aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGreg Kroah-Hartman <gregkh@suse.de>2008-03-21 14:12:51 -0700
committerGreg Kroah-Hartman <gregkh@suse.de>2008-10-10 15:31:08 -0700
commitc0f005888c6663898a040cd922947dd8caa55160 (patch)
treeca3ffd7ccc4bdf7df905d687f2da1be56cf1ae80
parentcff338a9bd9d1acd6067d3ec93e846830e0b5974 (diff)
Staging: add me4000 pci data collection driver
Originally written by Guenter Gebhardt <g.gebhardt@meilhaus.de> TODO: - checkpatch.pl cleanups - sparse cleanups - possible /proc interaction cleanups - more info needed for Kconfig entry - real device id? - module parameter cleanup Cc: Wolfgang Beiter <w.beiter@aon.at> Cc: Guenter Gebhardt <g.gebhardt@meilhaus.de> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
-rw-r--r--drivers/staging/Kconfig2
-rw-r--r--drivers/staging/Makefile1
-rw-r--r--drivers/staging/me4000/Kconfig10
-rw-r--r--drivers/staging/me4000/Makefile1
-rw-r--r--drivers/staging/me4000/README13
-rw-r--r--drivers/staging/me4000/me4000.c6133
-rw-r--r--drivers/staging/me4000/me4000.h954
7 files changed, 7114 insertions, 0 deletions
diff --git a/drivers/staging/Kconfig b/drivers/staging/Kconfig
index 6da76622191..56c73bcf477 100644
--- a/drivers/staging/Kconfig
+++ b/drivers/staging/Kconfig
@@ -29,4 +29,6 @@ source "drivers/staging/slicoss/Kconfig"
source "drivers/staging/sxg/Kconfig"
+source "drivers/staging/me4000/Kconfig"
+
endif # STAGING
diff --git a/drivers/staging/Makefile b/drivers/staging/Makefile
index cd6d6a52751..97df19be52d 100644
--- a/drivers/staging/Makefile
+++ b/drivers/staging/Makefile
@@ -3,3 +3,4 @@
obj-$(CONFIG_ET131X) += et131x/
obj-$(CONFIG_SLICOSS) += slicoss/
obj-$(CONFIG_SXG) += sxg/
+obj-$(CONFIG_ME4000) += me4000/
diff --git a/drivers/staging/me4000/Kconfig b/drivers/staging/me4000/Kconfig
new file mode 100644
index 00000000000..5e6c9de1f11
--- /dev/null
+++ b/drivers/staging/me4000/Kconfig
@@ -0,0 +1,10 @@
+config ME4000
+ tristate "Meilhaus ME-4000 support"
+ default n
+ depends on PCI
+ help
+ This driver supports the Meilhaus ME-4000 family of boards
+ that do data collection and multipurpose I/O.
+
+ To compile this driver as a module, choose M here: the module
+ will be called me4000.
diff --git a/drivers/staging/me4000/Makefile b/drivers/staging/me4000/Makefile
new file mode 100644
index 00000000000..74487cd7bec
--- /dev/null
+++ b/drivers/staging/me4000/Makefile
@@ -0,0 +1 @@
+obj-$(CONFIG_ME4000) += me4000.o
diff --git a/drivers/staging/me4000/README b/drivers/staging/me4000/README
new file mode 100644
index 00000000000..bbb83863220
--- /dev/null
+++ b/drivers/staging/me4000/README
@@ -0,0 +1,13 @@
+
+TODO:
+ - checkpatch.pl cleanups
+ - sparse cleanups
+ - possible /proc interaction cleanups
+ - more info needed for Kconfig entry
+ - real device id?
+ - module parameter cleanup
+
+Please send patches to Greg Kroah-Hartman <gregkh@suse.de>
+and Cc: Wolfgang Beiter <w.beiter@aon.at> and
+Guenter Gebhardt <g.gebhardt@meilhaus.de>
+
diff --git a/drivers/staging/me4000/me4000.c b/drivers/staging/me4000/me4000.c
new file mode 100644
index 00000000000..862dd7ffb5c
--- /dev/null
+++ b/drivers/staging/me4000/me4000.c
@@ -0,0 +1,6133 @@
+/* Device driver for Meilhaus ME-4000 board family.
+ * ================================================
+ *
+ * Copyright (C) 2003 Meilhaus Electronic GmbH (support@meilhaus.de)
+ *
+ * This file is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * Author: Guenter Gebhardt <g.gebhardt@meilhaus.de>
+ */
+
+#include <linux/module.h>
+#include <linux/fs.h>
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <asm/io.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+#include <linux/errno.h>
+#include <linux/delay.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/unistd.h>
+#include <linux/list.h>
+#include <linux/proc_fs.h>
+
+#include <linux/poll.h>
+#include <linux/vmalloc.h>
+#include <asm/pgtable.h>
+#include <asm/uaccess.h>
+#include <linux/types.h>
+
+#include <linux/slab.h>
+
+/* Include-File for the Meilhaus ME-4000 I/O board */
+#include "me4000.h"
+#include "me4000_firmware.h"
+#include "me4610_firmware.h"
+
+/* Administrative stuff for modinfo */
+MODULE_AUTHOR("Guenter Gebhardt <g.gebhardt@meilhaus.de>");
+MODULE_DESCRIPTION
+ ("Device Driver Module for Meilhaus ME-4000 boards version 1.0.5");
+MODULE_SUPPORTED_DEVICE("Meilhaus ME-4000 Multi I/O boards");
+MODULE_LICENSE("GPL");
+
+/* Board specific data are kept in a global list */
+LIST_HEAD(me4000_board_info_list);
+
+/* Major Device Numbers. 0 means to get it automatically from the System */
+static int me4000_ao_major_driver_no = 0;
+static int me4000_ai_major_driver_no = 0;
+static int me4000_dio_major_driver_no = 0;
+static int me4000_cnt_major_driver_no = 0;
+static int me4000_ext_int_major_driver_no = 0;
+
+/* Let the user specify a custom major driver number */
+module_param(me4000_ao_major_driver_no, int, 0);
+MODULE_PARM_DESC(me4000_ao_major_driver_no,
+ "Major driver number for analog output (default 0)");
+
+module_param(me4000_ai_major_driver_no, int, 0);
+MODULE_PARM_DESC(me4000_ai_major_driver_no,
+ "Major driver number for analog input (default 0)");
+
+module_param(me4000_dio_major_driver_no, int, 0);
+MODULE_PARM_DESC(me4000_dio_major_driver_no,
+ "Major driver number digital I/O (default 0)");
+
+module_param(me4000_cnt_major_driver_no, int, 0);
+MODULE_PARM_DESC(me4000_cnt_major_driver_no,
+ "Major driver number for counter (default 0)");
+
+module_param(me4000_ext_int_major_driver_no, int, 0);
+MODULE_PARM_DESC(me4000_ext_int_major_driver_no,
+ "Major driver number for external interrupt (default 0)");
+
+/*-----------------------------------------------------------------------------
+ Module stuff
+ ---------------------------------------------------------------------------*/
+int init_module(void);
+void cleanup_module(void);
+
+/*-----------------------------------------------------------------------------
+ Board detection and initialization
+ ---------------------------------------------------------------------------*/
+static int me4000_probe(struct pci_dev *dev, const struct pci_device_id *id);
+static int me4000_xilinx_download(me4000_info_t *);
+static int me4000_reset_board(me4000_info_t *);
+
+static void clear_board_info_list(void);
+static int get_registers(struct pci_dev *dev, me4000_info_t * info);
+static int init_board_info(struct pci_dev *dev, me4000_info_t * board_info);
+static int alloc_ao_contexts(me4000_info_t * info);
+static void release_ao_contexts(me4000_info_t * board_info);
+static int alloc_ai_context(me4000_info_t * info);
+static int alloc_dio_context(me4000_info_t * info);
+static int alloc_cnt_context(me4000_info_t * info);
+static int alloc_ext_int_context(me4000_info_t * info);
+
+/*-----------------------------------------------------------------------------
+ Stuff used by all device parts
+ ---------------------------------------------------------------------------*/
+static int me4000_open(struct inode *, struct file *);
+static int me4000_release(struct inode *, struct file *);
+
+static int me4000_get_user_info(me4000_user_info_t *,
+ me4000_info_t * board_info);
+static int me4000_read_procmem(char *, char **, off_t, int, int *, void *);
+
+/*-----------------------------------------------------------------------------
+ Analog output stuff
+ ---------------------------------------------------------------------------*/
+static ssize_t me4000_ao_write_sing(struct file *, const char *, size_t,
+ loff_t *);
+static ssize_t me4000_ao_write_wrap(struct file *, const char *, size_t,
+ loff_t *);
+static ssize_t me4000_ao_write_cont(struct file *, const char *, size_t,
+ loff_t *);
+
+static int me4000_ao_ioctl_sing(struct inode *, struct file *, unsigned int,
+ unsigned long);
+static int me4000_ao_ioctl_wrap(struct inode *, struct file *, unsigned int,
+ unsigned long);
+static int me4000_ao_ioctl_cont(struct inode *, struct file *, unsigned int,
+ unsigned long);
+
+static unsigned int me4000_ao_poll_cont(struct file *, poll_table *);
+static int me4000_ao_fsync_cont(struct file *, struct dentry *, int);
+
+static int me4000_ao_start(unsigned long *, me4000_ao_context_t *);
+static int me4000_ao_stop(me4000_ao_context_t *);
+static int me4000_ao_immediate_stop(me4000_ao_context_t *);
+static int me4000_ao_timer_set_divisor(u32 *, me4000_ao_context_t *);
+static int me4000_ao_preload(me4000_ao_context_t *);
+static int me4000_ao_preload_update(me4000_ao_context_t *);
+static int me4000_ao_ex_trig_set_edge(int *, me4000_ao_context_t *);
+static int me4000_ao_ex_trig_enable(me4000_ao_context_t *);
+static int me4000_ao_ex_trig_disable(me4000_ao_context_t *);
+static int me4000_ao_prepare(me4000_ao_context_t * ao_info);
+static int me4000_ao_reset(me4000_ao_context_t * ao_info);
+static int me4000_ao_enable_do(me4000_ao_context_t *);
+static int me4000_ao_disable_do(me4000_ao_context_t *);
+static int me4000_ao_fsm_state(int *, me4000_ao_context_t *);
+
+static int me4000_ao_simultaneous_ex_trig(me4000_ao_context_t * ao_context);
+static int me4000_ao_simultaneous_sw(me4000_ao_context_t * ao_context);
+static int me4000_ao_simultaneous_disable(me4000_ao_context_t * ao_context);
+static int me4000_ao_simultaneous_update(me4000_ao_channel_list_t * channels,
+ me4000_ao_context_t * ao_context);
+
+static int me4000_ao_synchronous_ex_trig(me4000_ao_context_t * ao_context);
+static int me4000_ao_synchronous_sw(me4000_ao_context_t * ao_context);
+static int me4000_ao_synchronous_disable(me4000_ao_context_t * ao_context);
+
+static int me4000_ao_ex_trig_timeout(unsigned long *arg,
+ me4000_ao_context_t * ao_context);
+static int me4000_ao_get_free_buffer(unsigned long *arg,
+ me4000_ao_context_t * ao_context);
+
+/*-----------------------------------------------------------------------------
+ Analog input stuff
+ ---------------------------------------------------------------------------*/
+static int me4000_ai_single(me4000_ai_single_t *, me4000_ai_context_t *);
+static int me4000_ai_ioctl_sing(struct inode *, struct file *, unsigned int,
+ unsigned long);
+
+static ssize_t me4000_ai_read(struct file *, char *, size_t, loff_t *);
+static int me4000_ai_ioctl_sw(struct inode *, struct file *, unsigned int,
+ unsigned long);
+static unsigned int me4000_ai_poll(struct file *, poll_table *);
+static int me4000_ai_fasync(int fd, struct file *file_p, int mode);
+
+static int me4000_ai_ioctl_ext(struct inode *, struct file *, unsigned int,
+ unsigned long);
+
+static int me4000_ai_prepare(me4000_ai_context_t * ai_context);
+static int me4000_ai_reset(me4000_ai_context_t * ai_context);
+static int me4000_ai_config(me4000_ai_config_t *, me4000_ai_context_t *);
+static int me4000_ai_start(me4000_ai_context_t *);
+static int me4000_ai_start_ex(unsigned long *, me4000_ai_context_t *);
+static int me4000_ai_stop(me4000_ai_context_t *);
+static int me4000_ai_immediate_stop(me4000_ai_context_t *);
+static int me4000_ai_ex_trig_enable(me4000_ai_context_t *);
+static int me4000_ai_ex_trig_disable(me4000_ai_context_t *);
+static int me4000_ai_ex_trig_setup(me4000_ai_trigger_t *,
+ me4000_ai_context_t *);
+static int me4000_ai_sc_setup(me4000_ai_sc_t * arg,
+ me4000_ai_context_t * ai_context);
+static int me4000_ai_offset_enable(me4000_ai_context_t * ai_context);
+static int me4000_ai_offset_disable(me4000_ai_context_t * ai_context);
+static int me4000_ai_fullscale_enable(me4000_ai_context_t * ai_context);
+static int me4000_ai_fullscale_disable(me4000_ai_context_t * ai_context);
+static int me4000_ai_fsm_state(int *arg, me4000_ai_context_t * ai_context);
+static int me4000_ai_get_count_buffer(unsigned long *arg,
+ me4000_ai_context_t * ai_context);
+
+/*-----------------------------------------------------------------------------
+ EEPROM stuff
+ ---------------------------------------------------------------------------*/
+static int me4000_eeprom_read(me4000_eeprom_t * arg,
+ me4000_ai_context_t * ai_context);
+static int me4000_eeprom_write(me4000_eeprom_t * arg,
+ me4000_ai_context_t * ai_context);
+static unsigned short eeprom_read_cmd(me4000_ai_context_t * ai_context,
+ unsigned long cmd, int length);
+static int eeprom_write_cmd(me4000_ai_context_t * ai_context, unsigned long cmd,
+ int length);
+
+/*-----------------------------------------------------------------------------
+ Digital I/O stuff
+ ---------------------------------------------------------------------------*/
+static int me4000_dio_ioctl(struct inode *, struct file *, unsigned int,
+ unsigned long);
+static int me4000_dio_config(me4000_dio_config_t *, me4000_dio_context_t *);
+static int me4000_dio_get_byte(me4000_dio_byte_t *, me4000_dio_context_t *);
+static int me4000_dio_set_byte(me4000_dio_byte_t *, me4000_dio_context_t *);
+static int me4000_dio_reset(me4000_dio_context_t *);
+
+/*-----------------------------------------------------------------------------
+ Counter stuff
+ ---------------------------------------------------------------------------*/
+static int me4000_cnt_ioctl(struct inode *, struct file *, unsigned int,
+ unsigned long);
+static int me4000_cnt_config(me4000_cnt_config_t *, me4000_cnt_context_t *);
+static int me4000_cnt_read(me4000_cnt_t *, me4000_cnt_context_t *);
+static int me4000_cnt_write(me4000_cnt_t *, me4000_cnt_context_t *);
+static int me4000_cnt_reset(me4000_cnt_context_t *);
+
+/*-----------------------------------------------------------------------------
+ External interrupt routines
+ ---------------------------------------------------------------------------*/
+static int me4000_ext_int_ioctl(struct inode *, struct file *, unsigned int,
+ unsigned long);
+static int me4000_ext_int_enable(me4000_ext_int_context_t *);
+static int me4000_ext_int_disable(me4000_ext_int_context_t *);
+static int me4000_ext_int_count(unsigned long *arg,
+ me4000_ext_int_context_t * ext_int_context);
+static int me4000_ext_int_fasync(int fd, struct file *file_ptr, int mode);
+
+/*-----------------------------------------------------------------------------
+ The interrupt service routines
+ ---------------------------------------------------------------------------*/
+static irqreturn_t me4000_ao_isr(int, void *);
+static irqreturn_t me4000_ai_isr(int, void *);
+static irqreturn_t me4000_ext_int_isr(int, void *);
+
+/*-----------------------------------------------------------------------------
+ Inline functions
+ ---------------------------------------------------------------------------*/
+static int inline me4000_buf_count(me4000_circ_buf_t, int);
+static int inline me4000_buf_space(me4000_circ_buf_t, int);
+static int inline me4000_space_to_end(me4000_circ_buf_t, int);
+static int inline me4000_values_to_end(me4000_circ_buf_t, int);
+
+static void inline me4000_outb(unsigned char value, unsigned long port);
+static void inline me4000_outl(unsigned long value, unsigned long port);
+static unsigned long inline me4000_inl(unsigned long port);
+static unsigned char inline me4000_inb(unsigned long port);
+
+static int me4000_buf_count(me4000_circ_buf_t buf, int size)
+{
+ return ((buf.head - buf.tail) & (size - 1));
+}
+
+static int me4000_buf_space(me4000_circ_buf_t buf, int size)
+{
+ return ((buf.tail - (buf.head + 1)) & (size - 1));
+}
+
+static int me4000_values_to_end(me4000_circ_buf_t buf, int size)
+{
+ int end;
+ int n;
+ end = size - buf.tail;
+ n = (buf.head + end) & (size - 1);
+ return (n < end) ? n : end;
+}
+
+static int me4000_space_to_end(me4000_circ_buf_t buf, int size)
+{
+ int end;
+ int n;
+
+ end = size - 1 - buf.head;
+ n = (end + buf.tail) & (size - 1);
+ return (n <= end) ? n : (end + 1);
+}
+
+static void me4000_outb(unsigned char value, unsigned long port)
+{
+ PORT_PDEBUG("--> 0x%02X port 0x%04lX\n", value, port);
+ outb(value, port);
+}
+
+static void me4000_outl(unsigned long value, unsigned long port)
+{
+ PORT_PDEBUG("--> 0x%08lX port 0x%04lX\n", value, port);
+ outl(value, port);
+}
+
+static unsigned long me4000_inl(unsigned long port)
+{
+ unsigned long value;
+ value = inl(port);
+ PORT_PDEBUG("<-- 0x%08lX port 0x%04lX\n", value, port);
+ return value;
+}
+
+static unsigned char me4000_inb(unsigned long port)
+{
+ unsigned char value;
+ value = inb(port);
+ PORT_PDEBUG("<-- 0x%08X port 0x%04lX\n", value, port);
+ return value;
+}
+
+struct pci_driver me4000_driver = {
+ .name = ME4000_NAME,
+ .id_table = me4000_pci_table,
+ .probe = me4000_probe
+};
+
+static struct file_operations me4000_ao_fops_sing = {
+ owner:THIS_MODULE,
+ write:me4000_ao_write_sing,
+ ioctl:me4000_ao_ioctl_sing,
+ open:me4000_open,
+ release:me4000_release,
+};
+
+static struct file_operations me4000_ao_fops_wrap = {
+ owner:THIS_MODULE,
+ write:me4000_ao_write_wrap,
+ ioctl:me4000_ao_ioctl_wrap,
+ open:me4000_open,
+ release:me4000_release,
+};
+
+static struct file_operations me4000_ao_fops_cont = {
+ owner:THIS_MODULE,
+ write:me4000_ao_write_cont,
+ poll:me4000_ao_poll_cont,
+ ioctl:me4000_ao_ioctl_cont,
+ open:me4000_open,
+ release:me4000_release,
+ fsync:me4000_ao_fsync_cont,
+};
+
+static struct file_operations me4000_ai_fops_sing = {
+ owner:THIS_MODULE,
+ ioctl:me4000_ai_ioctl_sing,
+ open:me4000_open,
+ release:me4000_release,
+};
+
+static struct file_operations me4000_ai_fops_cont_sw = {
+ owner:THIS_MODULE,
+ read:me4000_ai_read,
+ poll:me4000_ai_poll,
+ ioctl:me4000_ai_ioctl_sw,
+ open:me4000_open,
+ release:me4000_release,
+ fasync:me4000_ai_fasync,
+};
+
+static struct file_operations me4000_ai_fops_cont_et = {
+ owner:THIS_MODULE,
+ read:me4000_ai_read,
+ poll:me4000_ai_poll,
+ ioctl:me4000_ai_ioctl_ext,
+ open:me4000_open,
+ release:me4000_release,
+};
+
+static struct file_operations me4000_ai_fops_cont_et_value = {
+ owner:THIS_MODULE,
+ read:me4000_ai_read,
+ poll:me4000_ai_poll,
+ ioctl:me4000_ai_ioctl_ext,
+ open:me4000_open,
+ release:me4000_release,
+};
+
+static struct file_operations me4000_ai_fops_cont_et_chanlist = {
+ owner:THIS_MODULE,
+ read:me4000_ai_read,
+ poll:me4000_ai_poll,
+ ioctl:me4000_ai_ioctl_ext,
+ open:me4000_open,
+ release:me4000_release,
+};
+
+static struct file_operations me4000_dio_fops = {
+ owner:THIS_MODULE,
+ ioctl:me4000_dio_ioctl,
+ open:me4000_open,
+ release:me4000_release,
+};
+
+static struct file_operations me4000_cnt_fops = {
+ owner:THIS_MODULE,
+ ioctl:me4000_cnt_ioctl,
+ open:me4000_open,
+ release:me4000_release,
+};
+
+static struct file_operations me4000_ext_int_fops = {
+ owner:THIS_MODULE,
+ ioctl:me4000_ext_int_ioctl,
+ open:me4000_open,
+ release:me4000_release,
+ fasync:me4000_ext_int_fasync,
+};
+
+static struct file_operations *me4000_ao_fops_array[] = {
+ &me4000_ao_fops_sing, // single operations
+ &me4000_ao_fops_wrap, // wraparound operations
+ &me4000_ao_fops_cont, // continous operations
+};
+
+static struct file_operations *me4000_ai_fops_array[] = {
+ &me4000_ai_fops_sing, // single operations
+ &me4000_ai_fops_cont_sw, // continuous operations with software start
+ &me4000_ai_fops_cont_et, // continous operations with external trigger
+ &me4000_ai_fops_cont_et_value, // sample values by external trigger
+ &me4000_ai_fops_cont_et_chanlist, // work through one channel list by external trigger
+};
+
+int __init me4000_init_module(void)
+{
+ int result = 0;
+
+ CALL_PDEBUG("init_module() is executed\n");
+
+ /* Register driver capabilities */
+ result = pci_register_driver(&me4000_driver);
+ PDEBUG("init_module():%d devices detected\n", result);
+ if (result < 0) {
+ printk(KERN_ERR "ME4000:init_module():Can't register driver\n");
+ goto INIT_ERROR_1;
+ }
+
+ /* Allocate major number for analog output */
+ result =
+ register_chrdev(me4000_ao_major_driver_no, ME4000_AO_NAME,
+ &me4000_ao_fops_sing);
+ if (result < 0) {
+ printk(KERN_ERR "ME4000:init_module():Can't get AO major no\n");
+ goto INIT_ERROR_2;
+ } else {
+ me4000_ao_major_driver_no = result;
+ }
+ PDEBUG("init_module():Major driver number for AO = %ld\n",
+ me4000_ao_major_driver_no);
+
+ /* Allocate major number for analog input */
+ result =
+ register_chrdev(me4000_ai_major_driver_no, ME4000_AI_NAME,
+ &me4000_ai_fops_sing);
+ if (result < 0) {
+ printk(KERN_ERR "ME4000:init_module():Can't get AI major no\n");
+ goto INIT_ERROR_3;
+ } else {
+ me4000_ai_major_driver_no = result;
+ }
+ PDEBUG("init_module():Major driver number for AI = %ld\n",
+ me4000_ai_major_driver_no);
+
+ /* Allocate major number for digital I/O */
+ result =
+ register_chrdev(me4000_dio_major_driver_no, ME4000_DIO_NAME,
+ &me4000_dio_fops);
+ if (result < 0) {
+ printk(KERN_ERR
+ "ME4000:init_module():Can't get DIO major no\n");
+ goto INIT_ERROR_4;
+ } else {
+ me4000_dio_major_driver_no = result;
+ }
+ PDEBUG("init_module():Major driver number for DIO = %ld\n",
+ me4000_dio_major_driver_no);
+
+ /* Allocate major number for counter */
+ result =
+ register_chrdev(me4000_cnt_major_driver_no, ME4000_CNT_NAME,
+ &me4000_cnt_fops);
+ if (result < 0) {
+ printk(KERN_ERR
+ "ME4000:init_module():Can't get CNT major no\n");
+ goto INIT_ERROR_5;
+ } else {
+ me4000_cnt_major_driver_no = result;
+ }
+ PDEBUG("init_module():Major driver number for CNT = %ld\n",
+ me4000_cnt_major_driver_no);
+
+ /* Allocate major number for external interrupt */
+ result =
+ register_chrdev(me4000_ext_int_major_driver_no, ME4000_EXT_INT_NAME,
+ &me4000_ext_int_fops);
+ if (result < 0) {
+ printk(KERN_ERR
+ "ME4000:init_module():Can't get major no for external interrupt\n");
+ goto INIT_ERROR_6;
+ } else {
+ me4000_ext_int_major_driver_no = result;
+ }
+ PDEBUG
+ ("init_module():Major driver number for external interrupt = %ld\n",
+ me4000_ext_int_major_driver_no);
+
+ /* Create the /proc/me4000 entry */
+ if (!create_proc_read_entry
+ ("me4000", 0, NULL, me4000_read_procmem, NULL)) {
+ result = -ENODEV;
+ printk(KERN_ERR
+ "ME4000:init_module():Can't create proc entry\n");
+ goto INIT_ERROR_7;
+ }
+
+ return 0;
+
+ INIT_ERROR_7:
+ unregister_chrdev(me4000_ext_int_major_driver_no, ME4000_EXT_INT_NAME);
+
+ INIT_ERROR_6:
+ unregister_chrdev(me4000_cnt_major_driver_no, ME4000_CNT_NAME);
+
+ INIT_ERROR_5:
+ unregister_chrdev(me4000_dio_major_driver_no, ME4000_DIO_NAME);
+
+ INIT_ERROR_4:
+ unregister_chrdev(me4000_ai_major_driver_no, ME4000_AI_NAME);
+
+ INIT_ERROR_3:
+ unregister_chrdev(me4000_ao_major_driver_no, ME4000_AO_NAME);
+
+ INIT_ERROR_2:
+ pci_unregister_driver(&me4000_driver);
+ clear_board_info_list();
+
+ INIT_ERROR_1:
+ return result;
+}
+
+module_init(me4000_init_module);
+
+static void clear_board_info_list(void)
+{
+ struct list_head *board_p;
+ struct list_head *dac_p;
+ me4000_info_t *board_info;
+ me4000_ao_context_t *ao_context;
+
+ /* Clear context lists */
+ for (board_p = me4000_board_info_list.next;
+ board_p != &me4000_board_info_list; board_p = board_p->next) {
+ board_info = list_entry(board_p, me4000_info_t, list);
+ /* Clear analog output context list */
+ while (!list_empty(&board_info->ao_context_list)) {
+ dac_p = board_info->ao_context_list.next;
+ ao_context =
+ list_entry(dac_p, me4000_ao_context_t, list);
+ me4000_ao_reset(ao_context);
+ free_irq(ao_context->irq, ao_context);
+ if (ao_context->circ_buf.buf)
+ kfree(ao_context->circ_buf.buf);
+ list_del(dac_p);
+ kfree(ao_context);
+ }
+
+ /* Clear analog input context */
+ if (board_info->ai_context->circ_buf.buf)
+ kfree(board_info->ai_context->circ_buf.buf);
+ kfree(board_info->ai_context);
+
+ /* Clear digital I/O context */
+ kfree(board_info->dio_context);
+
+ /* Clear counter context */
+ kfree(board_info->cnt_context);
+
+ /* Clear external interrupt context */
+ kfree(board_info->ext_int_context);
+ }
+
+ /* Clear the board info list */
+ while (!list_empty(&me4000_board_info_list)) {
+ board_p = me4000_board_info_list.next;
+ board_info = list_entry(board_p, me4000_info_t, list);
+ pci_release_regions(board_info->pci_dev_p);
+ list_del(board_p);
+ kfree(board_info);
+ }
+}
+
+static int get_registers(struct pci_dev *dev, me4000_info_t * board_info)
+{
+
+ /*--------------------------- plx regbase ---------------------------------*/
+
+ board_info->plx_regbase = pci_resource_start(dev, 1);
+ if (board_info->plx_regbase == 0) {
+ printk(KERN_ERR
+ "ME4000:get_registers():PCI base address 1 is not available\n");
+ return -ENODEV;
+ }
+ board_info->plx_regbase_size = pci_resource_len(dev, 1);
+
+ PDEBUG
+ ("get_registers():PLX configuration registers at address 0x%4lX [0x%4lX]\n",
+ board_info->plx_regbase, board_info->plx_regbase_size);
+
+ /*--------------------------- me4000 regbase ------------------------------*/
+
+ board_info->me4000_regbase = pci_resource_start(dev, 2);
+ if (board_info->me4000_regbase == 0) {
+ printk(KERN_ERR
+ "ME4000:get_registers():PCI base address 2 is not available\n");
+ return -ENODEV;
+ }
+ board_info->me4000_regbase_size = pci_resource_len(dev, 2);
+
+ PDEBUG("get_registers():ME4000 registers at address 0x%4lX [0x%4lX]\n",
+ board_info->me4000_regbase, board_info->me4000_regbase_size);
+
+ /*--------------------------- timer regbase ------------------------------*/
+
+ board_info->timer_regbase = pci_resource_start(dev, 3);
+ if (board_info->timer_regbase == 0) {
+ printk(KERN_ERR
+ "ME4000:get_registers():PCI base address 3 is not available\n");
+ return -ENODEV;
+ }
+ board_info->timer_regbase_size = pci_resource_len(dev, 3);
+
+ PDEBUG("get_registers():Timer registers at address 0x%4lX [0x%4lX]\n",
+ board_info->timer_regbase, board_info->timer_regbase_size);
+
+ /*--------------------------- program regbase ------------------------------*/
+
+ board_info->program_regbase = pci_resource_start(dev, 5);
+ if (board_info->program_regbase == 0) {
+ printk(KERN_ERR
+ "get_registers():ME4000:PCI base address 5 is not available\n");
+ return -ENODEV;
+ }
+ board_info->program_regbase_size = pci_resource_len(dev, 5);
+
+ PDEBUG("get_registers():Program registers at address 0x%4lX [0x%4lX]\n",
+ board_info->program_regbase, board_info->program_regbase_size);
+
+ return 0;
+}
+
+static int init_board_info(struct pci_dev *pci_dev_p,
+ me4000_info_t * board_info)
+{
+ int i;
+ int result;
+ struct list_head *board_p;
+ board_info->pci_dev_p = pci_dev_p;
+
+ for (i = 0; i < ME4000_BOARD_VERSIONS; i++) {
+ if (me4000_boards[i].device_id == pci_dev_p->device) {
+ board_info->board_p = &me4000_boards[i];
+ break;
+ }
+ }
+ if (i == ME4000_BOARD_VERSIONS) {
+ printk(KERN_ERR
+ "ME4000:init_board_info():Device ID not valid\n");
+ return -ENODEV;
+ }
+
+ /* Get the index of the board in the global list */
+ for (board_p = me4000_board_info_list.next, i = 0;
+ board_p != &me4000_board_info_list; board_p = board_p->next, i++) {
+ if (board_p == &board_info->list) {
+ board_info->board_count = i;
+ break;
+ }
+ }
+ if (board_p == &me4000_board_info_list) {
+ printk(KERN_ERR
+ "ME4000:init_board_info():Cannot get index of baord\n");
+ return -ENODEV;
+ }
+
+ /* Init list head for analog output contexts */
+ INIT_LIST_HEAD(&board_info->ao_context_list);
+
+ /* Init spin locks */
+ spin_lock_init(&board_info->preload_lock);
+ spin_lock_init(&board_info->ai_ctrl_lock);
+
+ /* Get the serial number */
+ result = pci_read_config_dword(pci_dev_p, 0x2C, &board_info->serial_no);
+ if (result != PCIBIOS_SUCCESSFUL) {
+ printk(KERN_WARNING
+ "ME4000:init_board_info: Can't get serial_no\n");
+ return result;
+ }
+ PDEBUG("init_board_info():serial_no = 0x%x\n", board_info->serial_no);
+
+ /* Get the hardware revision */
+ result =
+ pci_read_config_byte(pci_dev_p, 0x08, &board_info->hw_revision);
+ if (result != PCIBIOS_SUCCESSFUL) {
+ printk(KERN_WARNING
+ "ME4000:init_board_info():Can't get hw_revision\n");
+ return result;
+ }
+ PDEBUG("init_board_info():hw_revision = 0x%x\n",
+ board_info->hw_revision);
+
+ /* Get the vendor id */
+ board_info->vendor_id = pci_dev_p->vendor;
+ PDEBUG("init_board_info():vendor_id = 0x%x\n", board_info->vendor_id);
+
+ /* Get the device id */
+ board_info->device_id = pci_dev_p->device;
+ PDEBUG("init_board_info():device_id = 0x%x\n", board_info->device_id);
+
+ /* Get the pci device number */
+ board_info->pci_dev_no = PCI_FUNC(pci_dev_p->devfn);
+ PDEBUG("init_board_info():pci_func_no = 0x%x\n",
