aboutsummaryrefslogtreecommitdiff
path: root/src/intensities.c
blob: 3c1967d912bc59050c57c264889bce8d71a85c50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*
 * intensities.c
 *
 * Extract integrated intensities by relrod estimation
 *
 * (c) 2007-2009 Thomas White <taw27@cam.ac.uk>
 *
 *  dtr - Diffraction Tomography Reconstruction
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "control.h"
#include "reflections.h"
#include "image.h"
#include "reproject.h"
#include "displaywindow.h"
#include "utils.h"
#include "basis.h"

/* Extract integrated reflection intensities by estimating the spike function
 * based on the observed intensity and the calculated excitation error from
 * the lattice refinement.  Easy.	*/
void intensities_extract(ControlContext *ctx)
{
	int i, j;
	int n_meas, n_dupl, n_notf;
	double max;
	Reflection *reflection;

	/* Free previous analysis if required */
	if ( ctx->integrated != NULL ) {
		reflectionlist_free(ctx->integrated);
	}
	ctx->integrated = reflectionlist_new();

	n_meas = 0;
	n_dupl = 0;
	n_notf = 0;
	max = 0;
	for ( i=0; i<ctx->images->n_images; i++ ) {

		ImageRecord *image;

		image = &ctx->images->images[i];
		if ( image->rflist == NULL )
			image->rflist = reproject_get_reflections(image,
							ctx->cell_lattice, ctx);

		for ( j=0; j<image->rflist->n_features; j++ ) {

			ImageFeature *feature;
			signed int h, k, l;

			feature = &image->rflist->features[j];

			h = feature->reflection->h;
			k = feature->reflection->k;
			l = feature->reflection->l;

			if ( feature->partner != NULL ) {

				if ( (h!=0) || (k!=0) || (l!=0) ) {

					double intensity;
					Reflection *ref;

					intensity = feature->partner->intensity;

					ref = reflectionlist_find(
						      ctx->integrated, h, k, l);

					if ( ref == NULL ) {

						Reflection *new;

						new = reflection_add(
							ctx->integrated,
							feature->reflection->x,
							feature->reflection->y,
							feature->reflection->z,
							intensity,
							REFLECTION_GENERATED);

						new->h = h;
						new->k = k;
						new->l = l;

						if ( intensity > max )
							max = intensity;

						n_meas++;

					} else {

						if ( intensity > ref->intensity ) {

							ref->x = feature->reflection->x;
							ref->y = feature->reflection->y;
							ref->z = feature->reflection->z;
							ref->intensity = intensity;

						}

						n_dupl++;

					}

				}

			} else {
				//printf("IN: %3i %3i %3i not found\n", h, k, l);
				n_notf++;
			}

		}

	}

	/* Normalise all reflections to the most intense reflection */
	reflection = ctx->integrated->reflections;
	while ( reflection ) {
		reflection->intensity /= max;
		reflection = reflection->next;
	}

	printf("IN: %5i intensities measured\n", n_meas);
	printf("IN: %5i duplicated measurements\n", n_dupl);
	printf("IN: %5i predicted reflections not found\n", n_notf);
}

static int intensities_do_save(ReflectionList *integrated, Basis *cell,
				const char *filename)
{
	FILE *fh;
	Reflection *reflection;
	UnitCell rcell;

	fh = fopen(filename, "w");

	rcell = basis_get_cell(cell);
	fprintf(fh, "a %12.8f\n", rcell.a*1e9);
	fprintf(fh, "b %12.8f\n", rcell.b*1e9);
	fprintf(fh, "c %12.8f\n", rcell.c*1e9);
	fprintf(fh, "alpha %12.8f\n", rad2deg(rcell.alpha));
	fprintf(fh, "beta %12.8f\n", rad2deg(rcell.beta));
	fprintf(fh, "gamma %12.8f\n", rad2deg(rcell.gamma));

	reflection = integrated->reflections;
	while ( reflection ) {
		fprintf(fh, "%3i %3i %3i %12.8f\n",
			reflection->h, reflection->k, reflection->l,
			reflection->intensity);
		reflection = reflection->next;
	}
	fclose(fh);

	return 0;
}

static gint intensities_save_response(GtkWidget *widget, gint response,
					ControlContext *ctx)
{
	if ( response == GTK_RESPONSE_ACCEPT ) {
		char *filename;
		filename = gtk_file_chooser_get_filename(
						GTK_FILE_CHOOSER(widget));
		if ( intensities_do_save(ctx->integrated,
						ctx->cell, filename) ) {
			displaywindow_error("Failed to save cache file.",
						ctx->dw);
		}
		g_free(filename);
	}

	gtk_widget_destroy(widget);

	return 0;
}

void intensities_save(ControlContext *ctx)
{
	GtkWidget *save;

	save = gtk_file_chooser_dialog_new("Save Reflections to File",
					GTK_WINDOW(ctx->dw->window),
					GTK_FILE_CHOOSER_ACTION_SAVE,
					GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
					GTK_STOCK_SAVE, GTK_RESPONSE_ACCEPT,
					NULL);
	g_signal_connect(G_OBJECT(save), "response",
				G_CALLBACK(intensities_save_response), ctx);
	gtk_widget_show_all(save);
}