by;
test_gradients(&image, incr_val, REF_BSY, "by*");
incr_val = incr_frac * bz;
test_gradients(&image, incr_val, REF_BSZ, "bz*");
incr_val = incr_frac * cx;
test_gradients(&image, incr_val, REF_CSX, "cx*");
incr_val = incr_frac * cy;
test_gradients(&image, incr_val, REF_CSY, "cy*");
incr_val = incr_frac * cz;
test_gradients(&image, incr_val, REF_CSZ, "cz*");
}
return 0;
}
|