+ board_info->pci_func_no);
+
+ /* Get the pci slot number */
+ board_info->pci_dev_no = PCI_SLOT(pci_dev_p->devfn);
+ PDEBUG("init_board_info():pci_dev_no = 0x%x\n", board_info->pci_dev_no);
+
+ /* Get the pci bus number */
+ board_info->pci_bus_no = pci_dev_p->bus->number;
+ PDEBUG("init_board_info():pci_bus_no = 0x%x\n", board_info->pci_bus_no);
+
+ /* Get the irq assigned to the board */
+ board_info->irq = pci_dev_p->irq;
+ PDEBUG("init_board_info():irq = %d\n", board_info->irq);
+
+ return 0;
+}
+
+static int alloc_ao_contexts(me4000_info_t * info)
+{
+ int i;
+ int err;
+ me4000_ao_context_t *ao_context;
+
+ for (i = 0; i < info->board_p->ao.count; i++) {
+ ao_context = kmalloc(sizeof(me4000_ao_context_t), GFP_KERNEL);
+ if (!ao_context) {
+ printk(KERN_ERR
+ "alloc_ao_contexts():Can't get memory for ao context\n");
+ release_ao_contexts(info);
+ return -ENOMEM;
+ }
+ memset(ao_context, 0, sizeof(me4000_ao_context_t));
+
+ spin_lock_init(&ao_context->use_lock);
+ spin_lock_init(&ao_context->int_lock);
+ ao_context->irq = info->irq;
+ init_waitqueue_head(&ao_context->wait_queue);
+ ao_context->board_info = info;
+
+ if (info->board_p->ao.fifo_count) {
+ /* Allocate circular buffer */
+ ao_context->circ_buf.buf =
+ kmalloc(ME4000_AO_BUFFER_SIZE, GFP_KERNEL);
+ if (!ao_context->circ_buf.buf) {
+ printk(KERN_ERR
+ "alloc_ao_contexts():Can't get circular buffer\n");
+ release_ao_contexts(info);
+ return -ENOMEM;
+ }
+ memset(ao_context->circ_buf.buf, 0,
+ ME4000_AO_BUFFER_SIZE);
+
+ /* Clear the circular buffer */
+ ao_context->circ_buf.head = 0;
+ ao_context->circ_buf.tail = 0;
+ }
+
+ switch (i) {
+ case 0:
+ ao_context->ctrl_reg =
+ info->me4000_regbase + ME4000_AO_00_CTRL_REG;
+ ao_context->status_reg =
+ info->me4000_regbase + ME4000_AO_00_STATUS_REG;
+ ao_context->fifo_reg =
+ info->me4000_regbase + ME4000_AO_00_FIFO_REG;
+ ao_context->single_reg =
+ info->me4000_regbase + ME4000_AO_00_SINGLE_REG;
+ ao_context->timer_reg =
+ info->me4000_regbase + ME4000_AO_00_TIMER_REG;
+ ao_context->irq_status_reg =
+ info->me4000_regbase + ME4000_IRQ_STATUS_REG;
+ ao_context->preload_reg =
+ info->me4000_regbase + ME4000_AO_LOADSETREG_XX;
+ break;
+ case 1:
+ ao_context->ctrl_reg =
+ info->me4000_regbase + ME4000_AO_01_CTRL_REG;
+ ao_context->status_reg =
+ info->me4000_regbase + ME4000_AO_01_STATUS_REG;
+ ao_context->fifo_reg =
+ info->me4000_regbase + ME4000_AO_01_FIFO_REG;
+ ao_context->single_reg =
+ info->me4000_regbase + ME4000_AO_01_SINGLE_REG;
+ ao_context->timer_reg =
+ info->me4000_regbase + ME4000_AO_01_TIMER_REG;
+ ao_context->irq_status_reg =
+ info->me4000_regbase + ME4000_IRQ_STATUS_REG;
+ ao_context->preload_reg =
+ info->me4000_regbase + ME4000_AO_LOADSETREG_XX;
+ break;
+ case 2:
+ ao_context->ctrl_reg =
+ info->me4000_regbase + ME4000_AO_02_CTRL_REG;
+ ao_context->status_reg =
+ info->me4000_regbase + ME4000_AO_02_STATUS_REG;
+ ao_context->fifo_reg =
+ info->me4000_regbase + ME4000_AO_02_FIFO_REG;
+ ao_context->single_reg =
+ info->me4000_regbase + ME4000_AO_02_SINGLE_REG;
+ ao_context->timer_reg =
+ info->me4000_regbase + ME4000_AO_02_TIMER_REG;
+ ao_context->irq_status_reg =
+ info->me4000_regbase + ME4000_IRQ_STATUS_REG;
+ ao_context->preload_reg =
+ info->me4000_regbase + ME4000_AO_LOADSETREG_XX;
+ break;
+ case 3:
+ ao_context->ctrl_reg =
+ info->me4000_regbase + ME4000_AO_03_CTRL_REG;
+ ao_context->status_reg =
+ info->me4000_regbase + ME4000_AO_03_STATUS_REG;
+ ao_context->fifo_reg =
+ info->me4000_regbase + ME4000_AO_03_FIFO_REG;
+ ao_context->single_reg =
+ info->me4000_regbase + ME4000_AO_03_SINGLE_REG;
+ ao_context->timer_reg =
+ info->me4000_regbase + ME4000_AO_03_TIMER_REG;
+ ao_context->irq_status_reg =
+ info->me4000_regbase + ME4000_IRQ_STATUS_REG;
+ ao_context->preload_reg =
+ info->me4000_regbase + ME4000_AO_LOADSETREG_XX;
+ break;
+ default:
+ break;
+ }
+
+ if (info->board_p->ao.fifo_count) {
+ /* Request the interrupt line */
+ err =
+ request_irq(ao_context->irq, me4000_ao_isr,
+ IRQF_DISABLED | IRQF_SHARED,
+ ME4000_NAME, ao_context);
+ if (err) {
+ printk(KERN_ERR
+ "alloc_ao_contexts():Can't get interrupt line");
+ if (ao_context->circ_buf.buf)
+ kfree(ao_context->circ_buf.buf);
+ kfree(ao_context);
+ release_ao_contexts(info);
+ return -ENODEV;
+ }
+ }
+
+ list_add_tail(&ao_context->list, &info->ao_context_list);
+ ao_context->index = i;
+ }
+
+ return 0;
+}
+
+static void release_ao_contexts(me4000_info_t * board_info)
+{
+ struct list_head *dac_p;
+ me4000_ao_context_t *ao_context;
+
+ /* Clear analog output context list */
+ while (!list_empty(&board_info->ao_context_list)) {
+ dac_p = board_info->ao_context_list.next;
+ ao_context = list_entry(dac_p, me4000_ao_context_t, list);
+ free_irq(ao_context->irq, ao_context);
+ if (ao_context->circ_buf.buf)
+ kfree(ao_context->circ_buf.buf);
+ list_del(dac_p);
+ kfree(ao_context);
+ }
+}
+
+static int alloc_ai_context(me4000_info_t * info)
+{
+ me4000_ai_context_t *ai_context;
+
+ if (info->board_p->ai.count) {
+ ai_context = kmalloc(sizeof(me4000_ai_context_t), GFP_KERNEL);
+ if (!ai_context) {
+ printk(KERN_ERR
+ "ME4000:alloc_ai_context():Can't get memory for ai context\n");
+ return -ENOMEM;
+ }
+ memset(ai_context, 0, sizeof(me4000_ai_context_t));
+
+ info->ai_context = ai_context;
+
+ spin_lock_init(&ai_context->use_lock);
+ spin_lock_init(&ai_context->int_lock);
+ ai_context->number = 0;
+ ai_context->irq = info->irq;
+ init_waitqueue_head(&ai_context->wait_queue);
+ ai_context->board_info = info;
+
+ ai_context->ctrl_reg =
+ info->me4000_regbase + ME4000_AI_CTRL_REG;
+ ai_context->status_reg =
+ info->me4000_regbase + ME4000_AI_STATUS_REG;
+ ai_context->channel_list_reg =
+ info->me4000_regbase + ME4000_AI_CHANNEL_LIST_REG;
+ ai_context->data_reg =
+ info->me4000_regbase + ME4000_AI_DATA_REG;
+ ai_context->chan_timer_reg =
+ info->me4000_regbase + ME4000_AI_CHAN_TIMER_REG;
+ ai_context->chan_pre_timer_reg =
+ info->me4000_regbase + ME4000_AI_CHAN_PRE_TIMER_REG;
+ ai_context->scan_timer_low_reg =
+ info->me4000_regbase + ME4000_AI_SCAN_TIMER_LOW_REG;
+ ai_context->scan_timer_high_reg =
+ info->me4000_regbase + ME4000_AI_SCAN_TIMER_HIGH_REG;
+ ai_context->scan_pre_timer_low_reg =
+ info->me4000_regbase + ME4000_AI_SCAN_PRE_TIMER_LOW_REG;
+ ai_context->scan_pre_timer_high_reg =
+ info->me4000_regbase + ME4000_AI_SCAN_PRE_TIMER_HIGH_REG;
+ ai_context->start_reg =
+ info->me4000_regbase + ME4000_AI_START_REG;
+ ai_context->irq_status_reg =
+ info->me4000_regbase + ME4000_IRQ_STATUS_REG;
+ ai_context->sample_counter_reg =
+ info->me4000_regbase + ME4000_AI_SAMPLE_COUNTER_REG;
+ }
+
+ return 0;
+}
+
+static int alloc_dio_context(me4000_info_t * info)
+{
+ me4000_dio_context_t *dio_context;
+
+ if (info->board_p->dio.count) {
+ dio_context = kmalloc(sizeof(me4000_dio_context_t), GFP_KERNEL);
+ if (!dio_context) {
+ printk(KERN_ERR
+ "ME4000:alloc_dio_context():Can't get memory for dio context\n");
+ return -ENOMEM;
+ }
+ memset(dio_context, 0, sizeof(me4000_dio_context_t));
+
+ info->dio_context = dio_context;
+
+ spin_lock_init(&dio_context->use_lock);
+ dio_context->board_info = info;
+
+ dio_context->dio_count = info->board_p->dio.count;
+
+ dio_context->dir_reg =
+ info->me4000_regbase + ME4000_DIO_DIR_REG;
+ dio_context->ctrl_reg =
+ info->me4000_regbase + ME4000_DIO_CTRL_REG;
+ dio_context->port_0_reg =
+ info->me4000_regbase + ME4000_DIO_PORT_0_REG;
+ dio_context->port_1_reg =
+ info->me4000_regbase + ME4000_DIO_PORT_1_REG;
+ dio_context->port_2_reg =
+ info->me4000_regbase + ME4000_DIO_PORT_2_REG;
+ dio_context->port_3_reg =
+ info->me4000_regbase + ME4000_DIO_PORT_3_REG;
+ }
+
+ return 0;
+}
+
+static int alloc_cnt_context(me4000_info_t * info)
+{
+ me4000_cnt_context_t *cnt_context;
+
+ if (info->board_p->cnt.count) {
+ cnt_context = kmalloc(sizeof(me4000_cnt_context_t), GFP_KERNEL);
+ if (!cnt_context) {
+ printk(KERN_ERR
+ "ME4000:alloc_cnt_context():Can't get memory for cnt context\n");
+ return -ENOMEM;
+ }
+ memset(cnt_context, 0, sizeof(me4000_cnt_context_t));
+
+ info->cnt_context = cnt_context;
+
+ spin_lock_init(&cnt_context->use_lock);
+ cnt_context->board_info = info;
+
+ cnt_context->ctrl_reg =
+ info->timer_regbase + ME4000_CNT_CTRL_REG;
+ cnt_context->counter_0_reg =
+ info->timer_regbase + ME4000_CNT_COUNTER_0_REG;
+ cnt_context->counter_1_reg =
+ info->timer_regbase + ME4000_CNT_COUNTER_1_REG;
+ cnt_context->counter_2_reg =
+ info->timer_regbase + ME4000_CNT_COUNTER_2_REG;
+ }
+
+ return 0;
+}
+
+static int alloc_ext_int_context(me4000_info_t * info)
+{
+ me4000_ext_int_context_t *ext_int_context;
+
+ if (info->board_p->cnt.count) {
+ ext_int_context =
+ kmalloc(sizeof(me4000_ext_int_context_t), GFP_KERNEL);
+ if (!ext_int_context) {
+ printk(KERN_ERR
+ "ME4000:alloc_ext_int_context():Can't get memory for cnt context\n");
+ return -ENOMEM;
+ }
+ memset(ext_int_context, 0, sizeof(me4000_ext_int_context_t));
+
+ info->ext_int_context = ext_int_context;
+
+ spin_lock_init(&ext_int_context->use_lock);
+ ext_int_context->board_info = info;
+
+ ext_int_context->fasync_ptr = NULL;
+ ext_int_context->irq = info->irq;
+
+ ext_int_context->ctrl_reg =
+ info->me4000_regbase + ME4000_AI_CTRL_REG;
+ ext_int_context->irq_status_reg =
+ info->me4000_regbase + ME4000_IRQ_STATUS_REG;
+ }
+
+ return 0;
+}
+
+static int me4000_probe(struct pci_dev *dev, const struct pci_device_id *id)
+{
+ int result = 0;
+ me4000_info_t *board_info;
+
+ CALL_PDEBUG("me4000_probe() is executed\n");
+
+ /* Allocate structure for board context */
+ board_info = kmalloc(sizeof(me4000_info_t), GFP_KERNEL);
+ if (!board_info) {
+ printk(KERN_ERR
+ "ME4000:Can't get memory for board info structure\n");
+ result = -ENOMEM;
+ goto PROBE_ERROR_1;
+ }
+ memset(board_info, 0, sizeof(me4000_info_t));
+
+ /* Add to global linked list */
+ list_add_tail(&board_info->list, &me4000_board_info_list);
+
+ /* Get the PCI base registers */
+ result = get_registers(dev, board_info);
+ if (result) {
+ printk(KERN_ERR "me4000_probe():Cannot get registers\n");
+ goto PROBE_ERROR_2;
+ }
+
+ /* Enable the device */
+ result = pci_enable_device(dev);
+ if (result < 0) {
+ printk(KERN_ERR "me4000_probe():Cannot enable PCI device\n");
+ goto PROBE_ERROR_2;
+ }
+
+ /* Request the PCI register regions */
+ result = pci_request_regions(dev, ME4000_NAME);
+ if (result < 0) {
+ printk(KERN_ERR "me4000_probe():Cannot request I/O regions\n");
+ goto PROBE_ERROR_2;
+ }
+
+ /* Initialize board info */
+ result = init_board_info(dev, board_info);
+ if (result) {
+ printk(KERN_ERR "me4000_probe():Cannot init baord info\n");
+ goto PROBE_ERROR_3;
+ }
+
+ /* Download the xilinx firmware */
+ result = me4000_xilinx_download(board_info);
+ if (result) {
+ printk(KERN_ERR "me4000_probe:Can't download firmware\n");
+ goto PROBE_ERROR_3;
+ }
+
+ /* Make a hardware reset */
+ result = me4000_reset_board(board_info);
+ if (result) {
+ printk(KERN_ERR "me4000_probe:Can't reset board\n");
+ goto PROBE_ERROR_3;
+ }
+
+ /* Allocate analog output context structures */
+ result = alloc_ao_contexts(board_info);
+ if (result) {
+ printk(KERN_ERR "me4000_probe():Cannot allocate ao contexts\n");
+ goto PROBE_ERROR_3;
+ }
+
+ /* Allocate analog input context */
+ result = alloc_ai_context(board_info);
+ if (result) {
+ printk(KERN_ERR "me4000_probe():Cannot allocate ai context\n");
+ goto PROBE_ERROR_4;
+ }
+
+ /* Allocate digital I/O context */
+ result = alloc_dio_context(board_info);
+ if (result) {
+ printk(KERN_ERR "me4000_probe():Cannot allocate dio context\n");
+ goto PROBE_ERROR_5;
+ }
+
+ /* Allocate counter context */
+ result = alloc_cnt_context(board_info);
+ if (result) {
+ printk(KERN_ERR "me4000_probe():Cannot allocate cnt context\n");
+ goto PROBE_ERROR_6;
+ }
+
+ /* Allocate external interrupt context */
+ result = alloc_ext_int_context(board_info);
+ if (result) {
+ printk(KERN_ERR
+ "me4000_probe():Cannot allocate ext_int context\n");
+ goto PROBE_ERROR_7;
+ }
+
+ return 0;
+
+ PROBE_ERROR_7:
+ kfree(board_info->cnt_context);
+
+ PROBE_ERROR_6:
+ kfree(board_info->dio_context);
+
+ PROBE_ERROR_5:
+ kfree(board_info->ai_context);
+
+ PROBE_ERROR_4:
+ release_ao_contexts(board_info);
+
+ PROBE_ERROR_3:
+ pci_release_regions(dev);
+
+ PROBE_ERROR_2:
+ list_del(&board_info->list);
+ kfree(board_info);
+
+ PROBE_ERROR_1:
+ return result;
+}
+
+static int me4000_xilinx_download(me4000_info_t * info)
+{
+ int size = 0;
+ u32 value = 0;
+ int idx = 0;
+ unsigned char *firm;
+ wait_queue_head_t queue;
+
+ CALL_PDEBUG("me4000_xilinx_download() is executed\n");
+
+ init_waitqueue_head(&queue);
+
+ firm = (info->device_id == 0x4610) ? xilinx_firm_4610 : xilinx_firm;
+
+ /*
+ * Set PLX local interrupt 2 polarity to high.
+ * Interrupt is thrown by init pin of xilinx.
+ */
+ outl(0x10, info->plx_regbase + PLX_INTCSR);
+
+ /* Set /CS and /WRITE of the Xilinx */
+ value = inl(info->plx_regbase + PLX_ICR);
+ value |= 0x100;
+ outl(value, info->plx_regbase + PLX_ICR);
+
+ /* Init Xilinx with CS1 */
+ inb(info->program_regbase + 0xC8);
+
+ /* Wait until /INIT pin is set */
+ udelay(20);
+ if (!inl(info->plx_regbase + PLX_INTCSR) & 0x20) {
+ printk(KERN_ERR "me4000_xilinx_download():Can't init Xilinx\n");
+ return -EIO;
+ }
+
+ /* Reset /CS and /WRITE of the Xilinx */
+ value = inl(info->plx_regbase + PLX_ICR);
+ value &= ~0x100;
+ outl(value, info->plx_regbase + PLX_ICR);
+
+ /* Download Xilinx firmware */
+ size = (firm[0] << 24) + (firm[1] << 16) + (firm[2] << 8) + firm[3];
+ udelay(10);
+
+ for (idx = 0; idx < size; idx++) {
+ outb(firm[16 + idx], info->program_regbase);
+
+ udelay(10);
+
+ /* Check if BUSY flag is low */
+ if (inl(info->plx_regbase + PLX_ICR) & 0x20) {
+ printk(KERN_ERR
+ "me4000_xilinx_download():Xilinx is still busy (idx = %d)\n",
+ idx);
+ return -EIO;
+ }
+ }
+
+ PDEBUG("me4000_xilinx_download():%d bytes written\n", idx);
+
+ /* If done flag is high download was successful */
+ if (inl(info->plx_regbase + PLX_ICR) & 0x4) {
+ PDEBUG("me4000_xilinx_download():Done flag is set\n");
+ PDEBUG("me4000_xilinx_download():Download was successful\n");
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_xilinx_download():DONE flag is not set\n");
+ printk(KERN_ERR
+ "ME4000:me4000_xilinx_download():Download not succesful\n");
+ return -EIO;
+ }
+
+ /* Set /CS and /WRITE */
+ value = inl(info->plx_regbase + PLX_ICR);
+ value |= 0x100;
+ outl(value, info->plx_regbase + PLX_ICR);
+
+ return 0;
+}
+
+static int me4000_reset_board(me4000_info_t * info)
+{
+ unsigned long icr;
+
+ CALL_PDEBUG("me4000_reset_board() is executed\n");
+
+ /* Make a hardware reset */
+ icr = me4000_inl(info->plx_regbase + PLX_ICR);
+ icr |= 0x40000000;
+ me4000_outl(icr, info->plx_regbase + PLX_ICR);
+ icr &= ~0x40000000;
+ me4000_outl(icr, info->plx_regbase + PLX_ICR);
+
+ /* Set both stop bits in the analog input control register */
+ me4000_outl(ME4000_AI_CTRL_BIT_IMMEDIATE_STOP | ME4000_AI_CTRL_BIT_STOP,
+ info->me4000_regbase + ME4000_AI_CTRL_REG);
+
+ /* Set both stop bits in the analog output control register */
+ me4000_outl(ME4000_AO_CTRL_BIT_IMMEDIATE_STOP | ME4000_AO_CTRL_BIT_STOP,
+ info->me4000_regbase + ME4000_AO_00_CTRL_REG);
+ me4000_outl(ME4000_AO_CTRL_BIT_IMMEDIATE_STOP | ME4000_AO_CTRL_BIT_STOP,
+ info->me4000_regbase + ME4000_AO_01_CTRL_REG);
+ me4000_outl(ME4000_AO_CTRL_BIT_IMMEDIATE_STOP | ME4000_AO_CTRL_BIT_STOP,
+ info->me4000_regbase + ME4000_AO_02_CTRL_REG);
+ me4000_outl(ME4000_AO_CTRL_BIT_IMMEDIATE_STOP | ME4000_AO_CTRL_BIT_STOP,
+ info->me4000_regbase + ME4000_AO_03_CTRL_REG);
+
+ /* 0x8000 to the DACs means an output voltage of 0V */
+ me4000_outl(0x8000, info->me4000_regbase + ME4000_AO_00_SINGLE_REG);
+ me4000_outl(0x8000, info->me4000_regbase + ME4000_AO_01_SINGLE_REG);
+ me4000_outl(0x8000, info->me4000_regbase + ME4000_AO_02_SINGLE_REG);
+ me4000_outl(0x8000, info->me4000_regbase + ME4000_AO_03_SINGLE_REG);
+
+ /* Enable interrupts on the PLX */
+ me4000_outl(0x43, info->plx_regbase + PLX_INTCSR);
+
+ /* Set the adustment register for AO demux */
+ me4000_outl(ME4000_AO_DEMUX_ADJUST_VALUE,
+ info->me4000_regbase + ME4000_AO_DEMUX_ADJUST_REG);
+
+ /* Set digital I/O direction for port 0 to output on isolated versions */
+ if (!(me4000_inl(info->me4000_regbase + ME4000_DIO_DIR_REG) & 0x1)) {
+ me4000_outl(0x1, info->me4000_regbase + ME4000_DIO_CTRL_REG);
+ }
+
+ return 0;
+}
+
+static int me4000_open(struct inode *inode_p, struct file *file_p)
+{
+ int board, dev, mode;
+ int err = 0;
+ int i;
+ struct list_head *ptr;
+ me4000_info_t *board_info = NULL;
+ me4000_ao_context_t *ao_context = NULL;
+ me4000_ai_context_t *ai_context = NULL;
+ me4000_dio_context_t *dio_context = NULL;
+ me4000_cnt_context_t *cnt_context = NULL;
+ me4000_ext_int_context_t *ext_int_context = NULL;
+
+ CALL_PDEBUG("me4000_open() is executed\n");
+
+ /* Analog output */
+ if (MAJOR(inode_p->i_rdev) == me4000_ao_major_driver_no) {
+ board = AO_BOARD(inode_p->i_rdev);
+ dev = AO_PORT(inode_p->i_rdev);
+ mode = AO_MODE(inode_p->i_rdev);
+
+ PDEBUG("me4000_open():board = %d ao = %d mode = %d\n", board,
+ dev, mode);
+
+ /* Search for the board context */
+ for (ptr = me4000_board_info_list.next, i = 0;
+ ptr != &me4000_board_info_list; ptr = ptr->next, i++) {
+ board_info = list_entry(ptr, me4000_info_t, list);
+ if (i == board)
+ break;
+ }
+
+ if (ptr == &me4000_board_info_list) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():Board %d not in device list\n",
+ board);
+ return -ENODEV;
+ }
+
+ /* Search for the dac context */
+ for (ptr = board_info->ao_context_list.next, i = 0;
+ ptr != &board_info->ao_context_list;
+ ptr = ptr->next, i++) {
+ ao_context = list_entry(ptr, me4000_ao_context_t, list);
+ if (i == dev)
+ break;
+ }
+
+ if (ptr == &board_info->ao_context_list) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():Device %d not in device list\n",
+ dev);
+ return -ENODEV;
+ }
+
+ /* Check if mode is valid */
+ if (mode > 2) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():Mode is not valid\n");
+ return -ENODEV;
+ }
+
+ /* Check if mode is valid for this AO */
+ if ((mode != ME4000_AO_CONV_MODE_SINGLE)
+ && (dev >= board_info->board_p->ao.fifo_count)) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():AO %d only in single mode available\n",
+ dev);
+ return -ENODEV;
+ }
+
+ /* Check if already opened */
+ spin_lock(&ao_context->use_lock);
+ if (ao_context->dac_in_use) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():AO %d already in use\n",
+ dev);
+ spin_unlock(&ao_context->use_lock);
+ return -EBUSY;
+ }
+ ao_context->dac_in_use = 1;
+ spin_unlock(&ao_context->use_lock);
+
+ ao_context->mode = mode;
+
+ /* Hold the context in private data */
+ file_p->private_data = ao_context;
+
+ /* Set file operations pointer */
+ file_p->f_op = me4000_ao_fops_array[mode];
+
+ err = me4000_ao_prepare(ao_context);
+ if (err) {
+ ao_context->dac_in_use = 0;
+ return 1;
+ }
+ }
+ /* Analog input */
+ else if (MAJOR(inode_p->i_rdev) == me4000_ai_major_driver_no) {
+ board = AI_BOARD(inode_p->i_rdev);
+ mode = AI_MODE(inode_p->i_rdev);
+
+ PDEBUG("me4000_open():ai board = %d mode = %d\n", board, mode);
+
+ /* Search for the board context */
+ for (ptr = me4000_board_info_list.next, i = 0;
+ ptr != &me4000_board_info_list; ptr = ptr->next, i++) {
+ board_info = list_entry(ptr, me4000_info_t, list);
+ if (i == board)
+ break;
+ }
+
+ if (ptr == &me4000_board_info_list) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():Board %d not in device list\n",
+ board);
+ return -ENODEV;
+ }
+
+ ai_context = board_info->ai_context;
+
+ /* Check if mode is valid */
+ if (mode > 5) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():Mode is not valid\n");
+ return -EINVAL;
+ }
+
+ /* Check if already opened */
+ spin_lock(&ai_context->use_lock);
+ if (ai_context->in_use) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():AI already in use\n");
+ spin_unlock(&ai_context->use_lock);
+ return -EBUSY;
+ }
+ ai_context->in_use = 1;
+ spin_unlock(&ai_context->use_lock);
+
+ ai_context->mode = mode;
+
+ /* Hold the context in private data */
+ file_p->private_data = ai_context;
+
+ /* Set file operations pointer */
+ file_p->f_op = me4000_ai_fops_array[mode];
+
+ /* Prepare analog input */
+ me4000_ai_prepare(ai_context);
+ }
+ /* Digital I/O */
+ else if (MAJOR(inode_p->i_rdev) == me4000_dio_major_driver_no) {
+ board = DIO_BOARD(inode_p->i_rdev);
+ dev = 0;
+ mode = 0;
+
+ PDEBUG("me4000_open():board = %d\n", board);
+
+ /* Search for the board context */
+ for (ptr = me4000_board_info_list.next;
+ ptr != &me4000_board_info_list; ptr = ptr->next) {
+ board_info = list_entry(ptr, me4000_info_t, list);
+ if (board_info->board_count == board)
+ break;
+ }
+
+ if (ptr == &me4000_board_info_list) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():Board %d not in device list\n",
+ board);
+ return -ENODEV;
+ }
+
+ /* Search for the dio context */
+ dio_context = board_info->dio_context;
+
+ /* Check if already opened */
+ spin_lock(&dio_context->use_lock);
+ if (dio_context->in_use) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():DIO already in use\n");
+ spin_unlock(&dio_context->use_lock);
+ return -EBUSY;
+ }
+ dio_context->in_use = 1;
+ spin_unlock(&dio_context->use_lock);
+
+ /* Hold the context in private data */
+ file_p->private_data = dio_context;
+
+ /* Set file operations pointer to single functions */
+ file_p->f_op = &me4000_dio_fops;
+
+ //me4000_dio_reset(dio_context);
+ }
+ /* Counters */
+ else if (MAJOR(inode_p->i_rdev) == me4000_cnt_major_driver_no) {
+ board = CNT_BOARD(inode_p->i_rdev);
+ dev = 0;
+ mode = 0;
+
+ PDEBUG("me4000_open():board = %d\n", board);
+
+ /* Search for the board context */
+ for (ptr = me4000_board_info_list.next;
+ ptr != &me4000_board_info_list; ptr = ptr->next) {
+ board_info = list_entry(ptr, me4000_info_t, list);
+ if (board_info->board_count == board)
+ break;
+ }
+
+ if (ptr == &me4000_board_info_list) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():Board %d not in device list\n",
+ board);
+ return -ENODEV;
+ }
+
+ /* Get the cnt context */
+ cnt_context = board_info->cnt_context;
+
+ /* Check if already opened */
+ spin_lock(&cnt_context->use_lock);
+ if (cnt_context->in_use) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():CNT already in use\n");
+ spin_unlock(&cnt_context->use_lock);
+ return -EBUSY;
+ }
+ cnt_context->in_use = 1;
+ spin_unlock(&cnt_context->use_lock);
+
+ /* Hold the context in private data */
+ file_p->private_data = cnt_context;
+
+ /* Set file operations pointer to single functions */
+ file_p->f_op = &me4000_cnt_fops;
+ }
+ /* External Interrupt */
+ else if (MAJOR(inode_p->i_rdev) == me4000_ext_int_major_driver_no) {
+ board = EXT_INT_BOARD(inode_p->i_rdev);
+ dev = 0;
+ mode = 0;
+
+ PDEBUG("me4000_open():board = %d\n", board);
+
+ /* Search for the board context */
+ for (ptr = me4000_board_info_list.next;
+ ptr != &me4000_board_info_list; ptr = ptr->next) {
+ board_info = list_entry(ptr, me4000_info_t, list);
+ if (board_info->board_count == board)
+ break;
+ }
+
+ if (ptr == &me4000_board_info_list) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():Board %d not in device list\n",
+ board);
+ return -ENODEV;
+ }
+
+ /* Get the external interrupt context */
+ ext_int_context = board_info->ext_int_context;
+
+ /* Check if already opened */
+ spin_lock(&cnt_context->use_lock);
+ if (ext_int_context->in_use) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():External interrupt already in use\n");
+ spin_unlock(&ext_int_context->use_lock);
+ return -EBUSY;
+ }
+ ext_int_context->in_use = 1;
+ spin_unlock(&ext_int_context->use_lock);
+
+ /* Hold the context in private data */
+ file_p->private_data = ext_int_context;
+
+ /* Set file operations pointer to single functions */
+ file_p->f_op = &me4000_ext_int_fops;
+
+ /* Request the interrupt line */
+ err =
+ request_irq(ext_int_context->irq, me4000_ext_int_isr,
+ IRQF_DISABLED | IRQF_SHARED, ME4000_NAME,
+ ext_int_context);
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_open():Can't get interrupt line");
+ ext_int_context->in_use = 0;
+ return -ENODEV;
+ }
+
+ /* Reset the counter */
+ me4000_ext_int_disable(ext_int_context);
+ } else {
+ printk(KERN_ERR "ME4000:me4000_open():Major number unknown\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int me4000_release(struct inode *inode_p, struct file *file_p)
+{
+ me4000_ao_context_t *ao_context;
+ me4000_ai_context_t *ai_context;
+ me4000_dio_context_t *dio_context;
+ me4000_cnt_context_t *cnt_context;
+ me4000_ext_int_context_t *ext_int_context;
+
+ CALL_PDEBUG("me4000_release() is executed\n");
+
+ if (MAJOR(inode_p->i_rdev) == me4000_ao_major_driver_no) {
+ ao_context = file_p->private_data;
+
+ /* Mark DAC as unused */
+ ao_context->dac_in_use = 0;
+ } else if (MAJOR(inode_p->i_rdev) == me4000_ai_major_driver_no) {
+ ai_context = file_p->private_data;
+
+ /* Reset the analog input */
+ me4000_ai_reset(ai_context);
+
+ /* Free the interrupt and the circular buffer */
+ if (ai_context->mode) {
+ free_irq(ai_context->irq, ai_context);
+ kfree(ai_context->circ_buf.buf);
+ ai_context->circ_buf.buf = NULL;
+ ai_context->circ_buf.head = 0;
+ ai_context->circ_buf.tail = 0;
+ }
+
+ /* Mark AI as unused */
+ ai_context->in_use = 0;
+ } else if (MAJOR(inode_p->i_rdev) == me4000_dio_major_driver_no) {
+ dio_context = file_p->private_data;
+
+ /* Mark digital I/O as unused */
+ dio_context->in_use = 0;
+ } else if (MAJOR(inode_p->i_rdev) == me4000_cnt_major_driver_no) {
+ cnt_context = file_p->private_data;
+
+ /* Mark counters as unused */
+ cnt_context->in_use = 0;
+ } else if (MAJOR(inode_p->i_rdev) == me4000_ext_int_major_driver_no) {
+ ext_int_context = file_p->private_data;
+
+ /* Disable the externel interrupt */
+ me4000_ext_int_disable(ext_int_context);
+
+ free_irq(ext_int_context->irq, ext_int_context);
+
+ /* Delete the fasync structure and free memory */
+ me4000_ext_int_fasync(0, file_p, 0);
+
+ /* Mark as unused */
+ ext_int_context->in_use = 0;
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_release():Major number unknown\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*------------------------------- Analog output stuff --------------------------------------*/
+
+static int me4000_ao_prepare(me4000_ao_context_t * ao_context)
+{
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_prepare() is executed\n");
+
+ if (ao_context->mode == ME4000_AO_CONV_MODE_CONTINUOUS) {
+ /* Only do anything if not already in the correct mode */
+ unsigned long mode = me4000_inl(ao_context->ctrl_reg);
+ if ((mode & ME4000_AO_CONV_MODE_CONTINUOUS)
+ && (mode & ME4000_AO_CTRL_BIT_ENABLE_FIFO)) {
+ return 0;
+ }
+
+ /* Stop any conversion */
+ me4000_ao_immediate_stop(ao_context);
+
+ /* Set the control register to default state */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ me4000_outl(ME4000_AO_CONV_MODE_CONTINUOUS |
+ ME4000_AO_CTRL_BIT_ENABLE_FIFO |
+ ME4000_AO_CTRL_BIT_STOP |
+ ME4000_AO_CTRL_BIT_IMMEDIATE_STOP,
+ ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ /* Set to fastest sample rate */
+ me4000_outl(65, ao_context->timer_reg);
+ } else if (ao_context->mode == ME4000_AO_CONV_MODE_WRAPAROUND) {
+ /* Only do anything if not already in the correct mode */
+ unsigned long mode = me4000_inl(ao_context->ctrl_reg);
+ if ((mode & ME4000_AO_CONV_MODE_WRAPAROUND)
+ && (mode & ME4000_AO_CTRL_BIT_ENABLE_FIFO)) {
+ return 0;
+ }
+
+ /* Stop any conversion */
+ me4000_ao_immediate_stop(ao_context);
+
+ /* Set the control register to default state */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ me4000_outl(ME4000_AO_CONV_MODE_WRAPAROUND |
+ ME4000_AO_CTRL_BIT_ENABLE_FIFO |
+ ME4000_AO_CTRL_BIT_STOP |
+ ME4000_AO_CTRL_BIT_IMMEDIATE_STOP,
+ ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ /* Set to fastest sample rate */
+ me4000_outl(65, ao_context->timer_reg);
+ } else if (ao_context->mode == ME4000_AO_CONV_MODE_SINGLE) {
+ /* Only do anything if not already in the correct mode */
+ unsigned long mode = me4000_inl(ao_context->ctrl_reg);
+ if (!
