1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
/*
* ring_check.c
*
* Check peak integration
*
* Copyright © 2012-2014 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2011-2014 Thomas White <taw@physics.org>
* 2012 Andrew Martin <andrew.martin@desy.de>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <image.h>
#include <utils.h>
#include "../libcrystfel/src/peaks.c"
/* The third integration check draws a Poisson background and checks that, on
* average, it gets subtracted by the background subtraction. */
static void third_integration_check(struct image *image, int n_trials,
int *fail, gsl_rng *rng)
{
double mean_intensity = 0.0;
double mean_bg = 0.0;
double mean_max = 0.0;
double mean_sigma = 0.0;
int i;
int fs, ss;
int nfail = 0;
for ( i=0; i<n_trials; i++ ) {
double intensity, sigma;
double fsp, ssp;
int r;
for ( fs=0; fs<image->width; fs++ ) {
for ( ss=0; ss<image->height; ss++ ) {
image->dp[0][fs+image->width*ss]
= poisson_noise(rng, 1000.0);
}
}
r = integrate_peak(image, 64, 64, &fsp, &ssp,
&intensity, &sigma, 10.0, 15.0, 17.0, NULL);
if ( r == 0 ) {
mean_intensity += intensity;
mean_sigma += sigma;
} else {
nfail++;
}
}
mean_intensity /= n_trials;
mean_bg /= n_trials;
mean_max /= n_trials;
mean_sigma /= n_trials;
STATUS(" Third check (mean values): intensity = %.2f, sigma = %.2f,"
" integration failed %i/%i times\n",
mean_intensity, mean_sigma, nfail, n_trials);
/* These values are always wrong, because the integration sucks */
// if ( fabs(mean_intensity) > 5.0 ) {
// ERROR("Mean intensity should be close to zero.\n");
// *fail = 1;
// }
// if ( fabs(mean_intensity) > mean_sigma/10.0 ) {
// ERROR("Mean intensity should be much less than mean sigma.\n");
// *fail = 1;
// }
}
/* The fourth integration check draws a Poisson background and draws a peak on
* top of it, then checks that the intensity of the peak is correctly recovered
* accounting for the background. */
static void fourth_integration_check(struct image *image, int n_trials,
int *fail, gsl_rng *rng)
{
double mean_intensity = 0.0;
double mean_sigma = 0.0;
int i;
int fs, ss;
int pcount = 0;
int nfail = 0;
for ( i=0; i<n_trials; i++ ) {
double intensity, sigma;
double fsp, ssp;
int r;
for ( fs=0; fs<image->width; fs++ ) {
for ( ss=0; ss<image->height; ss++ ) {
int idx = fs+image->width*ss;
image->dp[0][idx] = poisson_noise(rng, 1000.0);
if ( (fs-64)*(fs-64) + (ss-64)*(ss-64) > 9*9 ) continue;
image->dp[0][idx] += 1000.0;
pcount++;
}
}
r = integrate_peak(image, 64, 64, &fsp, &ssp,
&intensity, &sigma, 10.0, 15.0, 17.0, NULL);
if ( r == 0 ) {
mean_intensity += intensity;
mean_sigma += sigma;
} else {
nfail++;
}
}
mean_intensity /= n_trials;
mean_sigma /= n_trials;
pcount /= n_trials;
STATUS(" Fourth check (mean values): intensity = %.2f, sigma = %.2f,"
" integration failed %i/%i times\n",
mean_intensity, mean_sigma, nfail, n_trials);
if ( fabs(mean_intensity - pcount*1000.0) > 4000.0 ) {
ERROR("Mean intensity should be close to %f\n", pcount*1000.0);
*fail = 1;
}
if ( fabs(mean_intensity) < mean_sigma ) {
ERROR("Mean intensity should be greater than mean sigma.\n");
*fail = 1;
}
}
int main(int argc, char *argv[])
{
struct image image;
double fsp, ssp, intensity, sigma;
int fs, ss;
FILE *fh;
unsigned long int seed;
int fail = 0;
const int n_trials = 100;
int r, npx;
double ex;
gsl_rng *rng;
int *bad;
rng = gsl_rng_alloc(gsl_rng_mt19937);
fh = fopen("/dev/urandom", "r");
fread(&seed, sizeof(seed), 1, fh);
fclose(fh);
gsl_rng_set(rng, seed);
