/* * mapping.c * * 3D Mapping * * (c) 2007-2008 Thomas White * * dtr - Diffraction Tomography Reconstruction * */ #include #include #include #include #include "reflections.h" #include "control.h" #include "image.h" #include "displaywindow.h" #include "cache.h" #include "utils.h" void mapping_rotate(double x, double y, double z, double *ddx, double *ddy, double *ddz, double omega, double tilt) { double nx, ny, nz; double x_temp, y_temp, z_temp; /* First: rotate image clockwise until tilt axis is aligned horizontally. */ nx = x*cos(omega) + y*sin(omega); ny = -x*sin(omega) + y*cos(omega); nz = z; /* Now, tilt about the x-axis ANTICLOCKWISE around +x, i.e. the "wrong" way. This is because the crystal is rotated in the experiment, not the Ewald sphere. */ x_temp = nx; y_temp = ny; z_temp = nz; nx = x_temp; ny = cos(tilt)*y_temp + sin(tilt)*z_temp; nz = -sin(tilt)*y_temp + cos(tilt)*z_temp; /* Finally, reverse the omega rotation to restore the location of the image in 3D space */ x_temp = nx; y_temp = ny; z_temp = nz; nx = x_temp*cos(-omega) + y_temp*sin(-omega); ny = -x_temp*sin(-omega) + y_temp*cos(-omega); nz = z_temp; *ddx = nx; *ddy = ny; *ddz = nz; } int mapping_map_to_space(ImageFeature *refl, double *ddx, double *ddy, double *ddz, double *twotheta) { /* "Input" space */ double d, x, y; ImageRecord *imagerecord; /* Angular description of reflection */ double theta, psi, k; /* Reciprocal space */ double tilt; double omega; double x_temp, y_temp, z_temp; imagerecord = refl->parent; x = refl->x - imagerecord->x_centre; y = refl->y - imagerecord->y_centre; tilt = imagerecord->tilt; omega = imagerecord->omega; k = 1/imagerecord->lambda; /* Calculate an angular description of the reflection */ if ( imagerecord->fmode == FORMULATION_CLEN ) { x /= imagerecord->resolution; y /= imagerecord->resolution; /* Convert pixels to metres */ d = sqrt((x*x) + (y*y)); theta = atan2(d, imagerecord->camera_len); } else if (imagerecord->fmode == FORMULATION_PIXELSIZE ) { x *= imagerecord->pixel_size; y *= imagerecord->pixel_size; /* Convert pixels to metres^-1 */ d = sqrt((x*x) + (y*y)); theta = atan2(d, k); } else { fprintf(stderr, "Unrecognised formulation mode in mapping_map_to_space.\n"); return -1; } psi = atan2(y, x); x_temp = k*sin(theta)*cos(psi); y_temp = k*sin(theta)*sin(psi); z_temp = k - k*cos(theta); mapping_rotate(x_temp, y_temp, z_temp, ddx, ddy, ddz, omega, tilt); *twotheta = theta; /* Radians. I've used the "wrong" nomenclature above */ return 0; } int mapping_scale(ImageFeature *refl, double *ddx, double *ddy) { double x, y; ImageRecord *imagerecord; double k; imagerecord = refl->parent; x = refl->x - imagerecord->x_centre; y = refl->y - imagerecord->y_centre; k = 1/imagerecord->lambda; if ( imagerecord->fmode == FORMULATION_CLEN ) { x /= imagerecord->resolution; y /= imagerecord->resolution; /* Convert pixels to metres */ *ddx = x * k / imagerecord->camera_len; *ddy = y * k / imagerecord->camera_len; } else if (imagerecord->fmode == FORMULATION_PIXELSIZE ) { *ddx = x * imagerecord->pixel_size; *ddy = y * imagerecord->pixel_size; /* Convert pixels to metres^-1 */ } else { fprintf(stderr, "Unrecognised formulation mode in mapping_scale.\n"); return -1; } return 0; } /* Return the length of a 1 nm^-1 scale bar in the given image (in pixels) * Result only strictly valid at the centre of the image */ double mapping_scale_bar_length(ImageRecord *image) { switch ( image->fmode ) { case FORMULATION_PIXELSIZE : return 1.0e9/image->pixel_size; case FORMULATION_CLEN : return 1.0e9*image->resolution*image->camera_len*image->lambda; default : fprintf(stderr, "Unrecognised formulation mode in mapping_scale_bar_length.\n"); } return 0.0; } void mapping_map_features(ControlContext *ctx) { int i; /* Create reflection list for measured reflections */ if ( ctx->reflectionlist ) reflectionlist_free(ctx->reflectionlist); ctx->reflectionlist = reflectionlist_new(); printf("MP: Mapping to 3D..."); fflush(stdout); for ( i=0; iimages->n_images; i++ ) { int j; /* Iterate over the features in this image */ for ( j=0; jimages->images[i].features->n_features; j++ ) { double nx, ny, nz, twotheta; if ( !mapping_map_to_space(&ctx->images->images[i].features->features[j], &nx, &ny, &nz, &twotheta) ) { reflection_add(ctx->reflectionlist, nx, ny, nz, ctx->images->images[i].features->features[j].intensity, REFLECTION_NORMAL); } else { printf("Couldn't map\n"); } } } printf("done.\n"); } void mapping_adjust_axis(ControlContext *ctx, double offset) { int i; for ( i=0; iimages->n_images; i++ ) { printf("Image #%3i: old omega=%f deg, new omega=%f deg\n", i, rad2deg(ctx->images->images[i].omega), rad2deg(ctx->images->images[i].omega+offset)); ctx->images->images[i].omega += offset; } mapping_map_features(ctx); if ( ctx->dw ) { displaywindow_update_imagestack(ctx->dw); displaywindow_update(ctx->dw); } }