+ (mode &
+ (ME4000_AO_CONV_MODE_WRAPAROUND |
+ ME4000_AO_CONV_MODE_CONTINUOUS))) {
+ return 0;
+ }
+
+ /* Stop any conversion */
+ me4000_ao_immediate_stop(ao_context);
+
+ /* Clear the control register */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ me4000_outl(0x0, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ /* Set voltage to 0V */
+ me4000_outl(0x8000, ao_context->single_reg);
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_prepare():Invalid mode specified\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int me4000_ao_reset(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ wait_queue_head_t queue;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_reset() is executed\n");
+
+ init_waitqueue_head(&queue);
+
+ if (ao_context->mode == ME4000_AO_CONV_MODE_WRAPAROUND) {
+ /*
+ * First stop conversion of the DAC before reconfigure.
+ * This is essantial, cause of the state machine.
+ * If not stopped before configuring mode, it could
+ * walk in a undefined state.
+ */
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_IMMEDIATE_STOP;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+
+ while (inl(ao_context->status_reg) & ME4000_AO_STATUS_BIT_FSM) {
+ sleep_on_timeout(&queue, 1);
+ }
+
+ /* Set to transparent mode */
+ me4000_ao_simultaneous_disable(ao_context);
+
+ /* Set to single mode in order to set default voltage */
+ me4000_outl(0x0, ao_context->ctrl_reg);
+
+ /* Set voltage to 0V */
+ me4000_outl(0x8000, ao_context->single_reg);
+
+ /* Set to fastest sample rate */
+ me4000_outl(65, ao_context->timer_reg);
+
+ /* Set the original mode and enable FIFO */
+ me4000_outl(ME4000_AO_CONV_MODE_WRAPAROUND |
+ ME4000_AO_CTRL_BIT_ENABLE_FIFO |
+ ME4000_AO_CTRL_BIT_STOP |
+ ME4000_AO_CTRL_BIT_IMMEDIATE_STOP,
+ ao_context->ctrl_reg);
+ } else if (ao_context->mode == ME4000_AO_CONV_MODE_CONTINUOUS) {
+ /*
+ * First stop conversion of the DAC before reconfigure.
+ * This is essantial, cause of the state machine.
+ * If not stopped before configuring mode, it could
+ * walk in a undefined state.
+ */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_STOP;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ while (inl(ao_context->status_reg) & ME4000_AO_STATUS_BIT_FSM) {
+ sleep_on_timeout(&queue, 1);
+ }
+
+ /* Clear the circular buffer */
+ ao_context->circ_buf.head = 0;
+ ao_context->circ_buf.tail = 0;
+
+ /* Set to transparent mode */
+ me4000_ao_simultaneous_disable(ao_context);
+
+ /* Set to single mode in order to set default voltage */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ me4000_outl(0x0, ao_context->ctrl_reg);
+
+ /* Set voltage to 0V */
+ me4000_outl(0x8000, ao_context->single_reg);
+
+ /* Set to fastest sample rate */
+ me4000_outl(65, ao_context->timer_reg);
+
+ /* Set the original mode and enable FIFO */
+ me4000_outl(ME4000_AO_CONV_MODE_CONTINUOUS |
+ ME4000_AO_CTRL_BIT_ENABLE_FIFO |
+ ME4000_AO_CTRL_BIT_STOP |
+ ME4000_AO_CTRL_BIT_IMMEDIATE_STOP,
+ ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+ } else {
+ /* Set to transparent mode */
+ me4000_ao_simultaneous_disable(ao_context);
+
+ /* Set voltage to 0V */
+ me4000_outl(0x8000, ao_context->single_reg);
+ }
+
+ return 0;
+}
+
+static ssize_t me4000_ao_write_sing(struct file *filep, const char *buff,
+ size_t cnt, loff_t * offp)
+{
+ me4000_ao_context_t *ao_context = filep->private_data;
+ u32 value;
+ const u16 *buffer = (const u16 *)buff;
+
+ CALL_PDEBUG("me4000_ao_write_sing() is executed\n");
+
+ if (cnt != 2) {
+ printk(KERN_ERR
+ "me4000_ao_write_sing():Write count is not 2\n");
+ return -EINVAL;
+ }
+
+ if (get_user(value, buffer)) {
+ printk(KERN_ERR
+ "me4000_ao_write_sing():Cannot copy data from user\n");
+ return -EFAULT;
+ }
+
+ me4000_outl(value, ao_context->single_reg);
+
+ return 2;
+}
+
+static ssize_t me4000_ao_write_wrap(struct file *filep, const char *buff,
+ size_t cnt, loff_t * offp)
+{
+ me4000_ao_context_t *ao_context = filep->private_data;
+ size_t i;
+ u32 value;
+ u32 tmp;
+ const u16 *buffer = (const u16 *)buff;
+ size_t count = cnt / 2;
+
+ CALL_PDEBUG("me4000_ao_write_wrap() is executed\n");
+
+ /* Check if a conversion is already running */
+ if (inl(ao_context->status_reg) & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_write_wrap():There is already a conversion running\n");
+ return -EBUSY;
+ }
+
+ if (count > ME4000_AO_FIFO_COUNT) {
+ printk(KERN_ERR
+ "me4000_ao_write_wrap():Can't load more than %d values\n",
+ ME4000_AO_FIFO_COUNT);
+ return -ENOSPC;
+ }
+
+ /* Reset the FIFO */
+ tmp = inl(ao_context->ctrl_reg);
+ tmp &= ~ME4000_AO_CTRL_BIT_ENABLE_FIFO;
+ outl(tmp, ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_ENABLE_FIFO;
+ outl(tmp, ao_context->ctrl_reg);
+
+ for (i = 0; i < count; i++) {
+ if (get_user(value, buffer + i)) {
+ printk(KERN_ERR
+ "me4000_ao_write_single():Cannot copy data from user\n");
+ return -EFAULT;
+ }
+ if (((ao_context->fifo_reg & 0xFF) == ME4000_AO_01_FIFO_REG)
+ || ((ao_context->fifo_reg & 0xFF) == ME4000_AO_03_FIFO_REG))
+ value = value << 16;
+ outl(value, ao_context->fifo_reg);
+ }
+ CALL_PDEBUG("me4000_ao_write_wrap() is leaved with %d\n", i * 2);
+
+ return i * 2;
+}
+
+static ssize_t me4000_ao_write_cont(struct file *filep, const char *buff,
+ size_t cnt, loff_t * offp)
+{
+ me4000_ao_context_t *ao_context = filep->private_data;
+ const u16 *buffer = (const u16 *)buff;
+ size_t count = cnt / 2;
+ unsigned long flags;
+ u32 tmp;
+ int c = 0;
+ int k = 0;
+ int ret = 0;
+ u16 svalue;
+ u32 lvalue;
+ int i;
+ wait_queue_head_t queue;
+
+ CALL_PDEBUG("me4000_ao_write_cont() is executed\n");
+
+ init_waitqueue_head(&queue);
+
+ /* Check count */
+ if (count <= 0) {
+ PDEBUG("me4000_ao_write_cont():Count is 0\n");
+ return 0;
+ }
+
+ if (filep->f_flags & O_APPEND) {
+ PDEBUG("me4000_ao_write_cont():Append data to data stream\n");
+ while (count > 0) {
+ if (filep->f_flags & O_NONBLOCK) {
+ if (ao_context->pipe_flag) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_write_cont():Broken pipe in nonblocking write\n");
+ return -EPIPE;
+ }
+ c = me4000_space_to_end(ao_context->circ_buf,
+ ME4000_AO_BUFFER_COUNT);
+ if (!c) {
+ PDEBUG
+ ("me4000_ao_write_cont():Returning from nonblocking write\n");
+ break;
+ }
+ } else {
+ wait_event_interruptible(ao_context->wait_queue,
+ (c =
+ me4000_space_to_end
+ (ao_context->circ_buf,
+ ME4000_AO_BUFFER_COUNT)));
+ if (ao_context->pipe_flag) {
+ printk(KERN_ERR
+ "me4000_ao_write_cont():Broken pipe in blocking write\n");
+ return -EPIPE;
+ }
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "me4000_ao_write_cont():Wait for free buffer interrupted from signal\n");
+ return -EINTR;
+ }
+ }
+
+ PDEBUG("me4000_ao_write_cont():Space to end = %d\n", c);
+
+ /* Only able to write size of free buffer or size of count */
+ if (count < c)
+ c = count;
+
+ k = 2 * c;
+ k -= copy_from_user(ao_context->circ_buf.buf +
+ ao_context->circ_buf.head, buffer,
+ k);
+ c = k / 2;
+ PDEBUG
+ ("me4000_ao_write_cont():Copy %d values from user space\n",
+ c);
+
+ if (!c)
+ return -EFAULT;
+
+ ao_context->circ_buf.head =
+ (ao_context->circ_buf.head +
+ c) & (ME4000_AO_BUFFER_COUNT - 1);
+ buffer += c;
+ count -= c;
+ ret += c;
+
+ /* Values are now available so enable interrupts */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ if (me4000_buf_count
+ (ao_context->circ_buf, ME4000_AO_BUFFER_COUNT)) {
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_ENABLE_IRQ;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ }
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+ }
+
+ /* Wait until the state machine is stopped if O_SYNC is set */
+ if (filep->f_flags & O_SYNC) {
+ while (inl(ao_context->status_reg) &
+ ME4000_AO_STATUS_BIT_FSM) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (ao_context->pipe_flag) {
+ PDEBUG
+ ("me4000_ao_write_cont():Broken pipe detected after sync\n");
+ return -EPIPE;
+ }
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "me4000_ao_write_cont():Wait on state machine after sync interrupted\n");
+ return -EINTR;
+ }
+ }
+ }
+ } else {
+ PDEBUG("me4000_ao_write_cont():Preload DAC FIFO\n");
+ if ((me4000_inl(ao_context->status_reg) &
+ ME4000_AO_STATUS_BIT_FSM)) {
+ printk(KERN_ERR
+ "me4000_ao_write_cont():Can't Preload DAC FIFO while conversion is running\n");
+ return -EBUSY;
+ }
+
+ /* Clear the FIFO */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_AO_CTRL_BIT_ENABLE_FIFO |
+ ME4000_AO_CTRL_BIT_ENABLE_IRQ);
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_ENABLE_FIFO;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ /* Clear the circular buffer */
+ ao_context->circ_buf.head = 0;
+ ao_context->circ_buf.tail = 0;
+
+ /* Reset the broken pipe flag */
+ ao_context->pipe_flag = 0;
+
+ /* Only able to write size of fifo or count */
+ c = ME4000_AO_FIFO_COUNT;
+ if (count < c)
+ c = count;
+
+ PDEBUG
+ ("me4000_ao_write_cont():Write %d values to DAC on 0x%lX\n",
+ c, ao_context->fifo_reg);
+
+ /* Write values to the fifo */
+ for (i = 0; i < c; i++) {
+ if (get_user(svalue, buffer))
+ return -EFAULT;
+
+ if (((ao_context->fifo_reg & 0xFF) ==
+ ME4000_AO_01_FIFO_REG)
+ || ((ao_context->fifo_reg & 0xFF) ==
+ ME4000_AO_03_FIFO_REG)) {
+ lvalue = ((u32) svalue) << 16;
+ } else
+ lvalue = (u32) svalue;
+
+ outl(lvalue, ao_context->fifo_reg);
+ buffer++;
+ }
+ count -= c;
+ ret += c;
+
+ while (1) {
+ /* Get free buffer */
+ c = me4000_space_to_end(ao_context->circ_buf,
+ ME4000_AO_BUFFER_COUNT);
+
+ if (c == 0)
+ return (2 * ret);
+
+ /* Only able to write size of free buffer or size of count */
+ if (count < c)
+ c = count;
+
+ /* If count = 0 return to user */
+ if (c <= 0) {
+ PDEBUG
+ ("me4000_ao_write_cont():Count reached 0\n");
+ break;
+ }
+
+ k = 2 * c;
+ k -= copy_from_user(ao_context->circ_buf.buf +
+ ao_context->circ_buf.head, buffer,
+ k);
+ c = k / 2;
+ PDEBUG
+ ("me4000_ao_write_cont():Wrote %d values to buffer\n",
+ c);
+
+ if (!c)
+ return -EFAULT;
+
+ ao_context->circ_buf.head =
+ (ao_context->circ_buf.head +
+ c) & (ME4000_AO_BUFFER_COUNT - 1);
+ buffer += c;
+ count -= c;
+ ret += c;
+
+ /* If values in the buffer are available so enable interrupts */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ if (me4000_buf_count
+ (ao_context->circ_buf, ME4000_AO_BUFFER_COUNT)) {
+ PDEBUG
+ ("me4000_ao_write_cont():Enable Interrupts\n");
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_ENABLE_IRQ;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ }
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+ }
+ }
+
+ if (filep->f_flags & O_NONBLOCK) {
+ return (ret == 0) ? -EAGAIN : 2 * ret;
+ }
+
+ return 2 * ret;
+}
+
+static unsigned int me4000_ao_poll_cont(struct file *file_p, poll_table * wait)
+{
+ me4000_ao_context_t *ao_context;
+ unsigned long mask = 0;
+
+ CALL_PDEBUG("me4000_ao_poll_cont() is executed\n");
+
+ ao_context = file_p->private_data;
+
+ poll_wait(file_p, &ao_context->wait_queue, wait);
+
+ /* Get free buffer */
+ if (me4000_space_to_end(ao_context->circ_buf, ME4000_AO_BUFFER_COUNT))
+ mask |= POLLOUT | POLLWRNORM;
+
+ CALL_PDEBUG("me4000_ao_poll_cont():Return mask %lX\n", mask);
+
+ return mask;
+}
+
+static int me4000_ao_fsync_cont(struct file *file_p, struct dentry *dentry_p,
+ int datasync)
+{
+ me4000_ao_context_t *ao_context;
+ wait_queue_head_t queue;
+
+ CALL_PDEBUG("me4000_ao_fsync_cont() is executed\n");
+
+ ao_context = file_p->private_data;
+ init_waitqueue_head(&queue);
+
+ while (inl(ao_context->status_reg) & ME4000_AO_STATUS_BIT_FSM) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (ao_context->pipe_flag) {
+ printk(KERN_ERR
+ "me4000_ao_fsync_cont():Broken pipe detected\n");
+ return -EPIPE;
+ }
+
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "me4000_ao_fsync_cont():Wait on state machine interrupted\n");
+ return -EINTR;
+ }
+ }
+
+ return 0;
+}
+
+static int me4000_ao_ioctl_sing(struct inode *inode_p, struct file *file_p,
+ unsigned int service, unsigned long arg)
+{
+ me4000_ao_context_t *ao_context;
+
+ CALL_PDEBUG("me4000_ao_ioctl_sing() is executed\n");
+
+ ao_context = file_p->private_data;
+
+ if (_IOC_TYPE(service) != ME4000_MAGIC) {
+ return -ENOTTY;
+ PDEBUG("me4000_ao_ioctl_sing():Wrong magic number\n");
+ }
+
+ switch (service) {
+ case ME4000_AO_EX_TRIG_SETUP:
+ return me4000_ao_ex_trig_set_edge((int *)arg, ao_context);
+ case ME4000_AO_EX_TRIG_ENABLE:
+ return me4000_ao_ex_trig_enable(ao_context);
+ case ME4000_AO_EX_TRIG_DISABLE:
+ return me4000_ao_ex_trig_disable(ao_context);
+ case ME4000_AO_PRELOAD:
+ return me4000_ao_preload(ao_context);
+ case ME4000_AO_PRELOAD_UPDATE:
+ return me4000_ao_preload_update(ao_context);
+ case ME4000_GET_USER_INFO:
+ return me4000_get_user_info((me4000_user_info_t *) arg,
+ ao_context->board_info);
+ case ME4000_AO_SIMULTANEOUS_EX_TRIG:
+ return me4000_ao_simultaneous_ex_trig(ao_context);
+ case ME4000_AO_SIMULTANEOUS_SW:
+ return me4000_ao_simultaneous_sw(ao_context);
+ case ME4000_AO_SIMULTANEOUS_DISABLE:
+ return me4000_ao_simultaneous_disable(ao_context);
+ case ME4000_AO_SIMULTANEOUS_UPDATE:
+ return
+ me4000_ao_simultaneous_update((me4000_ao_channel_list_t *)
+ arg, ao_context);
+ case ME4000_AO_EX_TRIG_TIMEOUT:
+ return me4000_ao_ex_trig_timeout((unsigned long *)arg,
+ ao_context);
+ case ME4000_AO_DISABLE_DO:
+ return me4000_ao_disable_do(ao_context);
+ default:
+ printk(KERN_ERR
+ "me4000_ao_ioctl_sing():Service number invalid\n");
+ return -ENOTTY;
+ }
+
+ return 0;
+}
+
+static int me4000_ao_ioctl_wrap(struct inode *inode_p, struct file *file_p,
+ unsigned int service, unsigned long arg)
+{
+ me4000_ao_context_t *ao_context;
+
+ CALL_PDEBUG("me4000_ao_ioctl_wrap() is executed\n");
+
+ ao_context = file_p->private_data;
+
+ if (_IOC_TYPE(service) != ME4000_MAGIC) {
+ return -ENOTTY;
+ PDEBUG("me4000_ao_ioctl_wrap():Wrong magic number\n");
+ }
+
+ switch (service) {
+ case ME4000_AO_START:
+ return me4000_ao_start((unsigned long *)arg, ao_context);
+ case ME4000_AO_STOP:
+ return me4000_ao_stop(ao_context);
+ case ME4000_AO_IMMEDIATE_STOP:
+ return me4000_ao_immediate_stop(ao_context);
+ case ME4000_AO_RESET:
+ return me4000_ao_reset(ao_context);
+ case ME4000_AO_TIMER_SET_DIVISOR:
+ return me4000_ao_timer_set_divisor((u32 *) arg, ao_context);
+ case ME4000_AO_EX_TRIG_SETUP:
+ return me4000_ao_ex_trig_set_edge((int *)arg, ao_context);
+ case ME4000_AO_EX_TRIG_ENABLE:
+ return me4000_ao_ex_trig_enable(ao_context);
+ case ME4000_AO_EX_TRIG_DISABLE:
+ return me4000_ao_ex_trig_disable(ao_context);
+ case ME4000_GET_USER_INFO:
+ return me4000_get_user_info((me4000_user_info_t *) arg,
+ ao_context->board_info);
+ case ME4000_AO_FSM_STATE:
+ return me4000_ao_fsm_state((int *)arg, ao_context);
+ case ME4000_AO_ENABLE_DO:
+ return me4000_ao_enable_do(ao_context);
+ case ME4000_AO_DISABLE_DO:
+ return me4000_ao_disable_do(ao_context);
+ case ME4000_AO_SYNCHRONOUS_EX_TRIG:
+ return me4000_ao_synchronous_ex_trig(ao_context);
+ case ME4000_AO_SYNCHRONOUS_SW:
+ return me4000_ao_synchronous_sw(ao_context);
+ case ME4000_AO_SYNCHRONOUS_DISABLE:
+ return me4000_ao_synchronous_disable(ao_context);
+ default:
+ return -ENOTTY;
+ }
+ return 0;
+}
+
+static int me4000_ao_ioctl_cont(struct inode *inode_p, struct file *file_p,
+ unsigned int service, unsigned long arg)
+{
+ me4000_ao_context_t *ao_context;
+
+ CALL_PDEBUG("me4000_ao_ioctl_cont() is executed\n");
+
+ ao_context = file_p->private_data;
+
+ if (_IOC_TYPE(service) != ME4000_MAGIC) {
+ return -ENOTTY;
+ PDEBUG("me4000_ao_ioctl_cont():Wrong magic number\n");
+ }
+
+ switch (service) {
+ case ME4000_AO_START:
+ return me4000_ao_start((unsigned long *)arg, ao_context);
+ case ME4000_AO_STOP:
+ return me4000_ao_stop(ao_context);
+ case ME4000_AO_IMMEDIATE_STOP:
+ return me4000_ao_immediate_stop(ao_context);
+ case ME4000_AO_RESET:
+ return me4000_ao_reset(ao_context);
+ case ME4000_AO_TIMER_SET_DIVISOR:
+ return me4000_ao_timer_set_divisor((u32 *) arg, ao_context);
+ case ME4000_AO_EX_TRIG_SETUP:
+ return me4000_ao_ex_trig_set_edge((int *)arg, ao_context);
+ case ME4000_AO_EX_TRIG_ENABLE:
+ return me4000_ao_ex_trig_enable(ao_context);
+ case ME4000_AO_EX_TRIG_DISABLE:
+ return me4000_ao_ex_trig_disable(ao_context);
+ case ME4000_AO_ENABLE_DO:
+ return me4000_ao_enable_do(ao_context);
+ case ME4000_AO_DISABLE_DO:
+ return me4000_ao_disable_do(ao_context);
+ case ME4000_AO_FSM_STATE:
+ return me4000_ao_fsm_state((int *)arg, ao_context);
+ case ME4000_GET_USER_INFO:
+ return me4000_get_user_info((me4000_user_info_t *) arg,
+ ao_context->board_info);
+ case ME4000_AO_SYNCHRONOUS_EX_TRIG:
+ return me4000_ao_synchronous_ex_trig(ao_context);
+ case ME4000_AO_SYNCHRONOUS_SW:
+ return me4000_ao_synchronous_sw(ao_context);
+ case ME4000_AO_SYNCHRONOUS_DISABLE:
+ return me4000_ao_synchronous_disable(ao_context);
+ case ME4000_AO_GET_FREE_BUFFER:
+ return me4000_ao_get_free_buffer((unsigned long *)arg,
+ ao_context);
+ default:
+ return -ENOTTY;
+ }
+ return 0;
+}
+
+static int me4000_ao_start(unsigned long *arg, me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ wait_queue_head_t queue;
+ unsigned long ref;
+ unsigned long timeout;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_start() is executed\n");
+
+ if (get_user(timeout, arg)) {
+ printk(KERN_ERR
+ "me4000_ao_start():Cannot copy data from user\n");
+ return -EFAULT;
+ }
+
+ init_waitqueue_head(&queue);
+
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = inl(ao_context->ctrl_reg);
+ tmp &= ~(ME4000_AO_CTRL_BIT_STOP | ME4000_AO_CTRL_BIT_IMMEDIATE_STOP);
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ if ((tmp & ME4000_AO_CTRL_BIT_ENABLE_EX_TRIG)) {
+ if (timeout) {
+ ref = jiffies;
+ while (!