image.dp = malloc(sizeof(float *));
image.dp[0] = malloc(128*128*sizeof(float));
bad = calloc(128*128, sizeof(int));
image.bad = &bad;
image.beam = NULL;
image.lambda = ph_eV_to_lambda(1000.0);
image.det = calloc(1, sizeof(struct detector));
image.det->n_panels = 1;
image.det->panels = calloc(1, sizeof(struct panel));
image.det->panels[0].min_fs = 0;
image.det->panels[0].max_fs = 128;
image.det->panels[0].min_ss = 0;
image.det->panels[0].max_ss = 128;
image.det->panels[0].fsx = 1.0;
image.det->panels[0].fsy = 0.0;
image.det->panels[0].ssx = 0.0;
image.det->panels[0].ssy = 1.0;
image.det->panels[0].xfs = 1.0;
image.det->panels[0].yfs = 0.0;
image.det->panels[0].xss = 0.0;
image.det->panels[0].yss = 1.0;
image.det->panels[0].cnx = -64.0;
image.det->panels[0].cny = -64.0;
image.det->panels[0].clen = 1.0;
image.det->panels[0].res = 1.0;
image.det->panels[0].adu_per_eV = 1.0/1000.0; /* -> 1 adu per photon */
image.det->panels[0].max_adu = +INFINITY; /* No cutoff */
image.width = 128;
image.height = 128;
memset(image.dp[0], 0, 128*128*sizeof(float));
image.n_crystals = 0;
image.crystals = NULL;
/* First check: no intensity -> no peak, or very low intensity */
r = integrate_peak(&image, 64, 64, &fsp, &ssp, &intensity, &sigma,
10.0, 15.0, 17.0, NULL);
STATUS(" First check: integrate_peak() returned %i", r);
if ( r == 0 ) {
STATUS(", intensity = %.2f, sigma = %.2f\n", intensity, sigma);
if ( fabs(intensity) > 0.01 ) {
ERROR("Intensity should be very close to zero.\n");
fail = 1;
}
} else {
STATUS(" (correct)\n");
}
/* Second check: uniform peak gives correct I and low sigma(I) */
npx = 0;
for ( fs=0; fs<image.width; fs++ ) {
for ( ss=0; ss<image.height; ss++ ) {
if ( (fs-64)*(fs-64) + (ss-64)*(ss-64) > 9*9 ) continue;
image.dp[0][fs+image.width*ss] = 1000.0;
npx++;
}
}
r = integrate_peak(&image, 64, 64, &fsp, &ssp, &intensity, &sigma,
10.0, 15.0, 17.0, NULL);
if ( r ) {
ERROR(" Second check: integrate_peak() returned %i (wrong).\n",
r);
fail = 1;
} else {
STATUS(" Second check: intensity = %.2f, sigma = %.2f\n",
intensity, sigma);
ex = npx*1000.0;
if ( within_tolerance(ex, intensity, 1.0) == 0 ) {
ERROR("Intensity should be close to %f\n", ex);
fail = 1;
}
ex = sqrt(npx*1000.0);
if ( within_tolerance(ex, sigma, 1.0) == 0 ) {
ERROR("Sigma should be roughly %f.\n", ex);
fail = 1;
}
}
/* Third check: Poisson background should get mostly subtracted */
third_integration_check(&image, n_trials, &fail, rng);
/* Fourth check: peak on Poisson background */
fourth_integration_check(&image, n_trials, &fail, rng);
/* Fifth check: uniform peak on uniform background */
npx = 0;
for ( fs=0; fs<image.width; fs++ ) {
for ( ss=0; ss<image.height; ss++ ) {
image.dp[0][fs+image.width*ss] = 1000.0;
if ( (fs-64)*(fs-64) + (ss-64)*(ss-64) > 9*9 ) continue;
image.dp[0][fs+image.width*ss] += 1000.0;
npx++;
}
}
r = integrate_peak(&image, 64, 64, &fsp, &ssp, &intensity, &sigma,
10.0, 15.0, 17.0, NULL);
if ( r ) {
ERROR(" Fifth check: integrate_peak() returned %i (wrong).\n",
r);
fail = 1;
} else {
STATUS(" Fifth check: intensity = %.2f, sigma = %.2f\n",
intensity, sigma);
ex = npx*1000.0;
if ( within_tolerance(ex, intensity, 1.0) == 0 ) {
ERROR("Intensity should be close to %f\n", ex);
fail = 1;
}
ex = sqrt(npx*1000.0);
if ( within_tolerance(ex, sigma, 1.0) == 0 ) {
ERROR("Sigma should be roughly %f.\n", ex);
fail = 1;
}
}
free(image.beam);
free(image.det->panels);
free(image.det);
free(image.dp[0]);
free(image.dp);
gsl_rng_free(rng);
if ( fail ) return 1;
return 0;
}
|