+ (inl(ao_context->status_reg) &
+ ME4000_AO_STATUS_BIT_FSM)) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_start():Wait on start of state machine interrupted\n");
+ return -EINTR;
+ }
+ if (((jiffies - ref) > (timeout * HZ / USER_HZ))) { // 2.6 has diffrent definitions for HZ in user and kernel space
+ printk(KERN_ERR
+ "ME4000:me4000_ao_start():Timeout reached\n");
+ return -EIO;
+ }
+ }
+ }
+ } else {
+ me4000_outl(0x8000, ao_context->single_reg);
+ }
+
+ return 0;
+}
+
+static int me4000_ao_stop(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ wait_queue_head_t queue;
+ unsigned long flags;
+
+ init_waitqueue_head(&queue);
+
+ CALL_PDEBUG("me4000_ao_stop() is executed\n");
+
+ /* Set the stop bit */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = inl(ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_STOP;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ while (inl(ao_context->status_reg) & ME4000_AO_STATUS_BIT_FSM) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "me4000_ao_stop():Wait on state machine after stop interrupted\n");
+ return -EINTR;
+ }
+ }
+
+ /* Clear the stop bit */
+ //tmp &= ~ME4000_AO_CTRL_BIT_STOP;
+ //me4000_outl(tmp, ao_context->ctrl_reg);
+
+ return 0;
+}
+
+static int me4000_ao_immediate_stop(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ wait_queue_head_t queue;
+ unsigned long flags;
+
+ init_waitqueue_head(&queue);
+
+ CALL_PDEBUG("me4000_ao_immediate_stop() is executed\n");
+
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = inl(ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_STOP | ME4000_AO_CTRL_BIT_IMMEDIATE_STOP;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ while (inl(ao_context->status_reg) & ME4000_AO_STATUS_BIT_FSM) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "me4000_ao_immediate_stop():Wait on state machine after stop interrupted\n");
+ return -EINTR;
+ }
+ }
+
+ /* Clear the stop bits */
+ //tmp &= ~(ME4000_AO_CTRL_BIT_STOP | ME4000_AO_CTRL_BIT_IMMEDIATE_STOP);
+ //me4000_outl(tmp, ao_context->ctrl_reg);
+
+ return 0;
+}
+
+static int me4000_ao_timer_set_divisor(u32 * arg,
+ me4000_ao_context_t * ao_context)
+{
+ u32 divisor;
+ u32 tmp;
+
+ CALL_PDEBUG("me4000_ao_timer set_divisor() is executed\n");
+
+ if (get_user(divisor, arg))
+ return -EFAULT;
+
+ /* Check if the state machine is stopped */
+ tmp = me4000_inl(ao_context->status_reg);
+ if (tmp & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR
+ "me4000_ao_timer_set_divisor():Can't set timer while DAC is running\n");
+ return -EBUSY;
+ }
+
+ PDEBUG("me4000_ao_timer set_divisor():Divisor from user = %d\n",
+ divisor);
+
+ /* Check if the divisor is right. ME4000_AO_MIN_TICKS is the lowest */
+ if (divisor < ME4000_AO_MIN_TICKS) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_timer set_divisor():Divisor to low\n");
+ return -EINVAL;
+ }
+
+ /* Fix bug in Firmware */
+ divisor -= 2;
+
+ PDEBUG("me4000_ao_timer set_divisor():Divisor to HW = %d\n", divisor);
+
+ /* Write the divisor */
+ me4000_outl(divisor, ao_context->timer_reg);
+
+ return 0;
+}
+
+static int me4000_ao_ex_trig_set_edge(int *arg,
+ me4000_ao_context_t * ao_context)
+{
+ int mode;
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_ex_trig_set_edge() is executed\n");
+
+ if (get_user(mode, arg))
+ return -EFAULT;
+
+ /* Check if the state machine is stopped */
+ tmp = me4000_inl(ao_context->status_reg);
+ if (tmp & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR
+ "me4000_ao_ex_trig_set_edge():Can't set trigger while DAC is running\n");
+ return -EBUSY;
+ }
+
+ if (mode == ME4000_AO_TRIGGER_EXT_EDGE_RISING) {
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_AO_CTRL_BIT_EX_TRIG_EDGE |
+ ME4000_AO_CTRL_BIT_EX_TRIG_BOTH);
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+ } else if (mode == ME4000_AO_TRIGGER_EXT_EDGE_FALLING) {
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp &= ~ME4000_AO_CTRL_BIT_EX_TRIG_BOTH;
+ tmp |= ME4000_AO_CTRL_BIT_EX_TRIG_EDGE;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+ } else if (mode == ME4000_AO_TRIGGER_EXT_EDGE_BOTH) {
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp |=
+ ME4000_AO_CTRL_BIT_EX_TRIG_EDGE |
+ ME4000_AO_CTRL_BIT_EX_TRIG_BOTH;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+ } else {
+ printk(KERN_ERR
+ "me4000_ao_ex_trig_set_edge():Invalid trigger mode\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int me4000_ao_ex_trig_enable(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_ex_trig_enable() is executed\n");
+
+ /* Check if the state machine is stopped */
+ tmp = me4000_inl(ao_context->status_reg);
+ if (tmp & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR
+ "me4000_ao_ex_trig_enable():Can't enable trigger while DAC is running\n");
+ return -EBUSY;
+ }
+
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_ENABLE_EX_TRIG;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ return 0;
+}
+
+static int me4000_ao_ex_trig_disable(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_ex_trig_disable() is executed\n");
+
+ /* Check if the state machine is stopped */
+ tmp = me4000_inl(ao_context->status_reg);
+ if (tmp & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR
+ "me4000_ao_ex_trig_disable():Can't disable trigger while DAC is running\n");
+ return -EBUSY;
+ }
+
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp &= ~ME4000_AO_CTRL_BIT_ENABLE_EX_TRIG;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ return 0;
+}
+
+static int me4000_ao_simultaneous_disable(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+
+ CALL_PDEBUG("me4000_ao_simultaneous_disable() is executed\n");
+
+ /* Check if the state machine is stopped */
+ /* Be careful here because this function is called from
+ me4000_ao_synchronous disable */
+ tmp = me4000_inl(ao_context->status_reg);
+ if (tmp & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR
+ "me4000_ao_simultaneous_disable():Can't disable while DAC is running\n");
+ return -EBUSY;
+ }
+
+ spin_lock(&ao_context->board_info->preload_lock);
+ tmp = me4000_inl(ao_context->preload_reg);
+ tmp &= ~(0x1 << ao_context->index); // Disable preload bit
+ tmp &= ~(0x1 << (ao_context->index + 16)); // Disable hw simultaneous bit
+ me4000_outl(tmp, ao_context->preload_reg);
+ spin_unlock(&ao_context->board_info->preload_lock);
+
+ return 0;
+}
+
+static int me4000_ao_simultaneous_ex_trig(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+
+ CALL_PDEBUG("me4000_ao_simultaneous_ex_trig() is executed\n");
+
+ spin_lock(&ao_context->board_info->preload_lock);
+ tmp = me4000_inl(ao_context->preload_reg);
+ tmp |= (0x1 << ao_context->index); // Enable preload bit
+ tmp |= (0x1 << (ao_context->index + 16)); // Enable hw simultaneous bit
+ me4000_outl(tmp, ao_context->preload_reg);
+ spin_unlock(&ao_context->board_info->preload_lock);
+
+ return 0;
+}
+
+static int me4000_ao_simultaneous_sw(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+
+ CALL_PDEBUG("me4000_ao_simultaneous_sw() is executed\n");
+
+ spin_lock(&ao_context->board_info->preload_lock);
+ tmp = me4000_inl(ao_context->preload_reg);
+ tmp |= (0x1 << ao_context->index); // Enable preload bit
+ tmp &= ~(0x1 << (ao_context->index + 16)); // Disable hw simultaneous bit
+ me4000_outl(tmp, ao_context->preload_reg);
+ spin_unlock(&ao_context->board_info->preload_lock);
+
+ return 0;
+}
+
+static int me4000_ao_preload(me4000_ao_context_t * ao_context)
+{
+ CALL_PDEBUG("me4000_ao_preload() is executed\n");
+ return me4000_ao_simultaneous_sw(ao_context);
+}
+
+static int me4000_ao_preload_update(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ u32 ctrl;
+ struct list_head *entry;
+
+ CALL_PDEBUG("me4000_ao_preload_update() is executed\n");
+
+ spin_lock(&ao_context->board_info->preload_lock);
+ tmp = me4000_inl(ao_context->preload_reg);
+ list_for_each(entry, &ao_context->board_info->ao_context_list) {
+ /* The channels we update must be in the following state :
+ - Mode A
+ - Hardware trigger is disabled
+ - Corresponding simultaneous bit is reset
+ */
+ ctrl = me4000_inl(ao_context->ctrl_reg);
+ if (!
+ (ctrl &
+ (ME4000_AO_CTRL_BIT_MODE_0 | ME4000_AO_CTRL_BIT_MODE_1 |
+ ME4000_AO_CTRL_BIT_ENABLE_EX_TRIG))) {
+ if (!
+ (tmp &
+ (0x1 <<
+ (((me4000_ao_context_t *) entry)->index + 16)))) {
+ tmp &=
+ ~(0x1 <<
+ (((me4000_ao_context_t *) entry)->index));
+ }
+ }
+ }
+ me4000_outl(tmp, ao_context->preload_reg);
+ spin_unlock(&ao_context->board_info->preload_lock);
+
+ return 0;
+}
+
+static int me4000_ao_simultaneous_update(me4000_ao_channel_list_t * arg,
+ me4000_ao_context_t * ao_context)
+{
+ int err;
+ int i;
+ u32 tmp;
+ me4000_ao_channel_list_t channels;
+
+ CALL_PDEBUG("me4000_ao_simultaneous_update() is executed\n");
+
+ /* Copy data from user */
+ err = copy_from_user(&channels, arg, sizeof(me4000_ao_channel_list_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_simultaneous_update():Can't copy command\n");
+ return -EFAULT;
+ }
+
+ channels.list =
+ kmalloc(sizeof(unsigned long) * channels.count, GFP_KERNEL);
+ if (!channels.list) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_simultaneous_update():Can't get buffer\n");
+ return -ENOMEM;
+ }
+ memset(channels.list, 0, sizeof(unsigned long) * channels.count);
+
+ /* Copy channel list from user */
+ err =
+ copy_from_user(channels.list, arg->list,
+ sizeof(unsigned long) * channels.count);
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_simultaneous_update():Can't copy list\n");
+ kfree(channels.list);
+ return -EFAULT;
+ }
+
+ spin_lock(&ao_context->board_info->preload_lock);
+ tmp = me4000_inl(ao_context->preload_reg);
+ for (i = 0; i < channels.count; i++) {
+ if (channels.list[i] >
+ ao_context->board_info->board_p->ao.count) {
+ spin_unlock(&ao_context->board_info->preload_lock);
+ kfree(channels.list);
+ printk(KERN_ERR
+ "ME4000:me4000_ao_simultaneous_update():Invalid board number specified\n");
+ return -EFAULT;
+ }
+ tmp &= ~(0x1 << channels.list[i]); // Clear the preload bit
+ tmp &= ~(0x1 << (channels.list[i] + 16)); // Clear the hw simultaneous bit
+ }
+ me4000_outl(tmp, ao_context->preload_reg);
+ spin_unlock(&ao_context->board_info->preload_lock);
+ kfree(channels.list);
+
+ return 0;
+}
+
+static int me4000_ao_synchronous_ex_trig(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_synchronous_ex_trig() is executed\n");
+
+ /* Check if the state machine is stopped */
+ tmp = me4000_inl(ao_context->status_reg);
+ if (tmp & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR
+ "me4000_ao_synchronous_ex_trig(): DAC is running\n");
+ return -EBUSY;
+ }
+
+ spin_lock(&ao_context->board_info->preload_lock);
+ tmp = me4000_inl(ao_context->preload_reg);
+ tmp &= ~(0x1 << ao_context->index); // Disable synchronous sw bit
+ tmp |= 0x1 << (ao_context->index + 16); // Enable synchronous hw bit
+ me4000_outl(tmp, ao_context->preload_reg);
+ spin_unlock(&ao_context->board_info->preload_lock);
+
+ /* Make runnable */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ if (tmp & (ME4000_AO_CTRL_BIT_MODE_0 | ME4000_AO_CTRL_BIT_MODE_1)) {
+ tmp &=
+ ~(ME4000_AO_CTRL_BIT_STOP |
+ ME4000_AO_CTRL_BIT_IMMEDIATE_STOP);
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ }
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ return 0;
+}
+
+static int me4000_ao_synchronous_sw(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_synchronous_sw() is executed\n");
+
+ /* Check if the state machine is stopped */
+ tmp = me4000_inl(ao_context->status_reg);
+ if (tmp & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR "me4000_ao_synchronous_sw(): DAC is running\n");
+ return -EBUSY;
+ }
+
+ spin_lock(&ao_context->board_info->preload_lock);
+ tmp = me4000_inl(ao_context->preload_reg);
+ tmp |= 0x1 << ao_context->index; // Enable synchronous sw bit
+ tmp &= ~(0x1 << (ao_context->index + 16)); // Disable synchronous hw bit
+ me4000_outl(tmp, ao_context->preload_reg);
+ spin_unlock(&ao_context->board_info->preload_lock);
+
+ /* Make runnable */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ if (tmp & (ME4000_AO_CTRL_BIT_MODE_0 | ME4000_AO_CTRL_BIT_MODE_1)) {
+ tmp &=
+ ~(ME4000_AO_CTRL_BIT_STOP |
+ ME4000_AO_CTRL_BIT_IMMEDIATE_STOP);
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ }
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ return 0;
+}
+
+static int me4000_ao_synchronous_disable(me4000_ao_context_t * ao_context)
+{
+ return me4000_ao_simultaneous_disable(ao_context);
+}
+
+static int me4000_ao_get_free_buffer(unsigned long *arg,
+ me4000_ao_context_t * ao_context)
+{
+ unsigned long c;
+ int err;
+
+ c = me4000_buf_space(ao_context->circ_buf, ME4000_AO_BUFFER_COUNT);
+
+ err = copy_to_user(arg, &c, sizeof(unsigned long));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_get_free_buffer():Can't copy to user space\n");
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+static int me4000_ao_ex_trig_timeout(unsigned long *arg,
+ me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ wait_queue_head_t queue;
+ unsigned long ref;
+ unsigned long timeout;
+
+ CALL_PDEBUG("me4000_ao_ex_trig_timeout() is executed\n");
+
+ if (get_user(timeout, arg)) {
+ printk(KERN_ERR
+ "me4000_ao_ex_trig_timeout():Cannot copy data from user\n");
+ return -EFAULT;
+ }
+
+ init_waitqueue_head(&queue);
+
+ tmp = inl(ao_context->ctrl_reg);
+
+ if ((tmp & ME4000_AO_CTRL_BIT_ENABLE_EX_TRIG)) {
+ if (timeout) {
+ ref = jiffies;
+ while ((inl(ao_context->status_reg) &
+ ME4000_AO_STATUS_BIT_FSM)) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_ex_trig_timeout():Wait on start of state machine interrupted\n");
+ return -EINTR;
+ }
+ if (((jiffies - ref) > (timeout * HZ / USER_HZ))) { // 2.6 has diffrent definitions for HZ in user and kernel space
+ printk(KERN_ERR
+ "ME4000:me4000_ao_ex_trig_timeout():Timeout reached\n");
+ return -EIO;
+ }
+ }
+ } else {
+ while ((inl(ao_context->status_reg) &
+ ME4000_AO_STATUS_BIT_FSM)) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_ex_trig_timeout():Wait on start of state machine interrupted\n");
+ return -EINTR;
+ }
+ }
+ }
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_ao_ex_trig_timeout():External Trigger is not enabled\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int me4000_ao_enable_do(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_enable_do() is executed\n");
+
+ /* Only available for analog output 3 */
+ if (ao_context->index != 3) {
+ printk(KERN_ERR
+ "me4000_ao_enable_do():Only available for analog output 3\n");
+ return -ENOTTY;
+ }
+
+ /* Check if the state machine is stopped */
+ tmp = me4000_inl(ao_context->status_reg);
+ if (tmp & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR "me4000_ao_enable_do(): DAC is running\n");
+ return -EBUSY;
+ }
+
+ /* Set the stop bit */
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = inl(ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_ENABLE_DO;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ return 0;
+}
+
+static int me4000_ao_disable_do(me4000_ao_context_t * ao_context)
+{
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ao_disable_do() is executed\n");
+
+ /* Only available for analog output 3 */
+ if (ao_context->index != 3) {
+ printk(KERN_ERR
+ "me4000_ao_disable():Only available for analog output 3\n");
+ return -ENOTTY;
+ }
+
+ /* Check if the state machine is stopped */
+ tmp = me4000_inl(ao_context->status_reg);
+ if (tmp & ME4000_AO_STATUS_BIT_FSM) {
+ printk(KERN_ERR "me4000_ao_disable_do(): DAC is running\n");
+ return -EBUSY;
+ }
+
+ spin_lock_irqsave(&ao_context->int_lock, flags);
+ tmp = inl(ao_context->ctrl_reg);
+ tmp &= ~(ME4000_AO_CTRL_BIT_ENABLE_DO);
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock_irqrestore(&ao_context->int_lock, flags);
+
+ return 0;
+}
+
+static int me4000_ao_fsm_state(int *arg, me4000_ao_context_t * ao_context)
+{
+ unsigned long tmp;
+
+ CALL_PDEBUG("me4000_ao_fsm_state() is executed\n");
+
+ tmp =
+ (me4000_inl(ao_context->status_reg) & ME4000_AO_STATUS_BIT_FSM) ? 1
+ : 0;
+
+ if (ao_context->pipe_flag) {
+ printk(KERN_ERR "me4000_ao_fsm_state():Broken pipe detected\n");
+ return -EPIPE;
+ }
+
+ if (put_user(tmp, arg)) {
+ printk(KERN_ERR "me4000_ao_fsm_state():Cannot copy to user\n");
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+/*------------------------------- Analog input stuff --------------------------------------*/
+
+static int me4000_ai_prepare(me4000_ai_context_t * ai_context)
+{
+ wait_queue_head_t queue;
+ int err;
+
+ CALL_PDEBUG("me4000_ai_prepare() is executed\n");
+
+ init_waitqueue_head(&queue);
+
+ /* Set the new mode and stop bits */
+ me4000_outl(ai_context->
+ mode | ME4000_AI_CTRL_BIT_STOP |
+ ME4000_AI_CTRL_BIT_IMMEDIATE_STOP, ai_context->ctrl_reg);
+
+ /* Set the timer registers */
+ ai_context->chan_timer = 66;
+ ai_context->chan_pre_timer = 66;
+ ai_context->scan_timer_low = 0;
+ ai_context->scan_timer_high = 0;
+
+ me4000_outl(65, ai_context->chan_timer_reg);
+ me4000_outl(65, ai_context->chan_pre_timer_reg);
+ me4000_outl(0, ai_context->scan_timer_low_reg);
+ me4000_outl(0, ai_context->scan_timer_high_reg);
+ me4000_outl(0, ai_context->scan_pre_timer_low_reg);
+ me4000_outl(0, ai_context->scan_pre_timer_high_reg);
+
+ ai_context->channel_list_count = 0;
+
+ if (ai_context->mode) {
+ /* Request the interrupt line */
+ err =
+ request_irq(ai_context->irq, me4000_ai_isr,
+ IRQF_DISABLED | IRQF_SHARED, ME4000_NAME,
+ ai_context);
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_prepare():Can't get interrupt line");
+ return -ENODEV;
+ }
+
+ /* Allocate circular buffer */
+ ai_context->circ_buf.buf =
+ kmalloc(ME4000_AI_BUFFER_SIZE, GFP_KERNEL);
+ if (!ai_context->circ_buf.buf) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_prepare():Can't get circular buffer\n");
+ free_irq(ai_context->irq, ai_context);
+ return -ENOMEM;
+ }
+ memset(ai_context->circ_buf.buf, 0, ME4000_AI_BUFFER_SIZE);
+
+ /* Clear the circular buffer */
+ ai_context->circ_buf.head = 0;
+ ai_context->circ_buf.tail = 0;
+ }
+
+ return 0;
+}
+
+static int me4000_ai_reset(me4000_ai_context_t * ai_context)
+{
+ wait_queue_head_t queue;
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ai_reset() is executed\n");
+
+ init_waitqueue_head(&queue);
+
+ /*
+ * First stop conversion of the state machine before reconfigure.
+ * If not stopped before configuring mode, it could
+ * walk in a undefined state.
+ */
+ spin_lock_irqsave(&ai_context->int_lock, flags);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_IMMEDIATE_STOP;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+
+ while (inl(ai_context->status_reg) & ME4000_AI_STATUS_BIT_FSM) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "me4000_ai_reset():Wait on state machine after stop interrupted\n");
+ return -EINTR;
+ }
+ }
+
+ /* Clear the control register and set the stop bits */
+ spin_lock_irqsave(&ai_context->int_lock, flags);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ me4000_outl(ME4000_AI_CTRL_BIT_IMMEDIATE_STOP | ME4000_AI_CTRL_BIT_STOP,
+ ai_context->ctrl_reg);
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+
+ /* Reset timer registers */
+ ai_context->chan_timer = 66;
+ ai_context->chan_pre_timer = 66;
+ ai_context->scan_timer_low = 0;
+ ai_context->scan_timer_high = 0;
+ ai_context->sample_counter = 0;
+ ai_context->sample_counter_reload = 0;
+
+ me4000_outl(65, ai_context->chan_timer_reg);
+ me4000_outl(65, ai_context->chan_pre_timer_reg);
+ me4000_outl(0, ai_context->scan_timer_low_reg);
+ me4000_outl(0, ai_context->scan_timer_high_reg);
+ me4000_outl(0, ai_context->scan_pre_timer_low_reg);
+ me4000_outl(0, ai_context->scan_pre_timer_high_reg);
+ me4000_outl(0, ai_context->sample_counter_reg);
+
+ ai_context->channel_list_count = 0;
+
+ /* Clear the circular buffer */
+ ai_context->circ_buf.head = 0;
+ ai_context->circ_buf.tail = 0;
+
+ return 0;
+}
+
+static int me4000_ai_ioctl_sing(struct inode *inode_p, struct file *file_p,
+ unsigned int service, unsigned long arg)
+{
+ me4000_ai_context_t *ai_context;
+
+ CALL_PDEBUG("me4000_ai_ioctl_sing() is executed\n");
+
+ ai_context = file_p->private_data;
+
+ if (_IOC_TYPE(service) != ME4000_MAGIC) {
+ printk(KERN_ERR "me4000_ai_ioctl_sing():Wrong magic number\n");
+ return -ENOTTY;
+ }
+ if (_IOC_NR(service) > ME4000_IOCTL_MAXNR) {
+ printk(KERN_ERR
+ "me4000_ai_ioctl_sing():Service number to high\n");
+ return -ENOTTY;
+ }
+
+ switch (service) {
+ case ME4000_AI_SINGLE:
+ return me4000_ai_single((me4000_ai_single_t *) arg, ai_context);
+ case ME4000_AI_EX_TRIG_ENABLE:
+ return me4000_ai_ex_trig_enable(ai_context);
+ case ME4000_AI_EX_TRIG_DISABLE:
+ return me4000_ai_ex_trig_disable(ai_context);
+ case ME4000_AI_EX_TRIG_SETUP:
+ return me4000_ai_ex_trig_setup((me4000_ai_trigger_t *) arg,
+ ai_context);
+ case ME4000_GET_USER_INFO:
+ return me4000_get_user_info((me4000_user_info_t *) arg,
+ ai_context->board_info);
+ case ME4000_AI_OFFSET_ENABLE:
+ return me4000_ai_offset_enable(ai_context);
+ case ME4000_AI_OFFSET_DISABLE:
+ return me4000_ai_offset_disable(ai_context);
+ case ME4000_AI_FULLSCALE_ENABLE:
+ return me4000_ai_fullscale_enable(ai_context);
+ case ME4000_AI_FULLSCALE_DISABLE:
+ return me4000_ai_fullscale_disable(ai_context);
+ case ME4000_AI_EEPROM_READ:
+ return me4000_eeprom_read((me4000_eeprom_t *) arg, ai_context);
+ case ME4000_AI_EEPROM_WRITE:
+ return me4000_eeprom_write((me4000_eeprom_t *) arg, ai_context);
+ default:
+ printk(KERN_ERR
+ "me4000_ai_ioctl_sing():Invalid service number\n");
+ return -ENOTTY;
+ }
+ return 0;
+}
+
+static int me4000_ai_single(me4000_ai_single_t * arg,
+ me4000_ai_context_t * ai_context)
+{
+ me4000_ai_single_t cmd;
+ int err;
+ u32 tmp;
+ wait_queue_head_t queue;
+ unsigned long jiffy;
+
+ CALL_PDEBUG("me4000_ai_single() is executed\n");
+
+ init_waitqueue_head(&queue);
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_ai_single_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_single():Can't copy from user space\n");
+ return -EFAULT;
+ }
+
+ /* Check range parameter */
+ switch (cmd.range) {
+ case ME4000_AI_LIST_RANGE_BIPOLAR_10:
+ case ME4000_AI_LIST_RANGE_BIPOLAR_2_5:
+ case ME4000_AI_LIST_RANGE_UNIPOLAR_10:
+ case ME4000_AI_LIST_RANGE_UNIPOLAR_2_5:
+ break;
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_ai_single():Invalid range specified\n");
+ return -EINVAL;
+ }
+
+ /* Check mode and channel number */
+ switch (cmd.mode) {
+ case ME4000_AI_LIST_INPUT_SINGLE_ENDED:
+ if (cmd.channel >= ai_context->board_info->board_p->ai.count) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_single():Analog input is not available\n");
+ return -EINVAL;
+ }
+ break;
+ case ME4000_AI_LIST_INPUT_DIFFERENTIAL:
+ if (cmd.channel >=
+ ai_context->board_info->board_p->ai.diff_count) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_single():Analog input is not available in differential mode\n");
+ return -EINVAL;
+ }
+ break;
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_ai_single():Invalid mode specified\n");
+ return -EINVAL;
+ }
+
+ /* Clear channel list, data fifo and both stop bits */
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_AI_CTRL_BIT_CHANNEL_FIFO | ME4000_AI_CTRL_BIT_DATA_FIFO |
+ ME4000_AI_CTRL_BIT_STOP | ME4000_AI_CTRL_BIT_IMMEDIATE_STOP);
+ me4000_outl(tmp, ai_context->ctrl_reg);
+
+ /* Enable channel list and data fifo */
+ tmp |= ME4000_AI_CTRL_BIT_CHANNEL_FIFO | ME4000_AI_CTRL_BIT_DATA_FIFO;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+
+ /* Generate channel list entry */
+ me4000_outl(cmd.channel | cmd.range | cmd.
+ mode | ME4000_AI_LIST_LAST_ENTRY,
+ ai_context->channel_list_reg);
+
+ /* Set the timer to maximum */
+ me4000_outl(66, ai_context->chan_timer_reg);
+ me4000_outl(66, ai_context->chan_pre_timer_reg);
+
+ if (tmp & ME4000_AI_CTRL_BIT_EX_TRIG) {
+ jiffy = jiffies;
+ while (!
+ (me4000_inl(ai_context->status_reg) &
+ ME4000_AI_STATUS_BIT_EF_DATA)) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_single():Wait on start of state machine interrupted\n");
+ return -EINTR;
+ }
+ if (((jiffies - jiffy) > (cmd.timeout * HZ / USER_HZ)) && cmd.timeout) { // 2.6 has diffrent definitions for HZ in user and kernel space
+ printk(KERN_ERR
+ "ME4000:me4000_ai_single():Timeout reached\n");
+ return -EIO;
+ }
+ }
+ } else {
+ /* Start conversion */
+ me4000_inl(ai_context->start_reg);
+
+ /* Wait until ready */
+ udelay(10);
+ if (!
+ (me4000_inl(ai_context->status_reg) &
+ ME4000_AI_STATUS_BIT_EF_DATA)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_single():Value not available after wait\n");
+ return -EIO;
+ }
+ }
+
+ /* Read value from data fifo */
+ cmd.value = me4000_inl(ai_context->data_reg) & 0xFFFF;
+
+ /* Copy result back to user */
+ err = copy_to_user(arg, &cmd, sizeof(me4000_ai_single_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_single():Can't copy to user space\n");
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+static int me4000_ai_ioctl_sw(struct inode *inode_p, struct file *file_p,
+ unsigned int service, unsigned long arg)
+{
+ me4000_ai_context_t *ai_context;
+
+ CALL_PDEBUG("me4000_ai_ioctl_sw() is executed\n");
+
+ ai_context = file_p->private_data;
+
+ if (_IOC_TYPE(service) != ME4000_MAGIC) {
+ printk(KERN_ERR "me4000_ai_ioctl_sw():Wrong magic number\n");
+ return -ENOTTY;
+ }
+ if (_IOC_NR(service) > ME4000_IOCTL_MAXNR) {
+ printk(KERN_ERR
+ "me4000_ai_ioctl_sw():Service number to high\n");
+ return -ENOTTY;
+ }
+
+ switch (service) {
+ case ME4000_AI_SC_SETUP:
+ return me4000_ai_sc_setup((me4000_ai_sc_t *) arg, ai_context);
+ case ME4000_AI_CONFIG:
+ return me4000_ai_config((me4000_ai_config_t *) arg, ai_context);
+ case ME4000_AI_START:
+ return me4000_ai_start(ai_context);
+ case ME4000_AI_STOP:
+ return me4000_ai_stop(ai_context);
+ case ME4000_AI_IMMEDIATE_STOP:
+ return me4000_ai_immediate_stop(ai_context);
+ case ME4000_AI_FSM_STATE:
+ return me4000_ai_fsm_state((int *)arg, ai_context);
+ case ME4000_GET_USER_INFO:
+ return me4000_get_user_info((me4000_user_info_t *) arg,
+ ai_context->board_info);
+ case ME4000_AI_EEPROM_READ:
+ return me4000_eeprom_read((me4000_eeprom_t *) arg, ai_context);
+ case ME4000_AI_EEPROM_WRITE:
+ return me4000_eeprom_write((me4000_eeprom_t *) arg, ai_context);
+ case ME4000_AI_GET_COUNT_BUFFER:
+ return me4000_ai_get_count_buffer((unsigned long *)arg,
+ ai_context);
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_ai_ioctl_sw():Invalid service number %d\n",
+ service);
+ return -ENOTTY;
+ }
+ return 0;
+}
+
+static int me4000_ai_ioctl_ext(struct inode *inode_p, struct file *file_p,
+ unsigned int service, unsigned long arg)
+{
+ me4000_ai_context_t *ai_context;
+
+ CALL_PDEBUG("me4000_ai_ioctl_ext() is executed\n");
+
+ ai_context = file_p->private_data;
+
+ if (_IOC_TYPE(service) != ME4000_MAGIC) {
+ printk(KERN_ERR "me4000_ai_ioctl_ext():Wrong magic number\n");
+ return -ENOTTY;
+ }
+ if (_IOC_NR(service) > ME4000_IOCTL_MAXNR) {
+ printk(KERN_ERR
+ "me4000_ai_ioctl_ext():Service number to high\n");
+ return -ENOTTY;
+ }
+
+ switch (service) {
+ case ME4000_AI_SC_SETUP:
+ return me4000_ai_sc_setup((me4000_ai_sc_t *) arg, ai_context);
+ case ME4000_AI_CONFIG:
+ return me4000_ai_config((me4000_ai_config_t *) arg, ai_context);
+ case ME4000_AI_START:
+ return me4000_ai_start_ex((unsigned long *)arg, ai_context);
+ case ME4000_AI_STOP:
+ return me4000_ai_stop(ai_context);
+ case ME4000_AI_IMMEDIATE_STOP:
+ return me4000_ai_immediate_stop(ai_context);
+ case ME4000_AI_EX_TRIG_ENABLE:
+ return me4000_ai_ex_trig_enable(ai_context);
+ case ME4000_AI_EX_TRIG_DISABLE:
+ return me4000_ai_ex_trig_disable(ai_context);
+ case ME4000_AI_EX_TRIG_SETUP:
+ return me4000_ai_ex_trig_setup((me4000_ai_trigger_t *) arg,
+ ai_context);
+ case ME4000_AI_FSM_STATE:
+ return me4000_ai_fsm_state((int *)arg, ai_context);
+ case ME4000_GET_USER_INFO:
+ return me4000_get_user_info((me4000_user_info_t *) arg,
+ ai_context->board_info);
+ case ME4000_AI_GET_COUNT_BUFFER:
+ return me4000_ai_get_count_buffer((unsigned long *)arg,
+ ai_context);
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_ai_ioctl_ext():Invalid service number %d\n",
+ service);
+ return -ENOTTY;
+ }
+ return 0;
+}
+
+static int me4000_ai_fasync(int fd, struct file *file_p, int mode)
+{
+ me4000_ai_context_t *ai_context;
+
+ CALL_PDEBUG("me4000_ao_fasync_cont() is executed\n");
+
+ ai_context = file_p->private_data;
+ return fasync_helper(fd, file_p, mode, &ai_context->fasync_p);
+}
+
+static int me4000_ai_config(me4000_ai_config_t * arg,
+ me4000_ai_context_t * ai_context)
+{
+ me4000_ai_config_t cmd;
+ u32 *list = NULL;
+ u32 mode;
+ int i;
+ int err;
+ wait_queue_head_t queue;
+ u64 scan;
+ u32 tmp;
+
+ CALL_PDEBUG("me4000_ai_config() is executed\n");
+
+ init_waitqueue_head(&queue);
+
+ /* Check if conversion is stopped */
+ if (inl(ai_context->ctrl_reg) & ME4000_AI_STATUS_BIT_FSM) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Conversion is not stopped\n");
+ err = -EBUSY;
+ goto AI_CONFIG_ERR;
+ }
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_ai_config_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Can't copy from user space\n");
+ err = -EFAULT;
+ goto AI_CONFIG_ERR;
+ }
+
+ PDEBUG
+ ("me4000_ai_config():chan = %ld, pre_chan = %ld, scan_low = %ld, scan_high = %ld, count = %ld\n",
+ cmd.timer.chan, cmd.timer.pre_chan, cmd.timer.scan_low,
+ cmd.timer.scan_high, cmd.channel_list.count);
+
+ /* Check whether sample and hold is available for this board */
+ if (cmd.sh) {
+ if (!ai_context->board_info->board_p->ai.sh_count) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Sample and Hold is not available for this board\n");
+ err = -ENODEV;
+ goto AI_CONFIG_ERR;
+ }
+ }
+
+ /* Check the channel list size */
+ if (cmd.channel_list.count > ME4000_AI_CHANNEL_LIST_COUNT) {
+ printk(KERN_ERR
+ "me4000_ai_config():Channel list is to large\n");
+ err = -EINVAL;
+ goto AI_CONFIG_ERR;
+ }
+
+ /* Copy channel list from user */
+ list = kmalloc(sizeof(u32) * cmd.channel_list.count, GFP_KERNEL);
+ if (!list) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Can't get memory for channel list\n");
+ err = -ENOMEM;
+ goto AI_CONFIG_ERR;
+ }
+ err =
+ copy_from_user(list, cmd.channel_list.list,
+ sizeof(u32) * cmd.channel_list.count);
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Can't copy from user space\n");
+ err = -EFAULT;
+ goto AI_CONFIG_ERR;
+ }
+
+ /* Check if last entry bit is set */
+ if (!(list[cmd.channel_list.count - 1] & ME4000_AI_LIST_LAST_ENTRY)) {
+ printk(KERN_WARNING
+ "me4000_ai_config():Last entry bit is not set\n");
+ list[cmd.channel_list.count - 1] |= ME4000_AI_LIST_LAST_ENTRY;
+ }
+
+ /* Check whether mode is equal for all entries */
+ mode = list[0] & 0x20;
+ for (i = 0; i < cmd.channel_list.count; i++) {
+ if ((list[i] & 0x20) != mode) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Mode is not equal for all entries\n");
+ err = -EINVAL;
+ goto AI_CONFIG_ERR;
+ }
+ }
+
+ /* Check whether channels are available for this mode */
+ if (mode == ME4000_AI_LIST_INPUT_SINGLE_ENDED) {
+ for (i = 0; i < cmd.channel_list.count; i++) {
+ if ((list[i] & 0x1F) >=
+ ai_context->board_info->board_p->ai.count) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Channel is not available for single ended\n");
+ err = -EINVAL;
+ goto AI_CONFIG_ERR;
+ }
+ }
+ } else if (mode == ME4000_AI_LIST_INPUT_DIFFERENTIAL) {
+ for (i = 0; i < cmd.channel_list.count; i++) {
+ if ((list[i] & 0x1F) >=
+ ai_context->board_info->board_p->ai.diff_count) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Channel is not available for differential\n");
+ err = -EINVAL;
+ goto AI_CONFIG_ERR;
+ }
+ }
+ }
+
+ /* Check if bipolar is set for all entries when in differential mode */
+ if (mode == ME4000_AI_LIST_INPUT_DIFFERENTIAL) {
+ for (i = 0; i < cmd.channel_list.count; i++) {
+ if ((list[i] & 0xC0) != ME4000_AI_LIST_RANGE_BIPOLAR_10
+ && (list[i] & 0xC0) !=
+ ME4000_AI_LIST_RANGE_BIPOLAR_2_5) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Bipolar is not selected in differential mode\n");
+ err = -EINVAL;
+ goto AI_CONFIG_ERR;
+ }
+ }
+ }
+
+ if (ai_context->mode != ME4000_AI_ACQ_MODE_EXT_SINGLE_VALUE) {
+ /* Check for minimum channel divisor */
+ if (cmd.timer.chan < ME4000_AI_MIN_TICKS) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Channel timer divisor is to low\n");
+ err = -EINVAL;
+ goto AI_CONFIG_ERR;
+ }
+
+ /* Check if minimum channel divisor is adjusted when sample and hold is activated */
+ if ((cmd.sh) && (cmd.timer.chan != ME4000_AI_MIN_TICKS)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Channel timer divisor must be at minimum when sample and hold is activated\n");
+ err = -EINVAL;
+ goto AI_CONFIG_ERR;
+ }
+
+ /* Check for minimum channel pre divisor */
+ if (cmd.timer.pre_chan < ME4000_AI_MIN_TICKS) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Channel pre timer divisor is to low\n");
+ err = -EINVAL;
+ goto AI_CONFIG_ERR;
+ }
+
+ /* Write the channel timers */
+ me4000_outl(cmd.timer.chan - 1, ai_context->chan_timer_reg);
+ me4000_outl(cmd.timer.pre_chan - 1,
+ ai_context->chan_pre_timer_reg);
+
+ /* Save the timer values in the board context */
+ ai_context->chan_timer = cmd.timer.chan;
+ ai_context->chan_pre_timer = cmd.timer.pre_chan;
+
+ if (ai_context->mode != ME4000_AI_ACQ_MODE_EXT_SINGLE_CHANLIST) {
+ /* Check for scan timer divisor */
+ scan =
+ (u64) cmd.timer.scan_low | ((u64) cmd.timer.
+ scan_high << 32);
+ if (scan != 0) {
+ if (scan <
+ cmd.channel_list.count * cmd.timer.chan +
+ 1) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_config():Scan timer divisor is to low\n");
+ err = -EINVAL;
+ goto AI_CONFIG_ERR;
+ }
+ }
+
+ /* Write the scan timers */
+ if (scan != 0) {
+ scan--;
+ tmp = (u32) (scan & 0xFFFFFFFF);
+ me4000_outl(tmp,
+ ai_context->scan_timer_low_reg);
+ tmp = (u32) ((scan >> 32) & 0xFFFFFFFF);
+ me4000_outl(tmp,
+ ai_context->scan_timer_high_reg);
+
+ scan =
+ scan - (cmd.timer.chan - 1) +
+ (cmd.timer.pre_chan - 1);
+ tmp = (u32) (scan & 0xFFFFFFFF);
+ me4000_outl(tmp,
+ ai_context->scan_pre_timer_low_reg);
+ tmp = (u32) ((scan >> 32) & 0xFFFFFFFF);
+ me4000_outl(tmp,
+ ai_context->
+ scan_pre_timer_high_reg);
+ } else {
+ me4000_outl(0x0,
+ ai_context->scan_timer_low_reg);
+ me4000_outl(0x0,
+ ai_context->scan_timer_high_reg);
+
+ me4000_outl(0x0,
+ ai_context->scan_pre_timer_low_reg);
+ me4000_outl(0x0,
+ ai_context->
+ scan_pre_timer_high_reg);
+ }
+
+ ai_context->scan_timer_low = cmd.timer.scan_low;
+ ai_context->scan_timer_high = cmd.timer.scan_high;
+ }
+ }
+
+ /* Clear the channel list */
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp &= ~ME4000_AI_CTRL_BIT_CHANNEL_FIFO;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_CHANNEL_FIFO;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+
+ /* Write the channel list */
+ for (i = 0; i < cmd.channel_list.count; i++) {
+ me4000_outl(list[i], ai_context->channel_list_reg);
+ }
+
+ /* Setup sample and hold */
+ if (cmd.sh) {
+ tmp |= ME4000_AI_CTRL_BIT_SAMPLE_HOLD;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ } else {
+ tmp &= ~ME4000_AI_CTRL_BIT_SAMPLE_HOLD;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ }
+
+ /* Save the channel list size in the board context */
+ ai_context->channel_list_count = cmd.channel_list.count;
+
+ kfree(list);
+
+ return 0;
+
+ AI_CONFIG_ERR:
+
+ /* Reset the timers */
+ ai_context->chan_timer = 66;
+ ai_context->chan_pre_timer = 66;
+ ai_context->scan_timer_low = 0;
+ ai_context->scan_timer_high = 0;
+
+ me4000_outl(65, ai_context->chan_timer_reg);
+ me4000_outl(65, ai_context->chan_pre_timer_reg);
+ me4000_outl(0, ai_context->scan_timer_high_reg);
+ me4000_outl(0, ai_context->scan_timer_low_reg);
+ me4000_outl(0, ai_context->scan_pre_timer_high_reg);
+ me4000_outl(0, ai_context->scan_pre_timer_low_reg);
+
+ ai_context->channel_list_count = 0;
+
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_AI_CTRL_BIT_CHANNEL_FIFO | ME4000_AI_CTRL_BIT_SAMPLE_HOLD);
+
+ if (list)
+ kfree(list);
+
+ return err;
+
+}
+
+static int ai_common_start(me4000_ai_context_t * ai_context)
+{
+ u32 tmp;
+ CALL_PDEBUG("ai_common_start() is executed\n");
+
+ tmp = me4000_inl(ai_context->ctrl_reg);
+
+ /* Check if conversion is stopped */
+ if (tmp & ME4000_AI_STATUS_BIT_FSM) {
+ printk(KERN_ERR
+ "ME4000:ai_common_start():Conversion is not stopped\n");
+ return -EBUSY;
+ }
+
+ /* Clear data fifo, disable all interrupts, clear sample counter reload */
+ tmp &= ~(ME4000_AI_CTRL_BIT_DATA_FIFO | ME4000_AI_CTRL_BIT_LE_IRQ |
+ ME4000_AI_CTRL_BIT_HF_IRQ | ME4000_AI_CTRL_BIT_SC_IRQ |
+ ME4000_AI_CTRL_BIT_SC_RELOAD);
+
+ me4000_outl(tmp, ai_context->ctrl_reg);
+
+ /* Clear circular buffer */
+ ai_context->circ_buf.head = 0;
+ ai_context->circ_buf.tail = 0;
+
+ /* Enable data fifo */
+ tmp |= ME4000_AI_CTRL_BIT_DATA_FIFO;
+
+ /* Determine interrupt setup */
+ if (ai_context->sample_counter && !ai_context->sample_counter_reload) {
+ /* Enable Half Full Interrupt and Sample Counter Interrupt */
+ tmp |= ME4000_AI_CTRL_BIT_SC_IRQ | ME4000_AI_CTRL_BIT_HF_IRQ;
+ } else if (ai_context->sample_counter
+ && ai_context->sample_counter_reload) {
+ if (ai_context->sample_counter <= ME4000_AI_FIFO_COUNT / 2) {
+ /* Enable only Sample Counter Interrupt */
+ tmp |=
+ ME4000_AI_CTRL_BIT_SC_IRQ |
+ ME4000_AI_CTRL_BIT_SC_RELOAD;
+ } else {
+ /* Enable Half Full Interrupt and Sample Counter Interrupt */
+ tmp |=
+ ME4000_AI_CTRL_BIT_SC_IRQ |
+ ME4000_AI_CTRL_BIT_HF_IRQ |
+ ME4000_AI_CTRL_BIT_SC_RELOAD;
+ }
+ } else {
+ /* Enable only Half Full Interrupt */
+ tmp |= ME4000_AI_CTRL_BIT_HF_IRQ;
+ }
+
+ /* Clear the stop bits */
+ tmp &= ~(ME4000_AI_CTRL_BIT_STOP | ME4000_AI_CTRL_BIT_IMMEDIATE_STOP);
+
+ /* Write setup to hardware */
+ me4000_outl(tmp, ai_context->ctrl_reg);
+
+ /* Write sample counter */
+ me4000_outl(ai_context->sample_counter, ai_context->sample_counter_reg);
+
+ return 0;
+}
+
+static int me4000_ai_start(me4000_ai_context_t * ai_context)
+{
+ int err;
+ CALL_PDEBUG("me4000_ai_start() is executed\n");
+
+ /* Prepare Hardware */
+ err = ai_common_start(ai_context);
+ if (err)
+ return err;
+
+ /* Start conversion by dummy read */
+ me4000_inl(ai_context->start_reg);
+
+ return 0;
+}
+
+static int me4000_ai_start_ex(unsigned long *arg,
+ me4000_ai_context_t * ai_context)
+{
+ int err;
+ wait_queue_head_t queue;
+ unsigned long ref;
+ unsigned long timeout;
+
+ CALL_PDEBUG("me4000_ai_start_ex() is executed\n");
+
+ if (get_user(timeout, arg)) {
+ printk(KERN_ERR
+ "me4000_ai_start_ex():Cannot copy data from user\n");
+ return -EFAULT;
+ }
+
+ init_waitqueue_head(&queue);
+
+ /* Prepare Hardware */
+ err = ai_common_start(ai_context);
+ if (err)
+ return err;
+
+ if (timeout) {
+ ref = jiffies;
+ while (!
+ (inl(ai_context->status_reg) & ME4000_AI_STATUS_BIT_FSM))
+ {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_start_ex():Wait on start of state machine interrupted\n");
+ return -EINTR;
+ }
+ if (((jiffies - ref) > (timeout * HZ / USER_HZ))) { // 2.6 has diffrent definitions for HZ in user and kernel space
+ printk(KERN_ERR
+ "ME4000:me4000_ai_start_ex():Timeout reached\n");
+ return -EIO;
+ }
+ }
+ } else {
+ while (!
+ (inl(ai_context->status_reg) & ME4000_AI_STATUS_BIT_FSM))
+ {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_start_ex():Wait on start of state machine interrupted\n");
+ return -EINTR;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int me4000_ai_stop(me4000_ai_context_t * ai_context)
+{
+ wait_queue_head_t queue;
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ai_stop() is executed\n");
+
+ init_waitqueue_head(&queue);
+
+ /* Disable irqs and clear data fifo */
+ spin_lock_irqsave(&ai_context->int_lock, flags);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_AI_CTRL_BIT_HF_IRQ | ME4000_AI_CTRL_BIT_SC_IRQ |
+ ME4000_AI_CTRL_BIT_DATA_FIFO);
+ /* Stop conversion of the state machine */
+ tmp |= ME4000_AI_CTRL_BIT_STOP;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+
+ /* Clear circular buffer */
+ ai_context->circ_buf.head = 0;
+ ai_context->circ_buf.tail = 0;
+
+ while (inl(ai_context->status_reg) & ME4000_AI_STATUS_BIT_FSM) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_stop():Wait on state machine after stop interrupted\n");
+ return -EINTR;
+ }
+ }
+
+ return 0;
+}
+
+static int me4000_ai_immediate_stop(me4000_ai_context_t * ai_context)
+{
+ wait_queue_head_t queue;
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ai_stop() is executed\n");
+
+ init_waitqueue_head(&queue);
+
+ /* Disable irqs and clear data fifo */
+ spin_lock_irqsave(&ai_context->int_lock, flags);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_AI_CTRL_BIT_HF_IRQ | ME4000_AI_CTRL_BIT_SC_IRQ |
+ ME4000_AI_CTRL_BIT_DATA_FIFO);
+ /* Stop conversion of the state machine */
+ tmp |= ME4000_AI_CTRL_BIT_IMMEDIATE_STOP;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+
+ /* Clear circular buffer */
+ ai_context->circ_buf.head = 0;
+ ai_context->circ_buf.tail = 0;
+
+ while (inl(ai_context->status_reg) & ME4000_AI_STATUS_BIT_FSM) {
+ interruptible_sleep_on_timeout(&queue, 1);
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_stop():Wait on state machine after stop interrupted\n");
+ return -EINTR;
+ }
+ }
+
+ return 0;
+}
+
+static int me4000_ai_ex_trig_enable(me4000_ai_context_t * ai_context)
+{
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ai_ex_trig_enable() is executed\n");
+
+ spin_lock_irqsave(&ai_context->int_lock, flags);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_EX_TRIG;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+
+ return 0;
+}
+
+static int me4000_ai_ex_trig_disable(me4000_ai_context_t * ai_context)
+{
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ai_ex_trig_disable() is executed\n");
+
+ spin_lock_irqsave(&ai_context->int_lock, flags);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp &= ~ME4000_AI_CTRL_BIT_EX_TRIG;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+
+ return 0;
+}
+
+static int me4000_ai_ex_trig_setup(me4000_ai_trigger_t * arg,
+ me4000_ai_context_t * ai_context)
+{
+ me4000_ai_trigger_t cmd;
+ int err;
+ u32 tmp;
+ unsigned long flags;
+
+ CALL_PDEBUG("me4000_ai_ex_trig_setup() is executed\n");
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_ai_trigger_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_ex_trig_setup():Can't copy from user space\n");
+ return -EFAULT;
+ }
+
+ spin_lock_irqsave(&ai_context->int_lock, flags);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+
+ if (cmd.mode == ME4000_AI_TRIGGER_EXT_DIGITAL) {
+ tmp &= ~ME4000_AI_CTRL_BIT_EX_TRIG_ANALOG;
+ } else if (cmd.mode == ME4000_AI_TRIGGER_EXT_ANALOG) {
+ if (!ai_context->board_info->board_p->ai.ex_trig_analog) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_ex_trig_setup():No analog trigger available\n");
+ return -EINVAL;
+ }
+ tmp |= ME4000_AI_CTRL_BIT_EX_TRIG_ANALOG;
+ } else {
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+ printk(KERN_ERR
+ "ME4000:me4000_ai_ex_trig_setup():Invalid trigger mode specified\n");
+ return -EINVAL;
+ }
+
+ if (cmd.edge == ME4000_AI_TRIGGER_EXT_EDGE_RISING) {
+ tmp &=
+ ~(ME4000_AI_CTRL_BIT_EX_TRIG_BOTH |
+ ME4000_AI_CTRL_BIT_EX_TRIG_FALLING);
+ } else if (cmd.edge == ME4000_AI_TRIGGER_EXT_EDGE_FALLING) {
+ tmp |= ME4000_AI_CTRL_BIT_EX_TRIG_FALLING;
+ tmp &= ~ME4000_AI_CTRL_BIT_EX_TRIG_BOTH;
+ } else if (cmd.edge == ME4000_AI_TRIGGER_EXT_EDGE_BOTH) {
+ tmp |=
+ ME4000_AI_CTRL_BIT_EX_TRIG_BOTH |
+ ME4000_AI_CTRL_BIT_EX_TRIG_FALLING;
+ } else {
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+ printk(KERN_ERR
+ "ME4000:me4000_ai_ex_trig_setup():Invalid trigger edge specified\n");
+ return -EINVAL;
+ }
+
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+ return 0;
+}
+
+static int me4000_ai_sc_setup(me4000_ai_sc_t * arg,
+ me4000_ai_context_t * ai_context)
+{
+ me4000_ai_sc_t cmd;
+ int err;
+
+ CALL_PDEBUG("me4000_ai_sc_setup() is executed\n");
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_ai_sc_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_sc_setup():Can't copy from user space\n");
+ return -EFAULT;
+ }
+
+ ai_context->sample_counter = cmd.value;
+ ai_context->sample_counter_reload = cmd.reload;
+
+ return 0;
+}
+
+static ssize_t me4000_ai_read(struct file *filep, char *buff, size_t cnt,
+ loff_t * offp)
+{
+ me4000_ai_context_t *ai_context = filep->private_data;
+ s16 *buffer = (s16 *) buff;
+ size_t count = cnt / 2;
+ unsigned long flags;
+ int tmp;
+ int c = 0;
+ int k = 0;
+ int ret = 0;
+ wait_queue_t wait;
+
+ CALL_PDEBUG("me4000_ai_read() is executed\n");
+
+ init_waitqueue_entry(&wait, current);
+
+ /* Check count */
+ if (count <= 0) {
+ PDEBUG("me4000_ai_read():Count is 0\n");
+ return 0;
+ }
+
+ while (count > 0) {
+ if (filep->f_flags & O_NONBLOCK) {
+ c = me4000_values_to_end(ai_context->circ_buf,
+ ME4000_AI_BUFFER_COUNT);
+ if (!c) {
+ PDEBUG
+ ("me4000_ai_read():Returning from nonblocking read\n");
+ break;
+ }
+ } else {
+ /* Check if conversion is still running */
+ if (!
+ (me4000_inl(ai_context->status_reg) &
+ ME4000_AI_STATUS_BIT_FSM)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_read():Conversion interrupted\n");
+ return -EPIPE;
+ }
+
+ wait_event_interruptible(ai_context->wait_queue,
+ (me4000_values_to_end
+ (ai_context->circ_buf,
+ ME4000_AI_BUFFER_COUNT)));
+ if (signal_pending(current)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_read():Wait on values interrupted from signal\n");
+ return -EINTR;
+ }
+ }
+
+ /* Only read count values or as much as available */
+ c = me4000_values_to_end(ai_context->circ_buf,
+ ME4000_AI_BUFFER_COUNT);
+ PDEBUG("me4000_ai_read():%d values to end\n", c);
+ if (count < c)
+ c = count;
+
+ PDEBUG("me4000_ai_read():Copy %d values to user space\n", c);
+ k = 2 * c;
+ k -= copy_to_user(buffer,
+ ai_context->circ_buf.buf +
+ ai_context->circ_buf.tail, k);
+ c = k / 2;
+ if (!c) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_read():Cannot copy new values to user\n");
+ return -EFAULT;
+ }
+
+ ai_context->circ_buf.tail =
+ (ai_context->circ_buf.tail + c) & (ME4000_AI_BUFFER_COUNT -
+ 1);
+ buffer += c;
+ count -= c;
+ ret += c;
+
+ spin_lock_irqsave(&ai_context->int_lock, flags);
+ if (me4000_buf_space
+ (ai_context->circ_buf, ME4000_AI_BUFFER_COUNT)) {
+ tmp = me4000_inl(ai_context->ctrl_reg);
+
+ /* Determine interrupt setup */
+ if (ai_context->sample_counter
+ && !ai_context->sample_counter_reload) {
+ /* Enable Half Full Interrupt and Sample Counter Interrupt */
+ tmp |=
+ ME4000_AI_CTRL_BIT_SC_IRQ |
+ ME4000_AI_CTRL_BIT_HF_IRQ;
+ } else if (ai_context->sample_counter
+ && ai_context->sample_counter_reload) {
+ if (ai_context->sample_counter <
+ ME4000_AI_FIFO_COUNT / 2) {
+ /* Enable only Sample Counter Interrupt */
+ tmp |= ME4000_AI_CTRL_BIT_SC_IRQ;
+ } else {
+ /* Enable Half Full Interrupt and Sample Counter Interrupt */
+ tmp |=
+ ME4000_AI_CTRL_BIT_SC_IRQ |
+ ME4000_AI_CTRL_BIT_HF_IRQ;
+ }
+ } else {
+ /* Enable only Half Full Interrupt */
+ tmp |= ME4000_AI_CTRL_BIT_HF_IRQ;
+ }
+
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ }
+ spin_unlock_irqrestore(&ai_context->int_lock, flags);
+ }
+
+ /* Check if conversion is still running */
+ if (!(me4000_inl(ai_context->status_reg) & ME4000_AI_STATUS_BIT_FSM)) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_read():Conversion not running after complete read\n");
+ return -EPIPE;
+ }
+
+ if (filep->f_flags & O_NONBLOCK) {
+ return (k == 0) ? -EAGAIN : 2 * ret;
+ }
+
+ CALL_PDEBUG("me4000_ai_read() is leaved\n");
+ return ret * 2;
+}
+
+static unsigned int me4000_ai_poll(struct file *file_p, poll_table * wait)
+{
+ me4000_ai_context_t *ai_context;
+ unsigned long mask = 0;
+
+ CALL_PDEBUG("me4000_ai_poll() is executed\n");
+
+ ai_context = file_p->private_data;
+
+ /* Register wait queue */
+ poll_wait(file_p, &ai_context->wait_queue, wait);
+
+ /* Get available values */
+ if (me4000_values_to_end(ai_context->circ_buf, ME4000_AI_BUFFER_COUNT))
+ mask |= POLLIN | POLLRDNORM;
+
+ PDEBUG("me4000_ai_poll():Return mask %lX\n", mask);
+
+ return mask;
+}
+
+static int me4000_ai_offset_enable(me4000_ai_context_t * ai_context)
+{
+ unsigned long tmp;
+
+ CALL_PDEBUG("me4000_ai_offset_enable() is executed\n");
+
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_OFFSET;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+
+ return 0;
+}
+
+static int me4000_ai_offset_disable(me4000_ai_context_t * ai_context)
+{
+ unsigned long tmp;
+
+ CALL_PDEBUG("me4000_ai_offset_disable() is executed\n");
+
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp &= ~ME4000_AI_CTRL_BIT_OFFSET;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+
+ return 0;
+}
+
+static int me4000_ai_fullscale_enable(me4000_ai_context_t * ai_context)
+{
+ unsigned long tmp;
+
+ CALL_PDEBUG("me4000_ai_fullscale_enable() is executed\n");
+
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_FULLSCALE;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+
+ return 0;
+}
+
+static int me4000_ai_fullscale_disable(me4000_ai_context_t * ai_context)
+{
+ unsigned long tmp;
+
+ CALL_PDEBUG("me4000_ai_fullscale_disable() is executed\n");
+
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp &= ~ME4000_AI_CTRL_BIT_FULLSCALE;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+
+ return 0;
+}
+
+static int me4000_ai_fsm_state(int *arg, me4000_ai_context_t * ai_context)
+{
+ unsigned long tmp;
+
+ CALL_PDEBUG("me4000_ai_fsm_state() is executed\n");
+
+ tmp =
+ (me4000_inl(ai_context->status_reg) & ME4000_AI_STATUS_BIT_FSM) ? 1
+ : 0;
+
+ if (put_user(tmp, arg)) {
+ printk(KERN_ERR "me4000_ai_fsm_state():Cannot copy to user\n");
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+static int me4000_ai_get_count_buffer(unsigned long *arg,
+ me4000_ai_context_t * ai_context)
+{
+ unsigned long c;
+ int err;
+
+ c = me4000_buf_count(ai_context->circ_buf, ME4000_AI_BUFFER_COUNT);
+
+ err = copy_to_user(arg, &c, sizeof(unsigned long));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_ai_get_count_buffer():Can't copy to user space\n");
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+/*---------------------------------- EEPROM stuff ---------------------------*/
+
+static int eeprom_write_cmd(me4000_ai_context_t * ai_context, unsigned long cmd,
+ int length)
+{
+ int i;
+ unsigned long value;
+
+ CALL_PDEBUG("eeprom_write_cmd() is executed\n");
+
+ PDEBUG("eeprom_write_cmd():Write command 0x%08lX with length = %d\n",
+ cmd, length);
+
+ /* Get the ICR register and clear the related bits */
+ value = me4000_inl(ai_context->board_info->plx_regbase + PLX_ICR);
+ value &= ~(PLX_ICR_MASK_EEPROM);
+ me4000_outl(value, ai_context->board_info->plx_regbase + PLX_ICR);
+
+ /* Raise the chip select */
+ value |= PLX_ICR_BIT_EEPROM_CHIP_SELECT;
+ me4000_outl(value, ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+
+ for (i = 0; i < length; i++) {
+ if (cmd & ((0x1 << (length - 1)) >> i)) {
+ value |= PLX_ICR_BIT_EEPROM_WRITE;
+ } else {
+ value &= ~PLX_ICR_BIT_EEPROM_WRITE;
+ }
+
+ /* Write to EEPROM */
+ me4000_outl(value,
+ ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+
+ /* Raising edge of the clock */
+ value |= PLX_ICR_BIT_EEPROM_CLOCK_SET;
+ me4000_outl(value,
+ ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+
+ /* Falling edge of the clock */
+ value &= ~PLX_ICR_BIT_EEPROM_CLOCK_SET;
+ me4000_outl(value,
+ ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+ }
+
+ /* Clear the chip select */
+ value &= ~PLX_ICR_BIT_EEPROM_CHIP_SELECT;
+ me4000_outl(value, ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+
+ /* Wait until hardware is ready for sure */
+ mdelay(10);
+
+ return 0;
+}
+
+static unsigned short eeprom_read_cmd(me4000_ai_context_t * ai_context,
+ unsigned long cmd, int length)
+{
+ int i;
+ unsigned long value;
+ unsigned short id = 0;
+
+ CALL_PDEBUG("eeprom_read_cmd() is executed\n");
+
+ PDEBUG("eeprom_read_cmd():Read command 0x%08lX with length = %d\n", cmd,
+ length);
+
+ /* Get the ICR register and clear the related bits */
+ value = me4000_inl(ai_context->board_info->plx_regbase + PLX_ICR);
+ value &= ~(PLX_ICR_MASK_EEPROM);
+
+ me4000_outl(value, ai_context->board_info->plx_regbase + PLX_ICR);
+
+ /* Raise the chip select */
+ value |= PLX_ICR_BIT_EEPROM_CHIP_SELECT;
+ me4000_outl(value, ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+
+ /* Write the read command to the eeprom */
+ for (i = 0; i < length; i++) {
+ if (cmd & ((0x1 << (length - 1)) >> i)) {
+ value |= PLX_ICR_BIT_EEPROM_WRITE;
+ } else {
+ value &= ~PLX_ICR_BIT_EEPROM_WRITE;
+ }
+ me4000_outl(value,
+ ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+
+ /* Raising edge of the clock */
+ value |= PLX_ICR_BIT_EEPROM_CLOCK_SET;
+ me4000_outl(value,
+ ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+
+ /* Falling edge of the clock */
+ value &= ~PLX_ICR_BIT_EEPROM_CLOCK_SET;
+ me4000_outl(value,
+ ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+ }
+
+ /* Read the value from the eeprom */
+ for (i = 0; i < 16; i++) {
+ /* Raising edge of the clock */
+ value |= PLX_ICR_BIT_EEPROM_CLOCK_SET;
+ me4000_outl(value,
+ ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+
+ if (me4000_inl(ai_context->board_info->plx_regbase + PLX_ICR) &
+ PLX_ICR_BIT_EEPROM_READ) {
+ id |= (0x8000 >> i);
+ PDEBUG("eeprom_read_cmd():OR with 0x%04X\n",
+ (0x8000 >> i));
+ } else {
+ PDEBUG("eeprom_read_cmd():Dont't OR\n");
+ }
+
+ /* Falling edge of the clock */
+ value &= ~PLX_ICR_BIT_EEPROM_CLOCK_SET;
+ me4000_outl(value,
+ ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+ }
+
+ /* Clear the chip select */
+ value &= ~PLX_ICR_BIT_EEPROM_CHIP_SELECT;
+ me4000_outl(value, ai_context->board_info->plx_regbase + PLX_ICR);
+ udelay(EEPROM_DELAY);
+
+ return id;
+}
+
+static int me4000_eeprom_write(me4000_eeprom_t * arg,
+ me4000_ai_context_t * ai_context)
+{
+ int err;
+ me4000_eeprom_t setup;
+ unsigned long cmd;
+ unsigned long date_high;
+ unsigned long date_low;
+
+ CALL_PDEBUG("me4000_eeprom_write() is executed\n");
+
+ err = copy_from_user(&setup, arg, sizeof(setup));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_eeprom_write():Cannot copy from user\n");
+ return err;
+ }
+
+ /* Enable writing */
+ eeprom_write_cmd(ai_context, ME4000_EEPROM_CMD_WRITE_ENABLE,
+ ME4000_EEPROM_CMD_LENGTH_WRITE_ENABLE);
+
+ /* Command for date */
+ date_high = (setup.date & 0xFFFF0000) >> 16;
+ date_low = (setup.date & 0x0000FFFF);
+
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_DATE_HIGH <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ date_high);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_DATE_LOW <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ date_low);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for unipolar 10V offset */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_1_UNI_OFFSET <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ uni_10_offset);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for unipolar 10V fullscale */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_1_UNI_FULLSCALE <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ uni_10_fullscale);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for unipolar 2,5V offset */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_4_UNI_OFFSET <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ uni_2_5_offset);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for unipolar 2,5V fullscale */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_4_UNI_FULLSCALE <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ uni_2_5_fullscale);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for bipolar 10V offset */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_1_BI_OFFSET <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ bi_10_offset);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for bipolar 10V fullscale */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_1_BI_FULLSCALE <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ bi_10_fullscale);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for bipolar 2,5V offset */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_4_BI_OFFSET <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ bi_2_5_offset);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for bipolar 2,5V fullscale */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_4_BI_FULLSCALE <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ bi_2_5_fullscale);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for differential 10V offset */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_1_DIFF_OFFSET <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ diff_10_offset);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for differential 10V fullscale */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_1_DIFF_FULLSCALE
+ << ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ diff_10_fullscale);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for differential 2,5V offset */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_4_DIFF_OFFSET <<
+ ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ diff_2_5_offset);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Command for differential 2,5V fullscale */
+ cmd =
+ ME4000_EEPROM_CMD_WRITE | (ME4000_EEPROM_ADR_GAIN_4_DIFF_FULLSCALE
+ << ME4000_EEPROM_DATA_LENGTH) | (0xFFFF &
+ (unsigned
+ long)
+ setup.
+ diff_2_5_fullscale);
+ err = eeprom_write_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_WRITE);
+ if (err)
+ return err;
+
+ /* Disable writing */
+ eeprom_write_cmd(ai_context, ME4000_EEPROM_CMD_WRITE_DISABLE,
+ ME4000_EEPROM_CMD_LENGTH_WRITE_DISABLE);
+
+ return 0;
+}
+
+static int me4000_eeprom_read(me4000_eeprom_t * arg,
+ me4000_ai_context_t * ai_context)
+{
+ int err;
+ unsigned long cmd;
+ me4000_eeprom_t setup;
+
+ CALL_PDEBUG("me4000_eeprom_read() is executed\n");
+
+ /* Command for date */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_DATE_HIGH;
+ setup.date =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+ setup.date <<= 16;
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_DATE_LOW;
+ setup.date |=
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for unipolar 10V offset */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_1_UNI_OFFSET;
+ setup.uni_10_offset =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for unipolar 10V fullscale */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_1_UNI_FULLSCALE;
+ setup.uni_10_fullscale =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for unipolar 2,5V offset */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_4_UNI_OFFSET;
+ setup.uni_2_5_offset =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for unipolar 2,5V fullscale */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_4_UNI_FULLSCALE;
+ setup.uni_2_5_fullscale =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for bipolar 10V offset */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_1_BI_OFFSET;
+ setup.bi_10_offset =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for bipolar 10V fullscale */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_1_BI_FULLSCALE;
+ setup.bi_10_fullscale =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for bipolar 2,5V offset */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_4_BI_OFFSET;
+ setup.bi_2_5_offset =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for bipolar 2,5V fullscale */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_4_BI_FULLSCALE;
+ setup.bi_2_5_fullscale =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for differntial 10V offset */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_1_DIFF_OFFSET;
+ setup.diff_10_offset =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for differential 10V fullscale */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_1_DIFF_FULLSCALE;
+ setup.diff_10_fullscale =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for differntial 2,5V offset */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_4_DIFF_OFFSET;
+ setup.diff_2_5_offset =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ /* Command for differential 2,5V fullscale */
+ cmd = ME4000_EEPROM_CMD_READ | ME4000_EEPROM_ADR_GAIN_4_DIFF_FULLSCALE;
+ setup.diff_2_5_fullscale =
+ eeprom_read_cmd(ai_context, cmd, ME4000_EEPROM_CMD_LENGTH_READ);
+
+ err = copy_to_user(arg, &setup, sizeof(setup));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_eeprom_read():Cannot copy to user\n");
+ return err;
+ }
+
+ return 0;
+}
+
+/*------------------------------------ DIO stuff ----------------------------------------------*/
+
+static int me4000_dio_ioctl(struct inode *inode_p, struct file *file_p,
+ unsigned int service, unsigned long arg)
+{
+ me4000_dio_context_t *dio_context;
+
+ CALL_PDEBUG("me4000_dio_ioctl() is executed\n");
+
+ dio_context = file_p->private_data;
+
+ if (_IOC_TYPE(service) != ME4000_MAGIC) {
+ printk(KERN_ERR "me4000_dio_ioctl():Wrong magic number\n");
+ return -ENOTTY;
+ }
+ if (_IOC_NR(service) > ME4000_IOCTL_MAXNR) {
+ printk(KERN_ERR "me4000_dio_ioctl():Service number to high\n");
+ return -ENOTTY;
+ }
+
+ switch (service) {
+ case ME4000_DIO_CONFIG:
+ return me4000_dio_config((me4000_dio_config_t *) arg,
+ dio_context);
+ case ME4000_DIO_SET_BYTE:
+ return me4000_dio_set_byte((me4000_dio_byte_t *) arg,
+ dio_context);
+ case ME4000_DIO_GET_BYTE:
+ return me4000_dio_get_byte((me4000_dio_byte_t *) arg,
+ dio_context);
+ case ME4000_DIO_RESET:
+ return me4000_dio_reset(dio_context);
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_dio_ioctl():Invalid service number %d\n",
+ service);
+ return -ENOTTY;
+ }
+ return 0;
+}
+
+static int me4000_dio_config(me4000_dio_config_t * arg,
+ me4000_dio_context_t * dio_context)
+{
+ me4000_dio_config_t cmd;
+ u32 tmp;
+ int err;
+
+ CALL_PDEBUG("me4000_dio_config() is executed\n");
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_dio_config_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Can't copy from user space\n");
+ return -EFAULT;
+ }
+
+ /* Check port parameter */
+ if (cmd.port >= dio_context->dio_count) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Port %d is not available\n",
+ cmd.port);
+ return -EINVAL;
+ }
+
+ PDEBUG("me4000_dio_config(): port %d, mode %d, function %d\n", cmd.port,
+ cmd.mode, cmd.function);
+
+ if (cmd.port == ME4000_DIO_PORT_A) {
+ if (cmd.mode == ME4000_DIO_PORT_INPUT) {
+ /* Check if opto isolated version */
+ if (!(me4000_inl(dio_context->dir_reg) & 0x1)) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Cannot set to input on opto isolated versions\n");
+ return -EIO;
+ }
+
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_0 |
+ ME4000_DIO_CTRL_BIT_MODE_1);
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_PORT_OUTPUT) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_0 |
+ ME4000_DIO_CTRL_BIT_MODE_1);
+ tmp |= ME4000_DIO_CTRL_BIT_MODE_0;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_FIFO_LOW) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_0 |
+ ME4000_DIO_CTRL_BIT_MODE_1 |
+ ME4000_DIO_CTRL_BIT_FIFO_HIGH_0);
+ tmp |=
+ ME4000_DIO_CTRL_BIT_MODE_0 |
+ ME4000_DIO_CTRL_BIT_MODE_1;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_FIFO_HIGH) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp |=
+ ME4000_DIO_CTRL_BIT_MODE_0 |
+ ME4000_DIO_CTRL_BIT_MODE_1 |
+ ME4000_DIO_CTRL_BIT_FIFO_HIGH_0;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Mode %d is not available\n",
+ cmd.mode);
+ return -EINVAL;
+ }
+ } else if (cmd.port == ME4000_DIO_PORT_B) {
+ if (cmd.mode == ME4000_DIO_PORT_INPUT) {
+ /* Only do anything when TTL version is installed */
+ if ((me4000_inl(dio_context->dir_reg) & 0x1)) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_2 |
+ ME4000_DIO_CTRL_BIT_MODE_3);
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ }
+ } else if (cmd.mode == ME4000_DIO_PORT_OUTPUT) {
+ /* Check if opto isolated version */
+ if (!(me4000_inl(dio_context->dir_reg) & 0x1)) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Cannot set to output on opto isolated versions\n");
+ return -EIO;
+ }
+
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_2 |
+ ME4000_DIO_CTRL_BIT_MODE_3);
+ tmp |= ME4000_DIO_CTRL_BIT_MODE_2;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_FIFO_LOW) {
+ /* Check if opto isolated version */
+ if (!(me4000_inl(dio_context->dir_reg) & 0x1)) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Cannot set to FIFO low output on opto isolated versions\n");
+ return -EIO;
+ }
+
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_2 |
+ ME4000_DIO_CTRL_BIT_MODE_3 |
+ ME4000_DIO_CTRL_BIT_FIFO_HIGH_1);
+ tmp |=
+ ME4000_DIO_CTRL_BIT_MODE_2 |
+ ME4000_DIO_CTRL_BIT_MODE_3;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_FIFO_HIGH) {
+ /* Check if opto isolated version */
+ if (!(me4000_inl(dio_context->dir_reg) & 0x1)) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Cannot set to FIFO high output on opto isolated versions\n");
+ return -EIO;
+ }
+
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp |=
+ ME4000_DIO_CTRL_BIT_MODE_2 |
+ ME4000_DIO_CTRL_BIT_MODE_3 |
+ ME4000_DIO_CTRL_BIT_FIFO_HIGH_1;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Mode %d is not available\n",
+ cmd.mode);
+ return -EINVAL;
+ }
+ } else if (cmd.port == ME4000_DIO_PORT_C) {
+ if (cmd.mode == ME4000_DIO_PORT_INPUT) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_4 |
+ ME4000_DIO_CTRL_BIT_MODE_5);
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_PORT_OUTPUT) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_4 |
+ ME4000_DIO_CTRL_BIT_MODE_5);
+ tmp |= ME4000_DIO_CTRL_BIT_MODE_4;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_FIFO_LOW) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_4 |
+ ME4000_DIO_CTRL_BIT_MODE_5 |
+ ME4000_DIO_CTRL_BIT_FIFO_HIGH_2);
+ tmp |=
+ ME4000_DIO_CTRL_BIT_MODE_4 |
+ ME4000_DIO_CTRL_BIT_MODE_5;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_FIFO_HIGH) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp |=
+ ME4000_DIO_CTRL_BIT_MODE_4 |
+ ME4000_DIO_CTRL_BIT_MODE_5 |
+ ME4000_DIO_CTRL_BIT_FIFO_HIGH_2;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Mode %d is not available\n",
+ cmd.mode);
+ return -EINVAL;
+ }
+ } else if (cmd.port == ME4000_DIO_PORT_D) {
+ if (cmd.mode == ME4000_DIO_PORT_INPUT) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_6 |
+ ME4000_DIO_CTRL_BIT_MODE_7);
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_PORT_OUTPUT) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_6 |
+ ME4000_DIO_CTRL_BIT_MODE_7);
+ tmp |= ME4000_DIO_CTRL_BIT_MODE_6;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_FIFO_LOW) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_MODE_6 |
+ ME4000_DIO_CTRL_BIT_MODE_7 |
+ ME4000_DIO_CTRL_BIT_FIFO_HIGH_3);
+ tmp |=
+ ME4000_DIO_CTRL_BIT_MODE_6 |
+ ME4000_DIO_CTRL_BIT_MODE_7;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.mode == ME4000_DIO_FIFO_HIGH) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp |=
+ ME4000_DIO_CTRL_BIT_MODE_6 |
+ ME4000_DIO_CTRL_BIT_MODE_7 |
+ ME4000_DIO_CTRL_BIT_FIFO_HIGH_3;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Mode %d is not available\n",
+ cmd.mode);
+ return -EINVAL;
+ }
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Port %d is not available\n",
+ cmd.port);
+ return -EINVAL;
+ }
+
+ PDEBUG("me4000_dio_config(): port %d, mode %d, function %d\n", cmd.port,
+ cmd.mode, cmd.function);
+
+ if ((cmd.mode == ME4000_DIO_FIFO_HIGH)
+ || (cmd.mode == ME4000_DIO_FIFO_LOW)) {
+ tmp = me4000_inl(dio_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_DIO_CTRL_BIT_FUNCTION_0 |
+ ME4000_DIO_CTRL_BIT_FUNCTION_1);
+ if (cmd.function == ME4000_DIO_FUNCTION_PATTERN) {
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.function == ME4000_DIO_FUNCTION_DEMUX) {
+ tmp |= ME4000_DIO_CTRL_BIT_FUNCTION_0;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else if (cmd.function == ME4000_DIO_FUNCTION_MUX) {
+ tmp |= ME4000_DIO_CTRL_BIT_FUNCTION_1;
+ me4000_outl(tmp, dio_context->ctrl_reg);
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_config():Invalid port function specified\n");
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static int me4000_dio_set_byte(me4000_dio_byte_t * arg,
+ me4000_dio_context_t * dio_context)
+{
+ me4000_dio_byte_t cmd;
+ int err;
+
+ CALL_PDEBUG("me4000_dio_set_byte() is executed\n");
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_dio_byte_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_set_byte():Can't copy from user space\n");
+ return -EFAULT;
+ }
+
+ /* Check port parameter */
+ if (cmd.port >= dio_context->dio_count) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_set_byte():Port %d is not available\n",
+ cmd.port);
+ return -EINVAL;
+ }
+
+ if (cmd.port == ME4000_DIO_PORT_A) {
+ if ((me4000_inl(dio_context->ctrl_reg) & 0x3) != 0x1) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_set_byte():Port %d is not in output mode\n",
+ cmd.port);
+ return -EIO;
+ }
+ me4000_outl(cmd.byte, dio_context->port_0_reg);
+ } else if (cmd.port == ME4000_DIO_PORT_B) {
+ if ((me4000_inl(dio_context->ctrl_reg) & 0xC) != 0x4) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_set_byte():Port %d is not in output mode\n",
+ cmd.port);
+ return -EIO;
+ }
+ me4000_outl(cmd.byte, dio_context->port_1_reg);
+ } else if (cmd.port == ME4000_DIO_PORT_C) {
+ if ((me4000_inl(dio_context->ctrl_reg) & 0x30) != 0x10) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_set_byte():Port %d is not in output mode\n",
+ cmd.port);
+ return -EIO;
+ }
+ me4000_outl(cmd.byte, dio_context->port_2_reg);
+ } else if (cmd.port == ME4000_DIO_PORT_D) {
+ if ((me4000_inl(dio_context->ctrl_reg) & 0xC0) != 0x40) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_set_byte():Port %d is not in output mode\n",
+ cmd.port);
+ return -EIO;
+ }
+ me4000_outl(cmd.byte, dio_context->port_3_reg);
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_set_byte():Port %d is not available\n",
+ cmd.port);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int me4000_dio_get_byte(me4000_dio_byte_t * arg,
+ me4000_dio_context_t * dio_context)
+{
+ me4000_dio_byte_t cmd;
+ int err;
+
+ CALL_PDEBUG("me4000_dio_get_byte() is executed\n");
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_dio_byte_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_get_byte():Can't copy from user space\n");
+ return -EFAULT;
+ }
+
+ /* Check port parameter */
+ if (cmd.port >= dio_context->dio_count) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_get_byte():Port %d is not available\n",
+ cmd.port);
+ return -EINVAL;
+ }
+
+ if (cmd.port == ME4000_DIO_PORT_A) {
+ cmd.byte = me4000_inl(dio_context->port_0_reg) & 0xFF;
+ } else if (cmd.port == ME4000_DIO_PORT_B) {
+ cmd.byte = me4000_inl(dio_context->port_1_reg) & 0xFF;
+ } else if (cmd.port == ME4000_DIO_PORT_C) {
+ cmd.byte = me4000_inl(dio_context->port_2_reg) & 0xFF;
+ } else if (cmd.port == ME4000_DIO_PORT_D) {
+ cmd.byte = me4000_inl(dio_context->port_3_reg) & 0xFF;
+ } else {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_get_byte():Port %d is not available\n",
+ cmd.port);
+ return -EINVAL;
+ }
+
+ /* Copy result back to user */
+ err = copy_to_user(arg, &cmd, sizeof(me4000_dio_byte_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_dio_get_byte():Can't copy to user space\n");
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+static int me4000_dio_reset(me4000_dio_context_t * dio_context)
+{
+ CALL_PDEBUG("me4000_dio_reset() is executed\n");
+
+ /* Clear the control register */
+ me4000_outl(0, dio_context->ctrl_reg);
+
+ /* Check for opto isolated version */
+ if (!(me4000_inl(dio_context->dir_reg) & 0x1)) {
+ me4000_outl(0x1, dio_context->ctrl_reg);
+ me4000_outl(0x0, dio_context->port_0_reg);
+ }
+
+ return 0;
+}
+
+/*------------------------------------ COUNTER STUFF ------------------------------------*/
+
+static int me4000_cnt_ioctl(struct inode *inode_p, struct file *file_p,
+ unsigned int service, unsigned long arg)
+{
+ me4000_cnt_context_t *cnt_context;
+
+ CALL_PDEBUG("me4000_cnt_ioctl() is executed\n");
+
+ cnt_context = file_p->private_data;
+
+ if (_IOC_TYPE(service) != ME4000_MAGIC) {
+ printk(KERN_ERR "me4000_dio_ioctl():Wrong magic number\n");
+ return -ENOTTY;
+ }
+ if (_IOC_NR(service) > ME4000_IOCTL_MAXNR) {
+ printk(KERN_ERR "me4000_dio_ioctl():Service number to high\n");
+ return -ENOTTY;
+ }
+
+ switch (service) {
+ case ME4000_CNT_READ:
+ return me4000_cnt_read((me4000_cnt_t *) arg, cnt_context);
+ case ME4000_CNT_WRITE:
+ return me4000_cnt_write((me4000_cnt_t *) arg, cnt_context);
+ case ME4000_CNT_CONFIG:
+ return me4000_cnt_config((me4000_cnt_config_t *) arg,
+ cnt_context);
+ case ME4000_CNT_RESET:
+ return me4000_cnt_reset(cnt_context);
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_dio_ioctl():Invalid service number %d\n",
+ service);
+ return -ENOTTY;
+ }
+ return 0;
+}
+
+static int me4000_cnt_config(me4000_cnt_config_t * arg,
+ me4000_cnt_context_t * cnt_context)
+{
+ me4000_cnt_config_t cmd;
+ u8 counter;
+ u8 mode;
+ int err;
+
+ CALL_PDEBUG("me4000_cnt_config() is executed\n");
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_cnt_config_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_cnt_config():Can't copy from user space\n");
+ return -EFAULT;
+ }
+
+ /* Check counter parameter */
+ switch (cmd.counter) {
+ case ME4000_CNT_COUNTER_0:
+ counter = ME4000_CNT_CTRL_BIT_COUNTER_0;
+ break;
+ case ME4000_CNT_COUNTER_1:
+ counter = ME4000_CNT_CTRL_BIT_COUNTER_1;
+ break;
+ case ME4000_CNT_COUNTER_2:
+ counter = ME4000_CNT_CTRL_BIT_COUNTER_2;
+ break;
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_cnt_config():Counter %d is not available\n",
+ cmd.counter);
+ return -EINVAL;
+ }
+
+ /* Check mode parameter */
+ switch (cmd.mode) {
+ case ME4000_CNT_MODE_0:
+ mode = ME4000_CNT_CTRL_BIT_MODE_0;
+ break;
+ case ME4000_CNT_MODE_1:
+ mode = ME4000_CNT_CTRL_BIT_MODE_1;
+ break;
+ case ME4000_CNT_MODE_2:
+ mode = ME4000_CNT_CTRL_BIT_MODE_2;
+ break;
+ case ME4000_CNT_MODE_3:
+ mode = ME4000_CNT_CTRL_BIT_MODE_3;
+ break;
+ case ME4000_CNT_MODE_4:
+ mode = ME4000_CNT_CTRL_BIT_MODE_4;
+ break;
+ case ME4000_CNT_MODE_5:
+ mode = ME4000_CNT_CTRL_BIT_MODE_5;
+ break;
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_cnt_config():Mode %d is not available\n",
+ cmd.mode);
+ return -EINVAL;
+ }
+
+ /* Write the control word */
+ me4000_outb((counter | mode | 0x30), cnt_context->ctrl_reg);
+
+ return 0;
+}
+
+static int me4000_cnt_read(me4000_cnt_t * arg,
+ me4000_cnt_context_t * cnt_context)
+{
+ me4000_cnt_t cmd;
+ u8 tmp;
+ int err;
+
+ CALL_PDEBUG("me4000_cnt_read() is executed\n");
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_cnt_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_cnt_read():Can't copy from user space\n");
+ return -EFAULT;
+ }
+
+ /* Read counter */
+ switch (cmd.counter) {
+ case ME4000_CNT_COUNTER_0:
+ tmp = me4000_inb(cnt_context->counter_0_reg);
+ cmd.value = tmp;
+ tmp = me4000_inb(cnt_context->counter_0_reg);
+ cmd.value |= ((u16) tmp) << 8;
+ break;
+ case ME4000_CNT_COUNTER_1:
+ tmp = me4000_inb(cnt_context->counter_1_reg);
+ cmd.value = tmp;
+ tmp = me4000_inb(cnt_context->counter_1_reg);
+ cmd.value |= ((u16) tmp) << 8;
+ break;
+ case ME4000_CNT_COUNTER_2:
+ tmp = me4000_inb(cnt_context->counter_2_reg);
+ cmd.value = tmp;
+ tmp = me4000_inb(cnt_context->counter_2_reg);
+ cmd.value |= ((u16) tmp) << 8;
+ break;
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_cnt_read():Counter %d is not available\n",
+ cmd.counter);
+ return -EINVAL;
+ }
+
+ /* Copy result back to user */
+ err = copy_to_user(arg, &cmd, sizeof(me4000_cnt_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_cnt_read():Can't copy to user space\n");
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+static int me4000_cnt_write(me4000_cnt_t * arg,
+ me4000_cnt_context_t * cnt_context)
+{
+ me4000_cnt_t cmd;
+ u8 tmp;
+ int err;
+
+ CALL_PDEBUG("me4000_cnt_write() is executed\n");
+
+ /* Copy data from user */
+ err = copy_from_user(&cmd, arg, sizeof(me4000_cnt_t));
+ if (err) {
+ printk(KERN_ERR
+ "ME4000:me4000_cnt_write():Can't copy from user space\n");
+ return -EFAULT;
+ }
+
+ /* Write counter */
+ switch (cmd.counter) {
+ case ME4000_CNT_COUNTER_0:
+ tmp = cmd.value & 0xFF;
+ me4000_outb(tmp, cnt_context->counter_0_reg);
+ tmp = (cmd.value >> 8) & 0xFF;
+ me4000_outb(tmp, cnt_context->counter_0_reg);
+ break;
+ case ME4000_CNT_COUNTER_1:
+ tmp = cmd.value & 0xFF;
+ me4000_outb(tmp, cnt_context->counter_1_reg);
+ tmp = (cmd.value >> 8) & 0xFF;
+ me4000_outb(tmp, cnt_context->counter_1_reg);
+ break;
+ case ME4000_CNT_COUNTER_2:
+ tmp = cmd.value & 0xFF;
+ me4000_outb(tmp, cnt_context->counter_2_reg);
+ tmp = (cmd.value >> 8) & 0xFF;
+ me4000_outb(tmp, cnt_context->counter_2_reg);
+ break;
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_cnt_write():Counter %d is not available\n",
+ cmd.counter);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int me4000_cnt_reset(me4000_cnt_context_t * cnt_context)
+{
+ CALL_PDEBUG("me4000_cnt_reset() is executed\n");
+
+ /* Set the mode and value for counter 0 */
+ me4000_outb(0x30, cnt_context->ctrl_reg);
+ me4000_outb(0x00, cnt_context->counter_0_reg);
+ me4000_outb(0x00, cnt_context->counter_0_reg);
+
+ /* Set the mode and value for counter 1 */
+ me4000_outb(0x70, cnt_context->ctrl_reg);
+ me4000_outb(0x00, cnt_context->counter_1_reg);
+ me4000_outb(0x00, cnt_context->counter_1_reg);
+
+ /* Set the mode and value for counter 2 */
+ me4000_outb(0xB0, cnt_context->ctrl_reg);
+ me4000_outb(0x00, cnt_context->counter_2_reg);
+ me4000_outb(0x00, cnt_context->counter_2_reg);
+
+ return 0;
+}
+
+/*------------------------------------ External Interrupt stuff ------------------------------------*/
+
+static int me4000_ext_int_ioctl(struct inode *inode_p, struct file *file_p,
+ unsigned int service, unsigned long arg)
+{
+ me4000_ext_int_context_t *ext_int_context;
+
+ CALL_PDEBUG("me4000_ext_int_ioctl() is executed\n");
+
+ ext_int_context = file_p->private_data;
+
+ if (_IOC_TYPE(service) != ME4000_MAGIC) {
+ printk(KERN_ERR "me4000_ext_int_ioctl():Wrong magic number\n");
+ return -ENOTTY;
+ }
+ if (_IOC_NR(service) > ME4000_IOCTL_MAXNR) {
+ printk(KERN_ERR
+ "me4000_ext_int_ioctl():Service number to high\n");
+ return -ENOTTY;
+ }
+
+ switch (service) {
+ case ME4000_EXT_INT_ENABLE:
+ return me4000_ext_int_enable(ext_int_context);
+ case ME4000_EXT_INT_DISABLE:
+ return me4000_ext_int_disable(ext_int_context);
+ case ME4000_EXT_INT_COUNT:
+ return me4000_ext_int_count((unsigned long *)arg,
+ ext_int_context);
+ default:
+ printk(KERN_ERR
+ "ME4000:me4000_ext_int_ioctl():Invalid service number %d\n",
+ service);
+ return -ENOTTY;
+ }
+ return 0;
+}
+
+static int me4000_ext_int_enable(me4000_ext_int_context_t * ext_int_context)
+{
+ unsigned long tmp;
+
+ CALL_PDEBUG("me4000_ext_int_enable() is executed\n");
+
+ tmp = me4000_inl(ext_int_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_EX_IRQ;
+ me4000_outl(tmp, ext_int_context->ctrl_reg);
+
+ return 0;
+}
+
+static int me4000_ext_int_disable(me4000_ext_int_context_t * ext_int_context)
+{
+ unsigned long tmp;
+
+ CALL_PDEBUG("me4000_ext_int_disable() is executed\n");
+
+ tmp = me4000_inl(ext_int_context->ctrl_reg);
+ tmp &= ~ME4000_AI_CTRL_BIT_EX_IRQ;
+ me4000_outl(tmp, ext_int_context->ctrl_reg);
+
+ return 0;
+}
+
+static int me4000_ext_int_count(unsigned long *arg,
+ me4000_ext_int_context_t * ext_int_context)
+{
+
+ CALL_PDEBUG("me4000_ext_int_count() is executed\n");
+
+ put_user(ext_int_context->int_count, arg);
+ return 0;
+}
+
+/*------------------------------------ General stuff ------------------------------------*/
+
+static int me4000_get_user_info(me4000_user_info_t * arg,
+ me4000_info_t * board_info)
+{
+ me4000_user_info_t user_info;
+
+ CALL_PDEBUG("me4000_get_user_info() is executed\n");
+
+ user_info.board_count = board_info->board_count;
+ user_info.plx_regbase = board_info->plx_regbase;
+ user_info.plx_regbase_size = board_info->plx_regbase_size;
+ user_info.me4000_regbase = board_info->me4000_regbase;
+ user_info.me4000_regbase_size = board_info->me4000_regbase_size;
+ user_info.serial_no = board_info->serial_no;
+ user_info.hw_revision = board_info->hw_revision;
+ user_info.vendor_id = board_info->vendor_id;
+ user_info.device_id = board_info->device_id;
+ user_info.pci_bus_no = board_info->pci_bus_no;
+ user_info.pci_dev_no = board_info->pci_dev_no;
+ user_info.pci_func_no = board_info->pci_func_no;
+ user_info.irq = board_info->irq;
+ user_info.irq_count = board_info->irq_count;
+ user_info.driver_version = ME4000_DRIVER_VERSION;
+ user_info.ao_count = board_info->board_p->ao.count;
+ user_info.ao_fifo_count = board_info->board_p->ao.fifo_count;
+
+ user_info.ai_count = board_info->board_p->ai.count;
+ user_info.ai_sh_count = board_info->board_p->ai.sh_count;
+ user_info.ai_ex_trig_analog = board_info->board_p->ai.ex_trig_analog;
+
+ user_info.dio_count = board_info->board_p->dio.count;
+
+ user_info.cnt_count = board_info->board_p->cnt.count;
+
+ if (copy_to_user(arg, &user_info, sizeof(me4000_user_info_t)))
+ return -EFAULT;
+
+ return 0;
+}
+
+/*------------------------------------ ISR STUFF ------------------------------------*/
+
+static int me4000_ext_int_fasync(int fd, struct file *file_ptr, int mode)
+{
+ int result = 0;
+ me4000_ext_int_context_t *ext_int_context;
+
+ CALL_PDEBUG("me4000_ext_int_fasync() is executed\n");
+
+ ext_int_context = file_ptr->private_data;
+
+ result =
+ fasync_helper(fd, file_ptr, mode, &ext_int_context->fasync_ptr);
+
+ CALL_PDEBUG("me4000_ext_int_fasync() is leaved\n");
+ return result;
+}
+
+static irqreturn_t me4000_ao_isr(int irq, void *dev_id)
+{
+ u32 tmp;
+ u32 value;
+ me4000_ao_context_t *ao_context;
+ int i;
+ int c = 0;
+ int c1 = 0;
+ //unsigned long before;
+ //unsigned long after;
+
+ ISR_PDEBUG("me4000_ao_isr() is executed\n");
+
+ ao_context = dev_id;
+
+ /* Check if irq number is right */
+ if (irq != ao_context->irq) {
+ ISR_PDEBUG("me4000_ao_isr():incorrect interrupt num: %d\n",
+ irq);
+ return IRQ_NONE;
+ }
+
+ /* Check if this DAC rised an interrupt */
+ if (!
+ ((0x1 << (ao_context->index + 3)) &
+ me4000_inl(ao_context->irq_status_reg))) {
+ ISR_PDEBUG("me4000_ao_isr():Not this DAC\n");
+ return IRQ_NONE;
+ }
+
+ /* Read status register to find out what happened */
+ tmp = me4000_inl(ao_context->status_reg);
+
+ if (!(tmp & ME4000_AO_STATUS_BIT_EF) && (tmp & ME4000_AO_STATUS_BIT_HF)
+ && (tmp & ME4000_AO_STATUS_BIT_HF)) {
+ c = ME4000_AO_FIFO_COUNT;
+ ISR_PDEBUG("me4000_ao_isr():Fifo empty\n");
+ } else if ((tmp & ME4000_AO_STATUS_BIT_EF)
+ && (tmp & ME4000_AO_STATUS_BIT_HF)
+ && (tmp & ME4000_AO_STATUS_BIT_HF)) {
+ c = ME4000_AO_FIFO_COUNT / 2;
+ ISR_PDEBUG("me4000_ao_isr():Fifo under half full\n");
+ } else {
+ c = 0;
+ ISR_PDEBUG("me4000_ao_isr():Fifo full\n");
+ }
+
+ ISR_PDEBUG("me4000_ao_isr():Try to write 0x%04X values\n", c);
+
+ while (1) {
+ c1 = me4000_values_to_end(ao_context->circ_buf,
+ ME4000_AO_BUFFER_COUNT);
+ ISR_PDEBUG("me4000_ao_isr():Values to end = %d\n", c1);
+ if (c1 > c)
+ c1 = c;
+
+ if (c1 <= 0) {
+ ISR_PDEBUG
+ ("me4000_ao_isr():Work done or buffer empty\n");
+ break;
+ }
+ //rdtscl(before);
+ if (((ao_context->fifo_reg & 0xFF) == ME4000_AO_01_FIFO_REG) ||
+ ((ao_context->fifo_reg & 0xFF) == ME4000_AO_03_FIFO_REG)) {
+ for (i = 0; i < c1; i++) {
+ value =
+ ((u32)
+ (*
+ (ao_context->circ_buf.buf +
+ ao_context->circ_buf.tail + i))) << 16;
+ outl(value, ao_context->fifo_reg);
+ }
+ } else
+ outsw(ao_context->fifo_reg,
+ ao_context->circ_buf.buf +
+ ao_context->circ_buf.tail, c1);
+
+ //rdtscl(after);
+ //printk(KERN_ERR"ME4000:me4000_ao_isr():Time lapse = %lu\n", after - before);
+
+ ao_context->circ_buf.tail =
+ (ao_context->circ_buf.tail + c1) & (ME4000_AO_BUFFER_COUNT -
+ 1);
+ ISR_PDEBUG("me4000_ao_isr():%d values wrote to port 0x%04X\n",
+ c1, ao_context->fifo_reg);
+ c -= c1;
+ }
+
+ /* If there are no values left in the buffer, disable interrupts */
+ spin_lock(&ao_context->int_lock);
+ if (!me4000_buf_count(ao_context->circ_buf, ME4000_AO_BUFFER_COUNT)) {
+ ISR_PDEBUG
+ ("me4000_ao_isr():Disable Interrupt because no values left in buffer\n");
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp &= ~ME4000_AO_CTRL_BIT_ENABLE_IRQ;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ }
+ spin_unlock(&ao_context->int_lock);
+
+ /* Reset the interrupt */
+ spin_lock(&ao_context->int_lock);
+ tmp = me4000_inl(ao_context->ctrl_reg);
+ tmp |= ME4000_AO_CTRL_BIT_RESET_IRQ;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ tmp &= ~ME4000_AO_CTRL_BIT_RESET_IRQ;
+ me4000_outl(tmp, ao_context->ctrl_reg);
+
+ /* If state machine is stopped, flow was interrupted */
+ if (!(me4000_inl(ao_context->status_reg) & ME4000_AO_STATUS_BIT_FSM)) {
+ printk(KERN_ERR "ME4000:me4000_ao_isr():Broken pipe\n");
+ ao_context->pipe_flag = 1; // Set flag in order to inform write routine
+ tmp &= ~ME4000_AO_CTRL_BIT_ENABLE_IRQ; // Disable interrupt
+ }
+ me4000_outl(tmp, ao_context->ctrl_reg);
+ spin_unlock(&ao_context->int_lock);
+
+ /* Wake up waiting process */
+ wake_up_interruptible(&(ao_context->wait_queue));
+
+ /* Count the interrupt */
+ ao_context->board_info->irq_count++;
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t me4000_ai_isr(int irq, void *dev_id)
+{
+ u32 tmp;
+ me4000_ai_context_t *ai_context;
+ int i;
+ int c = 0;
+ int c1 = 0;
+#ifdef ME4000_ISR_DEBUG
+ unsigned long before;
+ unsigned long after;
+#endif
+
+ ISR_PDEBUG("me4000_ai_isr() is executed\n");
+
+#ifdef ME4000_ISR_DEBUG
+ rdtscl(before);
+#endif
+
+ ai_context = dev_id;
+
+ /* Check if irq number is right */
+ if (irq != ai_context->irq) {
+ ISR_PDEBUG("me4000_ai_isr():incorrect interrupt num: %d\n",
+ irq);
+ return IRQ_NONE;
+ }
+
+ if (me4000_inl(ai_context->irq_status_reg) &
+ ME4000_IRQ_STATUS_BIT_AI_HF) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Fifo half full interrupt occured\n");
+
+ /* Read status register to find out what happened */
+ tmp = me4000_inl(ai_context->ctrl_reg);
+
+ if (!(tmp & ME4000_AI_STATUS_BIT_FF_DATA) &&
+ !(tmp & ME4000_AI_STATUS_BIT_HF_DATA)
+ && (tmp & ME4000_AI_STATUS_BIT_EF_DATA)) {
+ ISR_PDEBUG("me4000_ai_isr():Fifo full\n");
+ c = ME4000_AI_FIFO_COUNT;
+
+ /* FIFO overflow, so stop conversion and disable all interrupts */
+ spin_lock(&ai_context->int_lock);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_IMMEDIATE_STOP;
+ tmp &=
+ ~(ME4000_AI_CTRL_BIT_HF_IRQ |
+ ME4000_AI_CTRL_BIT_SC_IRQ);
+ outl(tmp, ai_context->ctrl_reg);
+ spin_unlock(&ai_context->int_lock);
+ } else if ((tmp & ME4000_AI_STATUS_BIT_FF_DATA) &&
+ !(tmp & ME4000_AI_STATUS_BIT_HF_DATA)
+ && (tmp & ME4000_AI_STATUS_BIT_EF_DATA)) {
+ ISR_PDEBUG("me4000_ai_isr():Fifo half full\n");
+ c = ME4000_AI_FIFO_COUNT / 2;
+ } else {
+ c = 0;
+ ISR_PDEBUG
+ ("me4000_ai_isr():Can't determine state of fifo\n");
+ }
+
+ ISR_PDEBUG("me4000_ai_isr():Try to read %d values\n", c);
+
+ while (1) {
+ c1 = me4000_space_to_end(ai_context->circ_buf,
+ ME4000_AI_BUFFER_COUNT);
+ ISR_PDEBUG("me4000_ai_isr():Space to end = %d\n", c1);
+ if (c1 > c)
+ c1 = c;
+
+ if (c1 <= 0) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Work done or buffer full\n");
+ break;
+ }
+
+ insw(ai_context->data_reg,
+ ai_context->circ_buf.buf +
+ ai_context->circ_buf.head, c1);
+ ai_context->circ_buf.head =
+ (ai_context->circ_buf.head +
+ c1) & (ME4000_AI_BUFFER_COUNT - 1);
+ c -= c1;
+ }
+
+ /* Work is done, so reset the interrupt */
+ ISR_PDEBUG
+ ("me4000_ai_isr():reset interrupt fifo half full interrupt\n");
+ spin_lock(&ai_context->int_lock);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_HF_IRQ_RESET;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ tmp &= ~ME4000_AI_CTRL_BIT_HF_IRQ_RESET;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ spin_unlock(&ai_context->int_lock);
+ }
+
+ if (me4000_inl(ai_context->irq_status_reg) & ME4000_IRQ_STATUS_BIT_SC) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Sample counter interrupt occured\n");
+
+ if (!ai_context->sample_counter_reload) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Single data block available\n");
+
+ /* Poll data until fifo empty */
+ for (i = 0;
+ (i < ME4000_AI_FIFO_COUNT / 2)
+ && (inl(ai_context->ctrl_reg) &
+ ME4000_AI_STATUS_BIT_EF_DATA); i++) {
+ if (me4000_space_to_end
+ (ai_context->circ_buf,
+ ME4000_AI_BUFFER_COUNT)) {
+ *(ai_context->circ_buf.buf +
+ ai_context->circ_buf.head) =
+ inw(ai_context->data_reg);
+ ai_context->circ_buf.head =
+ (ai_context->circ_buf.head +
+ 1) & (ME4000_AI_BUFFER_COUNT - 1);
+ } else
+ break;
+ }
+ ISR_PDEBUG("me4000_ai_isr():%d values read\n", i);
+ } else {
+ if (ai_context->sample_counter <=
+ ME4000_AI_FIFO_COUNT / 2) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Interrupt from adjustable half full threshold\n");
+
+ /* Read status register to find out what happened */
+ tmp = me4000_inl(ai_context->ctrl_reg);
+
+ if (!(tmp & ME4000_AI_STATUS_BIT_FF_DATA) &&
+ !(tmp & ME4000_AI_STATUS_BIT_HF_DATA)
+ && (tmp & ME4000_AI_STATUS_BIT_EF_DATA)) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Fifo full\n");
+ c = ME4000_AI_FIFO_COUNT;
+
+ /* FIFO overflow, so stop conversion */
+ spin_lock(&ai_context->int_lock);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp |=
+ ME4000_AI_CTRL_BIT_IMMEDIATE_STOP;
+ outl(tmp, ai_context->ctrl_reg);
+ spin_unlock(&ai_context->int_lock);
+ } else if ((tmp & ME4000_AI_STATUS_BIT_FF_DATA)
+ && !(tmp &
+ ME4000_AI_STATUS_BIT_HF_DATA)
+ && (tmp &
+ ME4000_AI_STATUS_BIT_EF_DATA)) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Fifo half full\n");
+ c = ME4000_AI_FIFO_COUNT / 2;
+ } else {
+ c = ai_context->sample_counter;
+ ISR_PDEBUG
+ ("me4000_ai_isr():Sample count values\n");
+ }
+
+ ISR_PDEBUG
+ ("me4000_ai_isr():Try to read %d values\n",
+ c);
+
+ while (1) {
+ c1 = me4000_space_to_end(ai_context->
+ circ_buf,
+ ME4000_AI_BUFFER_COUNT);
+ ISR_PDEBUG
+ ("me4000_ai_isr():Space to end = %d\n",
+ c1);
+ if (c1 > c)
+ c1 = c;
+
+ if (c1 <= 0) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Work done or buffer full\n");
+ break;
+ }
+
+ insw(ai_context->data_reg,
+ ai_context->circ_buf.buf +
+ ai_context->circ_buf.head, c1);
+ ai_context->circ_buf.head =
+ (ai_context->circ_buf.head +
+ c1) & (ME4000_AI_BUFFER_COUNT - 1);
+ c -= c1;
+ }
+ } else {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Multiple data block available\n");
+
+ /* Read status register to find out what happened */
+ tmp = me4000_inl(ai_context->ctrl_reg);
+
+ if (!(tmp & ME4000_AI_STATUS_BIT_FF_DATA) &&
+ !(tmp & ME4000_AI_STATUS_BIT_HF_DATA)
+ && (tmp & ME4000_AI_STATUS_BIT_EF_DATA)) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Fifo full\n");
+ c = ME4000_AI_FIFO_COUNT;
+
+ /* FIFO overflow, so stop conversion */
+ spin_lock(&ai_context->int_lock);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp |=
+ ME4000_AI_CTRL_BIT_IMMEDIATE_STOP;
+ outl(tmp, ai_context->ctrl_reg);
+ spin_unlock(&ai_context->int_lock);
+
+ while (1) {
+ c1 = me4000_space_to_end
+ (ai_context->circ_buf,
+ ME4000_AI_BUFFER_COUNT);
+ ISR_PDEBUG
+ ("me4000_ai_isr():Space to end = %d\n",
+ c1);
+ if (c1 > c)
+ c1 = c;
+
+ if (c1 <= 0) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Work done or buffer full\n");
+ break;
+ }
+
+ insw(ai_context->data_reg,
+ ai_context->circ_buf.buf +
+ ai_context->circ_buf.head,
+ c1);
+ ai_context->circ_buf.head =
+ (ai_context->circ_buf.head +
+ c1) &
+ (ME4000_AI_BUFFER_COUNT -
+ 1);
+ c -= c1;
+ }
+ } else if ((tmp & ME4000_AI_STATUS_BIT_FF_DATA)
+ && !(tmp &
+ ME4000_AI_STATUS_BIT_HF_DATA)
+ && (tmp &
+ ME4000_AI_STATUS_BIT_EF_DATA)) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Fifo half full\n");
+ c = ME4000_AI_FIFO_COUNT / 2;
+
+ while (1) {
+ c1 = me4000_space_to_end
+ (ai_context->circ_buf,
+ ME4000_AI_BUFFER_COUNT);
+ ISR_PDEBUG
+ ("me4000_ai_isr():Space to end = %d\n",
+ c1);
+ if (c1 > c)
+ c1 = c;
+
+ if (c1 <= 0) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Work done or buffer full\n");
+ break;
+ }
+
+ insw(ai_context->data_reg,
+ ai_context->circ_buf.buf +
+ ai_context->circ_buf.head,
+ c1);
+ ai_context->circ_buf.head =
+ (ai_context->circ_buf.head +
+ c1) &
+ (ME4000_AI_BUFFER_COUNT -
+ 1);
+ c -= c1;
+ }
+ } else {
+ /* Poll data until fifo empty */
+ for (i = 0;
+ (i < ME4000_AI_FIFO_COUNT / 2)
+ && (inl(ai_context->ctrl_reg) &
+ ME4000_AI_STATUS_BIT_EF_DATA);
+ i++) {
+ if (me4000_space_to_end
+ (ai_context->circ_buf,
+ ME4000_AI_BUFFER_COUNT)) {
+ *(ai_context->circ_buf.
+ buf +
+ ai_context->circ_buf.
+ head) =
+ inw(ai_context->data_reg);
+ ai_context->circ_buf.
+ head =
+ (ai_context->
+ circ_buf.head +
+ 1) &
+ (ME4000_AI_BUFFER_COUNT
+ - 1);
+ } else
+ break;
+ }
+ ISR_PDEBUG
+ ("me4000_ai_isr():%d values read\n",
+ i);
+ }
+ }
+ }
+
+ /* Work is done, so reset the interrupt */
+ ISR_PDEBUG
+ ("me4000_ai_isr():reset interrupt from sample counter\n");
+ spin_lock(&ai_context->int_lock);
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_SC_IRQ_RESET;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ tmp &= ~ME4000_AI_CTRL_BIT_SC_IRQ_RESET;
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ spin_unlock(&ai_context->int_lock);
+ }
+
+ /* Values are now available, so wake up waiting process */
+ if (me4000_buf_count(ai_context->circ_buf, ME4000_AI_BUFFER_COUNT)) {
+ ISR_PDEBUG("me4000_ai_isr():Wake up waiting process\n");
+ wake_up_interruptible(&(ai_context->wait_queue));
+ }
+
+ /* If there is no space left in the buffer, disable interrupts */
+ spin_lock(&ai_context->int_lock);
+ if (!me4000_buf_space(ai_context->circ_buf, ME4000_AI_BUFFER_COUNT)) {
+ ISR_PDEBUG
+ ("me4000_ai_isr():Disable Interrupt because no space left in buffer\n");
+ tmp = me4000_inl(ai_context->ctrl_reg);
+ tmp &=
+ ~(ME4000_AI_CTRL_BIT_SC_IRQ | ME4000_AI_CTRL_BIT_HF_IRQ |
+ ME4000_AI_CTRL_BIT_LE_IRQ);
+ me4000_outl(tmp, ai_context->ctrl_reg);
+ }
+ spin_unlock(&ai_context->int_lock);
+
+#ifdef ME4000_ISR_DEBUG
+ rdtscl(after);
+ printk(KERN_ERR "ME4000:me4000_ai_isr():Time lapse = %lu\n",
+ after - before);
+#endif
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t me4000_ext_int_isr(int irq, void *dev_id)
+{
+ me4000_ext_int_context_t *ext_int_context;
+ unsigned long tmp;
+
+ ISR_PDEBUG("me4000_ext_int_isr() is executed\n");
+
+ ext_int_context = dev_id;
+
+ /* Check if irq number is right */
+ if (irq != ext_int_context->irq) {
+ ISR_PDEBUG("me4000_ext_int_isr():incorrect interrupt num: %d\n",
+ irq);
+ return IRQ_NONE;
+ }
+
+ if (me4000_inl(ext_int_context->irq_status_reg) &
+ ME4000_IRQ_STATUS_BIT_EX) {
+ ISR_PDEBUG("me4000_ext_int_isr():External interrupt occured\n");
+ tmp = me4000_inl(ext_int_context->ctrl_reg);
+ tmp |= ME4000_AI_CTRL_BIT_EX_IRQ_RESET;
+ me4000_outl(tmp, ext_int_context->ctrl_reg);
+ tmp &= ~ME4000_AI_CTRL_BIT_EX_IRQ_RESET;
+ me4000_outl(tmp, ext_int_context->ctrl_reg);
+
+ ext_int_context->int_count++;
+
+ if (ext_int_context->fasync_ptr) {
+ ISR_PDEBUG
+ ("me2600_ext_int_isr():Send signal to process\n");
+ kill_fasync(&ext_int_context->fasync_ptr, SIGIO,
+ POLL_IN);
+ }
+ }
+
+ return IRQ_HANDLED;
+}
+
+void __exit me4000_module_exit(void)
+{
+ struct list_head *board_p;
+ me4000_info_t *board_info;
+
+ CALL_PDEBUG("cleanup_module() is executed\n");
+
+ unregister_chrdev(me4000_ext_int_major_driver_no, ME4000_EXT_INT_NAME);
+
+ unregister_chrdev(me4000_cnt_major_driver_no, ME4000_CNT_NAME);
+
+ unregister_chrdev(me4000_dio_major_driver_no, ME4000_DIO_NAME);
+
+ unregister_chrdev(me4000_ai_major_driver_no, ME4000_AI_NAME);
+
+ unregister_chrdev(me4000_ao_major_driver_no, ME4000_AO_NAME);
+
+ remove_proc_entry("me4000", NULL);
+
+ pci_unregister_driver(&me4000_driver);
+
+ /* Reset the boards */
+ for (board_p = me4000_board_info_list.next;
+ board_p != &me4000_board_info_list; board_p = board_p->next) {
+ board_info = list_entry(board_p, me4000_info_t, list);
+ me4000_reset_board(board_info);
+ }
+
+ clear_board_info_list();
+}
+
+module_exit(me4000_module_exit);
+
+static int me4000_read_procmem(char *buf, char **start, off_t offset, int count,
+ int *eof, void *data)
+{
+ int len = 0;
+ int limit = count - 1000;
+ me4000_info_t *board_info;
+ struct list_head *ptr;
+
+ len += sprintf(buf + len, "\nME4000 DRIVER VERSION %X.%X.%X\n\n",
+ (ME4000_DRIVER_VERSION & 0xFF0000) >> 16,
+ (ME4000_DRIVER_VERSION & 0xFF00) >> 8,
+ (ME4000_DRIVER_VERSION & 0xFF));
+
+ /* Search for the board context */
+ for (ptr = me4000_board_info_list.next;
+ (ptr != &me4000_board_info_list) && (len < limit);
+ ptr = ptr->next) {
+ board_info = list_entry(ptr, me4000_info_t, list);
+
+ len +=
+ sprintf(buf + len, "Board number %d:\n",
+ board_info->board_count);
+ len += sprintf(buf + len, "---------------\n");
+ len +=
+ sprintf(buf + len, "PLX base register = 0x%lX\n",
+ board_info->plx_regbase);
+ len +=
+ sprintf(buf + len, "PLX base register size = 0x%lX\n",
+ board_info->plx_regbase_size);
+ len +=
+ sprintf(buf + len, "ME4000 base register = 0x%lX\n",
+ board_info->me4000_regbase);
+ len +=
+ sprintf(buf + len, "ME4000 base register size = 0x%lX\n",
+ board_info->me4000_regbase_size);
+ len +=
+ sprintf(buf + len, "Serial number = 0x%X\n",
+ board_info->serial_no);
+ len +=
+ sprintf(buf + len, "Hardware revision = 0x%X\n",
+ board_info->hw_revision);
+ len +=
+ sprintf(buf + len, "Vendor id = 0x%X\n",
+ board_info->vendor_id);
+ len +=
+ sprintf(buf + len, "Device id = 0x%X\n",
+ board_info->device_id);
+ len +=
+ sprintf(buf + len, "PCI bus number = %d\n",
+ board_info->pci_bus_no);
+ len +=
+ sprintf(buf + len, "PCI device number = %d\n",
+ board_info->pci_dev_no);
+ len +=
+ sprintf(buf + len, "PCI function number = %d\n",
+ board_info->pci_func_no);
+ len += sprintf(buf + len, "IRQ = %u\n", board_info->irq);
+ len +=
+ sprintf(buf + len,
+ "Count of interrupts since module was loaded = %d\n",
+ board_info->irq_count);
+
+ len +=
+ sprintf(buf + len, "Count of analog outputs = %d\n",
+ board_info->board_p->ao.count);
+ len +=
+ sprintf(buf + len, "Count of analog output fifos = %d\n",
+ board_info->board_p->ao.fifo_count);
+
+ len +=
+ sprintf(buf + len, "Count of analog inputs = %d\n",
+ board_info->board_p->ai.count);
+ len +=
+ sprintf(buf + len,
+ "Count of sample and hold devices for analog input = %d\n",
+ board_info->board_p->ai.sh_count);
+ len +=
+ sprintf(buf + len,
+ "Analog external trigger available for analog input = %d\n",
+ board_info->board_p->ai.ex_trig_analog);
+
+ len +=
+ sprintf(buf + len, "Count of digital ports = %d\n",
+ board_info->board_p->dio.count);
+
+ len +=
+ sprintf(buf + len, "Count of counter devices = %d\n",
+ board_info->board_p->cnt.count);
+ len +=
+ sprintf(buf + len, "AI control register = 0x%08X\n",
+ inl(board_info->me4000_regbase +
+ ME4000_AI_CTRL_REG));
+
+ len += sprintf(buf + len, "AO 0 control register = 0x%08X\n",
+ inl(board_info->me4000_regbase +
+ ME4000_AO_00_CTRL_REG));
+ len +=
+ sprintf(buf + len, "AO 0 status register = 0x%08X\n",
+ inl(board_info->me4000_regbase +
+ ME4000_AO_00_STATUS_REG));
+ len +=
+ sprintf(buf + len, "AO 1 control register = 0x%08X\n",
+ inl(board_info->me4000_regbase +
+ ME4000_AO_01_CTRL_REG));
+ len +=
+ sprintf(buf + len, "AO 1 status register = 0x%08X\n",
+ inl(board_info->me4000_regbase +
+ ME4000_AO_01_STATUS_REG));
+ len +=
+ sprintf(buf + len, "AO 2 control register = 0x%08X\n",
+ inl(board_info->me4000_regbase +
+ ME4000_AO_02_CTRL_REG));
+ len +=
+ sprintf(buf + len, "AO 2 status register = 0x%08X\n",
+ inl(board_info->me4000_regbase +
+ ME4000_AO_02_STATUS_REG));
+ len +=
+ sprintf(buf + len, "AO 3 control register = 0x%08X\n",
+ inl(board_info->me4000_regbase +
+ ME4000_AO_03_CTRL_REG));
+ len +=
+ sprintf(buf + len, "AO 3 status register = 0x%08X\n",
+ inl(board_info->me4000_regbase +
+ ME4000_AO_03_STATUS_REG));
+ }
+
+ *eof = 1;
+ return len;
+}
diff --git a/drivers/staging/me4000/me4000.h b/drivers/staging/me4000/me4000.h
new file mode 100644
index 00000000000..c35e4b9793a
--- /dev/null
+++ b/drivers/staging/me4000/me4000.h
@@ -0,0 +1,954 @@
+/*
+ * Copyright (C) 2003 Meilhaus Electronic GmbH (support@meilhaus.de)
+ *
+ * Source File : me4000.h
+ * Author : GG (Guenter Gebhardt) <g.gebhardt@meilhaus.de>
+ */
+
+#ifndef _ME4000_H_
+#define _ME4000_H_
+
+#ifdef __KERNEL__
+
+/*=============================================================================
+ The version of the driver release
+ ===========================================================================*/
+
+#define ME4000_DRIVER_VERSION 0x10009 // Version 1.00.09
+
+/*=============================================================================
+ Debug section
+ ===========================================================================*/
+
+#undef ME4000_CALL_DEBUG // Debug function entry and exit
+#undef ME4000_ISR_DEBUG // Debug the interrupt service routine
+#undef ME4000_PORT_DEBUG // Debug port access
+#undef ME4000_DEBUG // General purpose debug masseges
+
+#ifdef ME4000_CALL_DEBUG
+#undef CALL_PDEBUG
+#define CALL_PDEBUG(fmt, args...) printk(KERN_DEBUG"ME4000:" fmt, ##args)
+#else
+# define CALL_PDEBUG(fmt, args...) // no debugging, do nothing
+#endif
+
+#ifdef ME4000_ISR_DEBUG
+#undef ISR_PDEBUG
+#define ISR_PDEBUG(fmt, args...) printk(KERN_DEBUG"ME4000:" fmt, ##args)
+#else
+#define ISR_PDEBUG(fmt, args...) // no debugging, do nothing
+#endif
+
+#ifdef ME4000_PORT_DEBUG
+#undef PORT_PDEBUG
+#define PORT_PDEBUG(fmt, args...) printk(KERN_DEBUG"ME4000:" fmt, ##args)
+#else
+#define PORT_PDEBUG(fmt, args...) // no debugging, do nothing
+#endif
+
+#ifdef ME4000_DEBUG
+#undef PDEBUG
+#define PDEBUG(fmt, args...) printk(KERN_DEBUG"ME4000:" fmt, ##args)
+#else
+#define PDEBUG(fmt, args...) // no debugging, do nothing
+#endif
+
+/*=============================================================================
+ PCI vendor and device IDs
+ ===========================================================================*/
+
+#define PCI_VENDOR_ID_MEILHAUS 0x1402
+
+#define PCI_DEVICE_ID_MEILHAUS_ME4650 0x4650 // Low Cost version
+
+#define PCI_DEVICE_ID_MEILHAUS_ME4660 0x4660 // Standard version
+#define PCI_DEVICE_ID_MEILHAUS_ME4660I 0x4661 // Isolated version
+#define PCI_DEVICE_ID_MEILHAUS_ME4660S 0x4662 // Standard version with Sample and Hold
+#define PCI_DEVICE_ID_MEILHAUS_ME4660IS 0x4663 // Isolated version with Sample and Hold
+
+#define PCI_DEVICE_ID_MEILHAUS_ME4670 0x4670 // Standard version
+#define PCI_DEVICE_ID_MEILHAUS_ME4670I 0x4671 // Isolated version
+#define PCI_DEVICE_ID_MEILHAUS_ME4670S 0x4672 // Standard version with Sample and Hold
+#define PCI_DEVICE_ID_MEILHAUS_ME4670IS 0x4673 // Isolated version with Sample and Hold
+
+#define PCI_DEVICE_ID_MEILHAUS_ME4680 0x4680 // Standard version
+#define PCI_DEVICE_ID_MEILHAUS_ME4680I 0x4681 // Isolated version
+#define PCI_DEVICE_ID_MEILHAUS_ME4680S 0x4682 // Standard version with Sample and Hold
+#define PCI_DEVICE_ID_MEILHAUS_ME4680IS 0x4683 // Isolated version with Sample and Hold
+
+/*=============================================================================
+ Device names, for entries in /proc/..
+ ===========================================================================*/
+
+#define ME4000_NAME "me4000"
+#define ME4000_AO_NAME "me4000_ao"
+#define ME4000_AI_NAME "me4000_ai"
+#define ME4000_DIO_NAME "me4000_dio"
+#define ME4000_CNT_NAME "me4000_cnt"
+#define ME4000_EXT_INT_NAME "me4000_ext_int"
+
+/*=============================================================================
+ ME-4000 base register offsets
+ ===========================================================================*/
+
+#define ME4000_AO_00_CTRL_REG 0x00 // R/W
+#define ME4000_AO_00_STATUS_REG 0x04 // R/_
+#define ME4000_AO_00_FIFO_REG 0x08 // _/W
+#define ME4000_AO_00_SINGLE_REG 0x0C // R/W
+#define ME4000_AO_00_TIMER_REG 0x10 // _/W
+
+#define ME4000_AO_01_CTRL_REG 0x18 // R/W
+#define ME4000_AO_01_STATUS_REG 0x1C // R/_
+#define ME4000_AO_01_FIFO_REG 0x20 // _/W
+#define ME4000_AO_01_SINGLE_REG 0x24 // R/W
+#define ME4000_AO_01_TIMER_REG 0x28 // _/W
+
+#define ME4000_AO_02_CTRL_REG 0x30 // R/W
+#define ME4000_AO_02_STATUS_REG 0x34 // R/_
+#define ME4000_AO_02_FIFO_REG 0x38 // _/W
+#define ME4000_AO_02_SINGLE_REG 0x3C // R/W
+#define ME4000_AO_02_TIMER_REG 0x40 // _/W
+
+#define ME4000_AO_03_CTRL_REG 0x48 // R/W
+#define ME4000_AO_03_STATUS_REG 0x4C // R/_
+#define ME4000_AO_03_FIFO_REG 0x50 // _/W
+#define ME4000_AO_03_SINGLE_REG 0x54 // R/W
+#define ME4000_AO_03_TIMER_REG 0x58 // _/W
+
+#define ME4000_AI_CTRL_REG 0x74 // _/W
+#define ME4000_AI_STATUS_REG 0x74 // R/_
+#define ME4000_AI_CHANNEL_LIST_REG 0x78 // _/W
+#define ME4000_AI_DATA_REG 0x7C // R/_
+#define ME4000_AI_CHAN_TIMER_REG 0x80 // _/W
+#define ME4000_AI_CHAN_PRE_TIMER_REG 0x84 // _/W
+#define ME4000_AI_SCAN_TIMER_LOW_REG 0x88 // _/W
+#define ME4000_AI_SCAN_TIMER_HIGH_REG 0x8C // _/W
+#define ME4000_AI_SCAN_PRE_TIMER_LOW_REG 0x90 // _/W
+#define ME4000_AI_SCAN_PRE_TIMER_HIGH_REG 0x94 // _/W
+#define ME4000_AI_START_REG 0x98 // R/_
+
+#define ME4000_IRQ_STATUS_REG 0x9C // R/_
+
+#define ME4000_DIO_PORT_0_REG 0xA0 // R/W
+#define ME4000_DIO_PORT_1_REG 0xA4 // R/W
+#define ME4000_DIO_PORT_2_REG 0xA8 // R/W
+#define ME4000_DIO_PORT_3_REG 0xAC // R/W
+#define ME4000_DIO_DIR_REG 0xB0 // R/W
+
+#define ME4000_AO_LOADSETREG_XX 0xB4 // R/W
+
+#define ME4000_DIO_CTRL_REG 0xB8 // R/W
+
+#define ME4000_AO_DEMUX_ADJUST_REG 0xBC // -/W
+
+#define ME4000_AI_SAMPLE_COUNTER_REG 0xC0 // _/W
+
+/*=============================================================================
+ Value to adjust Demux
+ ===========================================================================*/
+
+#define ME4000_AO_DEMUX_ADJUST_VALUE 0x4C
+
+/*=============================================================================
+ Counter base register offsets
+ ===========================================================================*/
+
+#define ME4000_CNT_COUNTER_0_REG 0x00
+#define ME4000_CNT_COUNTER_1_REG 0x01
+#define ME4000_CNT_COUNTER_2_REG 0x02
+#define ME4000_CNT_CTRL_REG 0x03
+
+/*=============================================================================
+ PLX base register offsets
+ ===========================================================================*/
+
+#define PLX_INTCSR 0x4C // Interrupt control and status register
+#define PLX_ICR 0x50 // Initialization control register
+
+/*=============================================================================
+ Bits for the PLX_ICSR register
+ ===========================================================================*/
+
+#define PLX_INTCSR_LOCAL_INT1_EN 0x01 // If set, local interrupt 1 is enabled (r/w)
+#define PLX_INTCSR_LOCAL_INT1_POL 0x02 // If set, local interrupt 1 polarity is active high (r/w)
+#define PLX_INTCSR_LOCAL_INT1_STATE 0x04 // If set, local interrupt 1 is active (r/_)
+#define PLX_INTCSR_LOCAL_INT2_EN 0x08 // If set, local interrupt 2 is enabled (r/w)
+#define PLX_INTCSR_LOCAL_INT2_POL 0x10 // If set, local interrupt 2 polarity is active high (r/w)
+#define PLX_INTCSR_LOCAL_INT2_STATE 0x20 // If set, local interrupt 2 is active (r/_)
+#define PLX_INTCSR_PCI_INT_EN 0x40 // If set, PCI interrupt is enabled (r/w)
+#define PLX_INTCSR_SOFT_INT 0x80 // If set, a software interrupt is generated (r/w)
+
+/*=============================================================================
+ Bits for the PLX_ICR register
+ ===========================================================================*/
+
+#define PLX_ICR_BIT_EEPROM_CLOCK_SET 0x01000000
+#define PLX_ICR_BIT_EEPROM_CHIP_SELECT 0x02000000
+#define PLX_ICR_BIT_EEPROM_WRITE 0x04000000
+#define PLX_ICR_BIT_EEPROM_READ 0x08000000
+#define PLX_ICR_BIT_EEPROM_VALID 0x10000000
+
+#define PLX_ICR_MASK_EEPROM 0x1F000000
+
+#define EEPROM_DELAY 1
+
+/*=============================================================================
+ Bits for the ME4000_AO_CTRL_REG register
+ ===========================================================================*/
+
+#define ME4000_AO_CTRL_BIT_MODE_0 0x001
+#define ME4000_AO_CTRL_BIT_MODE_1 0x002
+#define ME4000_AO_CTRL_MASK_MODE 0x003
+#define ME4000_AO_CTRL_BIT_STOP 0x004
+#define ME4000_AO_CTRL_BIT_ENABLE_FIFO 0x008
+#define ME4000_AO_CTRL_BIT_ENABLE_EX_TRIG 0x010
+#define ME4000_AO_CTRL_BIT_EX_TRIG_EDGE 0x020
+#define ME4000_AO_CTRL_BIT_IMMEDIATE_STOP 0x080
+#define ME4000_AO_CTRL_BIT_ENABLE_DO 0x100
+#define ME4000_AO_CTRL_BIT_ENABLE_IRQ 0x200
+#define ME4000_AO_CTRL_BIT_RESET_IRQ 0x400
+#define ME4000_AO_CTRL_BIT_EX_TRIG_BOTH 0x800
+
+/*=============================================================================
+ Bits for the ME4000_AO_STATUS_REG register
+ ===========================================================================*/
+
+#define ME4000_AO_STATUS_BIT_FSM 0x01
+#define ME4000_AO_STATUS_BIT_FF 0x02
+#define ME4000_AO_STATUS_BIT_HF 0x04
+#define ME4000_AO_STATUS_BIT_EF 0x08
+
+/*=============================================================================
+ Bits for the ME4000_AI_CTRL_REG register
+ ===========================================================================*/
+
+#define ME4000_AI_CTRL_BIT_MODE_0 0x00000001
+#define ME4000_AI_CTRL_BIT_MODE_1 0x00000002
+#define ME4000_AI_CTRL_BIT_MODE_2 0x00000004
+#define ME4000_AI_CTRL_BIT_SAMPLE_HOLD 0x00000008
+#define ME4000_AI_CTRL_BIT_IMMEDIATE_STOP 0x00000010
+#define ME4000_AI_CTRL_BIT_STOP 0x00000020
+#define ME4000_AI_CTRL_BIT_CHANNEL_FIFO 0x00000040
+#define ME4000_AI_CTRL_BIT_DATA_FIFO 0x00000080
+#define ME4000_AI_CTRL_BIT_FULLSCALE 0x00000100
+#define ME4000_AI_CTRL_BIT_OFFSET 0x00000200
+#define ME4000_AI_CTRL_BIT_EX_TRIG_ANALOG 0x00000400
+#define ME4000_AI_CTRL_BIT_EX_TRIG 0x00000800
+#define ME4000_AI_CTRL_BIT_EX_TRIG_FALLING 0x00001000
+#define ME4000_AI_CTRL_BIT_EX_IRQ 0x00002000
+#define ME4000_AI_CTRL_BIT_EX_IRQ_RESET 0x00004000
+#define ME4000_AI_CTRL_BIT_LE_IRQ 0x00008000
+#define ME4000_AI_CTRL_BIT_LE_IRQ_RESET 0x00010000
+#define ME4000_AI_CTRL_BIT_HF_IRQ 0x00020000
+#define ME4000_AI_CTRL_BIT_HF_IRQ_RESET 0x00040000
+#define ME4000_AI_CTRL_BIT_SC_IRQ 0x00080000
+#define ME4000_AI_CTRL_BIT_SC_IRQ_RESET 0x00100000
+#define ME4000_AI_CTRL_BIT_SC_RELOAD 0x00200000
+#define ME4000_AI_CTRL_BIT_EX_TRIG_BOTH 0x80000000
+
+/*=============================================================================
+ Bits for the ME4000_AI_STATUS_REG register
+ ===========================================================================*/
+
+#define ME4000_AI_STATUS_BIT_EF_CHANNEL 0x00400000
+#define ME4000_AI_STATUS_BIT_HF_CHANNEL 0x00800000
+#define ME4000_AI_STATUS_BIT_FF_CHANNEL 0x01000000
+#define ME4000_AI_STATUS_BIT_EF_DATA 0x02000000
+#define ME4000_AI_STATUS_BIT_HF_DATA 0x04000000
+#define ME4000_AI_STATUS_BIT_FF_DATA 0x08000000
+#define ME4000_AI_STATUS_BIT_LE 0x10000000
+#define ME4000_AI_STATUS_BIT_FSM 0x20000000
+
+/*=============================================================================
+ Bits for the ME4000_IRQ_STATUS_REG register
+ ===========================================================================*/
+
+#define ME4000_IRQ_STATUS_BIT_EX 0x01
+#define ME4000_IRQ_STATUS_BIT_LE 0x02
+#define ME4000_IRQ_STATUS_BIT_AI_HF 0x04
+#define ME4000_IRQ_STATUS_BIT_AO_0_HF 0x08
+#define ME4000_IRQ_STATUS_BIT_AO_1_HF 0x10
+#define ME4000_IRQ_STATUS_BIT_AO_2_HF 0x20
+#define ME4000_IRQ_STATUS_BIT_AO_3_HF 0x40
+#define ME4000_IRQ_STATUS_BIT_SC 0x80
+
+/*=============================================================================
+ Bits for the ME4000_DIO_CTRL_REG register
+ ===========================================================================*/
+
+#define ME4000_DIO_CTRL_BIT_MODE_0 0X0001
+#define ME4000_DIO_CTRL_BIT_MODE_1 0X0002
+#define ME4000_DIO_CTRL_BIT_MODE_2 0X0004
+#define ME4000_DIO_CTRL_BIT_MODE_3 0X0008
+#define ME4000_DIO_CTRL_BIT_MODE_4 0X0010
+#define ME4000_DIO_CTRL_BIT_MODE_5 0X0020
+#define ME4000_DIO_CTRL_BIT_MODE_6 0X0040
+#define ME4000_DIO_CTRL_BIT_MODE_7 0X0080
+
+#define ME4000_DIO_CTRL_BIT_FUNCTION_0 0X0100
+#define ME4000_DIO_CTRL_BIT_FUNCTION_1 0X0200
+
+#define ME4000_DIO_CTRL_BIT_FIFO_HIGH_0 0X0400
+#define ME4000_DIO_CTRL_BIT_FIFO_HIGH_1 0X0800
+#define ME4000_DIO_CTRL_BIT_FIFO_HIGH_2 0X1000
+#define ME4000_DIO_CTRL_BIT_FIFO_HIGH_3 0X2000
+
+/*=============================================================================
+ Bits for the ME4000_CNT_CTRL_REG register
+ ===========================================================================*/
+
+#define ME4000_CNT_CTRL_BIT_COUNTER_0 0x00
+#define ME4000_CNT_CTRL_BIT_COUNTER_1 0x40
+#define ME4000_CNT_CTRL_BIT_COUNTER_2 0x80
+
+#define ME4000_CNT_CTRL_BIT_MODE_0 0x00 // Change state if zero crossing
+#define ME4000_CNT_CTRL_BIT_MODE_1 0x02 // Retriggerable One-Shot
+#define ME4000_CNT_CTRL_BIT_MODE_2 0x04 // Asymmetrical divider
+#define ME4000_CNT_CTRL_BIT_MODE_3 0x06 // Symmetrical divider
+#define ME4000_CNT_CTRL_BIT_MODE_4 0x08 // Counter start by software trigger
+#define ME4000_CNT_CTRL_BIT_MODE_5 0x0A // Counter start by hardware trigger
+
+/*=============================================================================
+ Extract information from minor device number
+ ===========================================================================*/
+
+#define AO_BOARD(dev) ((MINOR(dev) >> 6) & 0x3)
+#define AO_PORT(dev) ((MINOR(dev) >> 2) & 0xF)
+#define AO_MODE(dev) (MINOR(dev) & 0x3)
+
+#define AI_BOARD(dev) ((MINOR(dev) >> 3) & 0x1F)
+#define AI_MODE(dev) (MINOR(dev) & 0x7)
+
+#define DIO_BOARD(dev) (MINOR(dev))
+
+#define CNT_BOARD(dev) (MINOR(dev))
+
+#define EXT_INT_BOARD(dev) (MINOR(dev))
+
+/*=============================================================================
+ Circular buffer used for analog input/output reads/writes.
+ ===========================================================================*/
+
+typedef struct me4000_circ_buf {
+ s16 *buf;
+ int volatile head;
+ int volatile tail;
+} me4000_circ_buf_t;
+
+/*=============================================================================
+ Information about the hardware capabilities
+ ===========================================================================*/
+
+typedef struct me4000_ao_info {
+ int count;
+ int fifo_count;
+} me4000_ao_info_t;
+
+typedef struct me4000_ai_info {
+ int count;
+ int sh_count;
+ int diff_count;
+ int ex_trig_analog;
+} me4000_ai_info_t;
+
+typedef struct me4000_dio_info {
+ int count;
+} me4000_dio_info_t;
+
+typedef struct me4000_cnt_info {
+ int count;
+} me4000_cnt_info_t;
+
+typedef struct me4000_board {
+ u16 vendor_id;
+ u16 device_id;
+ me4000_ao_info_t ao;
+ me4000_ai_info_t ai;
+ me4000_dio_info_t dio;
+ me4000_cnt_info_t cnt;
+} me4000_board_t;
+
+static me4000_board_t me4000_boards[] = {
+ {PCI_VENDOR_ID_MEILHAUS, 0x4610, {0, 0}, {16, 0, 0, 0}, {4}, {3}},
+
+ {PCI_VENDOR_ID_MEILHAUS, 0x4650, {0, 0}, {16, 0, 0, 0}, {4}, {0}},
+
+ {PCI_VENDOR_ID_MEILHAUS, 0x4660, {2, 0}, {16, 0, 0, 0}, {4}, {3}},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4661, {2, 0}, {16, 0, 0, 0}, {4}, {3}},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4662, {2, 0}, {16, 8, 0, 0}, {4}, {3}},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4663, {2, 0}, {16, 8, 0, 0}, {4}, {3}},
+
+ {PCI_VENDOR_ID_MEILHAUS, 0x4670, {4, 0}, {32, 0, 16, 1}, {4}, {3}},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4671, {4, 0}, {32, 0, 16, 1}, {4}, {3}},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4672, {4, 0}, {32, 8, 16, 1}, {4}, {3}},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4673, {4, 0}, {32, 8, 16, 1}, {4}, {3}},
+
+ {PCI_VENDOR_ID_MEILHAUS, 0x4680, {4, 4}, {32, 0, 16, 1}, {4}, {3}},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4681, {4, 4}, {32, 0, 16, 1}, {4}, {3}},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4682, {4, 4}, {32, 8, 16, 1}, {4}, {3}},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4683, {4, 4}, {32, 8, 16, 1}, {4}, {3}},
+
+ {0},
+};
+
+#define ME4000_BOARD_VERSIONS (sizeof(me4000_boards) / sizeof(me4000_board_t) - 1)
+
+/*=============================================================================
+ PCI device table.
+ This is used by modprobe to translate PCI IDs to drivers.
+ ===========================================================================*/
+
+static struct pci_device_id me4000_pci_table[] __devinitdata = {
+ {PCI_VENDOR_ID_MEILHAUS, 0x4610, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+
+ {PCI_VENDOR_ID_MEILHAUS, 0x4650, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+
+ {PCI_VENDOR_ID_MEILHAUS, 0x4660, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4661, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4662, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4663, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+
+ {PCI_VENDOR_ID_MEILHAUS, 0x4670, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4671, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4672, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4673, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+
+ {PCI_VENDOR_ID_MEILHAUS, 0x4680, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4681, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4682, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+ {PCI_VENDOR_ID_MEILHAUS, 0x4683, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
+
+ {0}
+};
+
+MODULE_DEVICE_TABLE(pci, me4000_pci_table);
+
+/*=============================================================================
+ Global board and subdevice information structures
+ ===========================================================================*/
+
+typedef struct me4000_info {
+ struct list_head list; // List of all detected boards
+ int board_count; // Index of the board after detection
+
+ unsigned long plx_regbase; // PLX configuration space base address
+ unsigned long me4000_regbase; // Base address of the ME4000
+ unsigned long timer_regbase; // Base address of the timer circuit
+ unsigned long program_regbase; // Base address to set the program pin for the xilinx
+
+ unsigned long plx_regbase_size; // PLX register set space
+ unsigned long me4000_regbase_size; // ME4000 register set space
+ unsigned long timer_regbase_size; // Timer circuit register set space
+ unsigned long program_regbase_size; // Size of program base address of the ME4000
+
+ unsigned int serial_no; // Serial number of the board
+ unsigned char hw_revision; // Hardware revision of the board
+ unsigned short vendor_id; // Meilhaus vendor id (0x1402)
+ unsigned short device_id; // Device ID
+
+ int pci_bus_no; // PCI bus number
+ int pci_dev_no; // PCI device number
+ int pci_func_no; // PCI function number
+ struct pci_dev *pci_dev_p; // General PCI information
+
+ me4000_board_t *board_p; // Holds the board capabilities
+
+ unsigned int irq; // IRQ assigned from the PCI BIOS
+ unsigned int irq_count; // Count of external interrupts
+
+ spinlock_t preload_lock; // Guards the analog output preload register
+ spinlock_t ai_ctrl_lock; // Guards the analog input control register
+
+ struct list_head ao_context_list; // List with analog output specific context
+ struct me4000_ai_context *ai_context; // Analog input specific context
+ struct me4000_dio_context *dio_context; // Digital I/O specific context
+ struct me4000_cnt_context *cnt_context; // Counter specific context
+ struct me4000_ext_int_context *ext_int_context; // External interrupt specific context
+} me4000_info_t;
+
+typedef struct me4000_ao_context {
+ struct list_head list; // linked list of me4000_ao_context_t
+ int index; // Index in the list
+ int mode; // Indicates mode (0 = single, 1 = wraparound, 2 = continous)
+ int dac_in_use; // Indicates if already opend
+ spinlock_t use_lock; // Guards in_use
+ spinlock_t int_lock; // Used when locking out interrupts
+ me4000_circ_buf_t circ_buf; // Circular buffer
+ wait_queue_head_t wait_queue; // Wait queue to sleep while blocking write
+ me4000_info_t *board_info;
+ unsigned int irq; // The irq associated with this ADC
+ int volatile pipe_flag; // Indicates broken pipe set from me4000_ao_isr()
+ unsigned long ctrl_reg;
+ unsigned long status_reg;
+ unsigned long fifo_reg;
+ unsigned long single_reg;
+ unsigned long timer_reg;
+ unsigned long irq_status_reg;
+ unsigned long preload_reg;
+ struct fasync_struct *fasync_p; // Queue for asynchronous notification
+} me4000_ao_context_t;
+
+typedef struct me4000_ai_context {
+ struct list_head list; // linked list of me4000_ai_info_t
+ int mode; // Indicates mode
+ int in_use; // Indicates if already opend
+ spinlock_t use_lock; // Guards in_use
+ spinlock_t int_lock; // Used when locking out interrupts
+ int number; // Number of the DAC
+ unsigned int irq; // The irq associated with this ADC
+ me4000_circ_buf_t circ_buf; // Circular buffer
+ wait_queue_head_t wait_queue; // Wait queue to sleep while blocking read
+ me4000_info_t *board_info;
+
+ struct fasync_struct *fasync_p; // Queue for asynchronous notification
+
+ unsigned long ctrl_reg;
+ unsigned long status_reg;
+ unsigned long channel_list_reg;
+ unsigned long data_reg;
+ unsigned long chan_timer_reg;
+ unsigned long chan_pre_timer_reg;
+ unsigned long scan_timer_low_reg;
+ unsigned long scan_timer_high_reg;
+ unsigned long scan_pre_timer_low_reg;
+ unsigned long scan_pre_timer_high_reg;
+ unsigned long start_reg;
+ unsigned long irq_status_reg;
+ unsigned long sample_counter_reg;
+
+ unsigned long chan_timer;
+ unsigned long chan_pre_timer;
+ unsigned long scan_timer_low;
+ unsigned long scan_timer_high;
+ unsigned long channel_list_count;
+ unsigned long sample_counter;
+ int sample_counter_reload;
+} me4000_ai_context_t;
+
+typedef struct me4000_dio_context {
+ struct list_head list; // linked list of me4000_dio_context_t
+ int in_use; // Indicates if already opend
+ spinlock_t use_lock; // Guards in_use
+ int number;
+ int dio_count;
+ me4000_info_t *board_info;
+ unsigned long dir_reg;
+ unsigned long ctrl_reg;
+ unsigned long port_0_reg;
+ unsigned long port_1_reg;
+ unsigned long port_2_reg;
+ unsigned long port_3_reg;
+} me4000_dio_context_t;
+
+typedef struct me4000_cnt_context {
+ struct list_head list; // linked list of me4000_dio_context_t
+ int in_use; // Indicates if already opend
+ spinlock_t use_lock; // Guards in_use
+ int number;
+ int cnt_count;
+ me4000_info_t *board_info;
+ unsigned long ctrl_reg;
+ unsigned long counter_0_reg;
+ unsigned long counter_1_reg;
+ unsigned long counter_2_reg;
+} me4000_cnt_context_t;
+
+typedef struct me4000_ext_int_context {
+ struct list_head list; // linked list of me4000_dio_context_t
+ int in_use; // Indicates if already opend
+ spinlock_t use_lock; // Guards in_use
+ int number;
+ me4000_info_t *board_info;
+ unsigned int irq;
+ unsigned long int_count;
+ struct fasync_struct *fasync_ptr;
+ unsigned long ctrl_reg;
+ unsigned long irq_status_reg;
+} me4000_ext_int_context_t;
+
+#endif
+
+/*=============================================================================
+ Application include section starts here
+ ===========================================================================*/
+
+/*-----------------------------------------------------------------------------
+ Defines for analog input
+ ----------------------------------------------------------------------------*/
+
+/* General stuff */
+#define ME4000_AI_FIFO_COUNT 2048
+
+#define ME4000_AI_MIN_TICKS 66
+#define ME4000_AI_MAX_SCAN_TICKS 0xFFFFFFFFFFLL
+
+#define ME4000_AI_BUFFER_SIZE (32 * 1024) // Size in bytes
+
+#define ME4000_AI_BUFFER_COUNT ((ME4000_AI_BUFFER_SIZE) / 2) // Size in values
+
+/* Channel list defines and masks */
+#define ME4000_AI_CHANNEL_LIST_COUNT 1024
+
+#define ME4000_AI_LIST_INPUT_SINGLE_ENDED 0x000
+#define ME4000_AI_LIST_INPUT_DIFFERENTIAL 0x020
+
+#define ME4000_AI_LIST_RANGE_BIPOLAR_10 0x000
+#define ME4000_AI_LIST_RANGE_BIPOLAR_2_5 0x040
+#define ME4000_AI_LIST_RANGE_UNIPOLAR_10 0x080
+#define ME4000_AI_LIST_RANGE_UNIPOLAR_2_5 0x0C0
+
+#define ME4000_AI_LIST_LAST_ENTRY 0x100
+
+/* External trigger defines */
+#define ME4000_AI_TRIGGER_SOFTWARE 0x0 // Use only with API
+#define ME4000_AI_TRIGGER_EXT_DIGITAL 0x1
+#define ME4000_AI_TRIGGER_EXT_ANALOG 0x2
+
+#define ME4000_AI_TRIGGER_EXT_EDGE_RISING 0x0
+#define ME4000_AI_TRIGGER_EXT_EDGE_FALLING 0x1
+#define ME4000_AI_TRIGGER_EXT_EDGE_BOTH 0x2
+
+/* Sample and Hold */
+#define ME4000_AI_SIMULTANEOUS_DISABLE 0x0
+#define ME4000_AI_SIMULTANEOUS_ENABLE 0x1
+
+/* Defines for the Sample Counter */
+#define ME4000_AI_SC_RELOAD 0x0
+#define ME4000_AI_SC_ONCE 0x1
+
+/* Modes for analog input */
+#define ME4000_AI_ACQ_MODE_SINGLE 0x00 // Catch one single value
+#define ME4000_AI_ACQ_MODE_SOFTWARE 0x01 // Continous sampling with software start
+#define ME4000_AI_ACQ_MODE_EXT 0x02 // Continous sampling with external trigger start
+#define ME4000_AI_ACQ_MODE_EXT_SINGLE_VALUE 0x03 // Sample one value by external trigger
+#define ME4000_AI_ACQ_MODE_EXT_SINGLE_CHANLIST 0x04 // Sample one channel list by external trigger
+
+/* Staus of AI FSM */
+#define ME4000_AI_STATUS_IDLE 0x0
+#define ME4000_AI_STATUS_BUSY 0x1
+
+/* Voltages for calibration */
+#define ME4000_AI_GAIN_1_UNI_OFFSET 10.0E-3
+#define ME4000_AI_GAIN_1_UNI_FULLSCALE 9950.0E-3
+#define ME4000_AI_GAIN_1_BI_OFFSET 0.0
+#define ME4000_AI_GAIN_1_BI_FULLSCALE 9950.0E-3
+#define ME4000_AI_GAIN_4_UNI_OFFSET 10.0E-3
+#define ME4000_AI_GAIN_4_UNI_FULLSCALE 2450.0E-3
+#define ME4000_AI_GAIN_4_BI_OFFSET 0.0
+#define ME4000_AI_GAIN_4_BI_FULLSCALE 2450.0E-3
+
+/* Ideal digits for calibration */
+#define ME4000_AI_GAIN_1_UNI_OFFSET_DIGITS (-32702)
+#define ME4000_AI_GAIN_1_UNI_FULLSCALE_DIGITS 32440
+#define ME4000_AI_GAIN_1_BI_OFFSET_DIGITS 0
+#define ME4000_AI_GAIN_1_BI_FULLSCALE_DIGITS 32604
+#define ME4000_AI_GAIN_4_UNI_OFFSET_DIGITS (-32505)
+#define ME4000_AI_GAIN_4_UNI_FULLSCALE_DIGITS 31457
+#define ME4000_AI_GAIN_4_BI_OFFSET_DIGITS 0
+#define ME4000_AI_GAIN_4_BI_FULLSCALE_DIGITS 32113
+
+/*-----------------------------------------------------------------------------
+ Defines for analog output
+ ----------------------------------------------------------------------------*/
+
+/* General stuff */
+#define ME4000_AO_FIFO_COUNT (4 * 1024)
+
+#define ME4000_AO_MIN_TICKS 66
+
+#define ME4000_AO_BUFFER_SIZE (32 * 1024) // Size in bytes
+
+#define ME4000_AO_BUFFER_COUNT ((ME4000_AO_BUFFER_SIZE) / 2) // Size in values
+
+/* Conversion modes for analog output */
+#define ME4000_AO_CONV_MODE_SINGLE 0x0
+#define ME4000_AO_CONV_MODE_WRAPAROUND 0x1
+#define ME4000_AO_CONV_MODE_CONTINUOUS 0x2
+
+/* Trigger setup */
+#define ME4000_AO_TRIGGER_EXT_EDGE_RISING 0x0
+#define ME4000_AO_TRIGGER_EXT_EDGE_FALLING 0x1
+#define ME4000_AO_TRIGGER_EXT_EDGE_BOTH 0x2
+
+/* Status of AO FSM */
+#define ME4000_AO_STATUS_IDLE 0x0
+#define ME4000_AO_STATUS_BUSY 0x1
+
+/*-----------------------------------------------------------------------------
+ Defines for eeprom
+ ----------------------------------------------------------------------------*/
+
+#define ME4000_EEPROM_CMD_READ 0x180
+#define ME4000_EEPROM_CMD_WRITE_ENABLE 0x130
+#define ME4000_EEPROM_CMD_WRITE_DISABLE 0x100
+#define ME4000_EEPROM_CMD_WRITE 0x1400000
+
+#define ME4000_EEPROM_CMD_LENGTH_READ 9
+#define ME4000_EEPROM_CMD_LENGTH_WRITE_ENABLE 9
+#define ME4000_EEPROM_CMD_LENGTH_WRITE_DISABLE 9
+#define ME4000_EEPROM_CMD_LENGTH_WRITE 25
+
+#define ME4000_EEPROM_ADR_DATE_HIGH 0x32
+#define ME4000_EEPROM_ADR_DATE_LOW 0x33
+
+#define ME4000_EEPROM_ADR_GAIN_1_UNI_OFFSET 0x34
+#define ME4000_EEPROM_ADR_GAIN_1_UNI_FULLSCALE 0x35
+#define ME4000_EEPROM_ADR_GAIN_1_BI_OFFSET 0x36
+#define ME4000_EEPROM_ADR_GAIN_1_BI_FULLSCALE 0x37
+#define ME4000_EEPROM_ADR_GAIN_1_DIFF_OFFSET 0x38
+#define ME4000_EEPROM_ADR_GAIN_1_DIFF_FULLSCALE 0x39
+
+#define ME4000_EEPROM_ADR_GAIN_4_UNI_OFFSET 0x3A
+#define ME4000_EEPROM_ADR_GAIN_4_UNI_FULLSCALE 0x3B
+#define ME4000_EEPROM_ADR_GAIN_4_BI_OFFSET 0x3C
+#define ME4000_EEPROM_ADR_GAIN_4_BI_FULLSCALE 0x3D
+#define ME4000_EEPROM_ADR_GAIN_4_DIFF_OFFSET 0x3E
+#define ME4000_EEPROM_ADR_GAIN_4_DIFF_FULLSCALE 0x3F
+
+#define ME4000_EEPROM_ADR_LENGTH 6
+#define ME4000_EEPROM_DATA_LENGTH 16
+
+/*-----------------------------------------------------------------------------
+ Defines for digital I/O
+ ----------------------------------------------------------------------------*/
+
+#define ME4000_DIO_PORT_A 0x0
+#define ME4000_DIO_PORT_B 0x1
+#define ME4000_DIO_PORT_C 0x2
+#define ME4000_DIO_PORT_D 0x3
+
+#define ME4000_DIO_PORT_INPUT 0x0
+#define ME4000_DIO_PORT_OUTPUT 0x1
+#define ME4000_DIO_FIFO_LOW 0x2
+#define ME4000_DIO_FIFO_HIGH 0x3
+
+#define ME4000_DIO_FUNCTION_PATTERN 0x0
+#define ME4000_DIO_FUNCTION_DEMUX 0x1
+#define ME4000_DIO_FUNCTION_MUX 0x2
+
+/*-----------------------------------------------------------------------------
+ Defines for counters
+ ----------------------------------------------------------------------------*/
+
+#define ME4000_CNT_COUNTER_0 0
+#define ME4000_CNT_COUNTER_1 1
+#define ME4000_CNT_COUNTER_2 2
+
+#define ME4000_CNT_MODE_0 0 // Change state if zero crossing
+#define ME4000_CNT_MODE_1 1 // Retriggerable One-Shot
+#define ME4000_CNT_MODE_2 2 // Asymmetrical divider
+#define ME4000_CNT_MODE_3 3 // Symmetrical divider
+#define ME4000_CNT_MODE_4 4 // Counter start by software trigger
+#define ME4000_CNT_MODE_5 5 // Counter start by hardware trigger
+
+/*-----------------------------------------------------------------------------
+ General type definitions
+ ----------------------------------------------------------------------------*/
+
+typedef struct me4000_user_info {
+ int board_count; // Index of the board after detection
+ unsigned long plx_regbase; // PLX configuration space base address
+ unsigned long me4000_regbase; // Base address of the ME4000
+ unsigned long plx_regbase_size; // PLX register set space
+ unsigned long me4000_regbase_size; // ME4000 register set space
+ unsigned long serial_no; // Serial number of the board
+ unsigned char hw_revision; // Hardware revision of the board
+ unsigned short vendor_id; // Meilhaus vendor id (0x1402)
+ unsigned short device_id; // Device ID
+ int pci_bus_no; // PCI bus number
+ int pci_dev_no; // PCI device number
+ int pci_func_no; // PCI function number
+ char irq; // IRQ assigned from the PCI BIOS
+ int irq_count; // Count of external interrupts
+
+ int driver_version; // Version of the driver release
+
+ int ao_count; // Count of analog output channels
+ int ao_fifo_count; // Count fo analog output fifos
+
+ int ai_count; // Count of analog input channels
+ int ai_sh_count; // Count of sample and hold devices
+ int ai_ex_trig_analog; // Flag to indicate if analogous external trigger is available
+
+ int dio_count; // Count of digital I/O ports
+
+ int cnt_count; // Count of counters
+} me4000_user_info_t;
+
+/*-----------------------------------------------------------------------------
+ Type definitions for analog output
+ ----------------------------------------------------------------------------*/
+
+typedef struct me4000_ao_channel_list {
+ unsigned long count;
+ unsigned long *list;
+} me4000_ao_channel_list_t;
+
+/*-----------------------------------------------------------------------------
+ Type definitions for analog input
+ ----------------------------------------------------------------------------*/
+
+typedef struct me4000_ai_channel_list {
+ unsigned long count;
+ unsigned long *list;
+} me4000_ai_channel_list_t;
+
+typedef struct me4000_ai_timer {
+ unsigned long pre_chan;
+ unsigned long chan;
+ unsigned long scan_low;
+ unsigned long scan_high;
+} me4000_ai_timer_t;
+
+typedef struct me4000_ai_config {
+ me4000_ai_timer_t timer;
+ me4000_ai_channel_list_t channel_list;
+ int sh;
+} me4000_ai_config_t;
+
+typedef struct me4000_ai_single {
+ int channel;
+ int range;
+ int mode;
+ short value;
+ unsigned long timeout;
+} me4000_ai_single_t;
+
+typedef struct me4000_ai_trigger {
+ int mode;
+ int edge;
+} me4000_ai_trigger_t;
+
+typedef struct me4000_ai_sc {
+ unsigned long value;
+ int reload;
+} me4000_ai_sc_t;
+
+/*-----------------------------------------------------------------------------
+ Type definitions for eeprom
+ ----------------------------------------------------------------------------*/
+
+typedef struct me4000_eeprom {
+ unsigned long date;
+ short uni_10_offset;
+ short uni_10_fullscale;
+ short uni_2_5_offset;
+ short uni_2_5_fullscale;
+ short bi_10_offset;
+ short bi_10_fullscale;
+ short bi_2_5_offset;
+ short bi_2_5_fullscale;
+ short diff_10_offset;
+ short diff_10_fullscale;
+ short diff_2_5_offset;
+ short diff_2_5_fullscale;
+} me4000_eeprom_t;
+
+/*-----------------------------------------------------------------------------
+ Type definitions for digital I/O
+ ----------------------------------------------------------------------------*/
+
+typedef struct me4000_dio_config {
+ int port;
+ int mode;
+ int function;
+} me4000_dio_config_t;
+
+typedef struct me4000_dio_byte {
+ int port;
+ unsigned char byte;
+} me4000_dio_byte_t;
+
+/*-----------------------------------------------------------------------------
+ Type definitions for counters
+ ----------------------------------------------------------------------------*/
+
+typedef struct me4000_cnt {
+ int counter;
+ unsigned short value;
+} me4000_cnt_t;
+
+typedef struct me4000_cnt_config {
+ int counter;
+ int mode;
+} me4000_cnt_config_t;
+
+/*-----------------------------------------------------------------------------
+ Type definitions for external interrupt
+ ----------------------------------------------------------------------------*/
+
+typedef struct {
+ int int1_count;
+ int int2_count;
+} me4000_int_type;
+
+/*-----------------------------------------------------------------------------
+ The ioctls of the board
+ ----------------------------------------------------------------------------*/
+
+#define ME4000_IOCTL_MAXNR 50
+#define ME4000_MAGIC 'y'
+#define ME4000_GET_USER_INFO _IOR (ME4000_MAGIC, 0, me4000_user_info_t)
+
+#define ME4000_AO_START _IOW (ME4000_MAGIC, 1, unsigned long)
+#define ME4000_AO_STOP _IO (ME4000_MAGIC, 2)
+#define ME4000_AO_IMMEDIATE_STOP _IO (ME4000_MAGIC, 3)
+#define ME4000_AO_RESET _IO (ME4000_MAGIC, 4)
+#define ME4000_AO_PRELOAD _IO (ME4000_MAGIC, 5)
+#define ME4000_AO_PRELOAD_UPDATE _IO (ME4000_MAGIC, 6)
+#define ME4000_AO_EX_TRIG_ENABLE _IO (ME4000_MAGIC, 7)
+#define ME4000_AO_EX_TRIG_DISABLE _IO (ME4000_MAGIC, 8)
+#define ME4000_AO_EX_TRIG_SETUP _IOW (ME4000_MAGIC, 9, int)
+#define ME4000_AO_TIMER_SET_DIVISOR _IOW (ME4000_MAGIC, 10, unsigned long)
+#define ME4000_AO_ENABLE_DO _IO (ME4000_MAGIC, 11)
+#define ME4000_AO_DISABLE_DO _IO (ME4000_MAGIC, 12)
+#define ME4000_AO_FSM_STATE _IOR (ME4000_MAGIC, 13, int)
+
+#define ME4000_AI_SINGLE _IOR (ME4000_MAGIC, 14, me4000_ai_single_t)
+#define ME4000_AI_START _IOW (ME4000_MAGIC, 15, unsigned long)
+#define ME4000_AI_STOP _IO (ME4000_MAGIC, 16)
+#define ME4000_AI_IMMEDIATE_STOP _IO (ME4000_MAGIC, 17)
+#define ME4000_AI_EX_TRIG_ENABLE _IO (ME4000_MAGIC, 18)
+#define ME4000_AI_EX_TRIG_DISABLE _IO (ME4000_MAGIC, 19)
+#define ME4000_AI_EX_TRIG_SETUP _IOW (ME4000_MAGIC, 20, me4000_ai_trigger_t)
+#define ME4000_AI_CONFIG _IOW (ME4000_MAGIC, 21, me4000_ai_config_t)
+#define ME4000_AI_SC_SETUP _IOW (ME4000_MAGIC, 22, me4000_ai_sc_t)
+#define ME4000_AI_FSM_STATE _IOR (ME4000_MAGIC, 23, int)
+
+#define ME4000_DIO_CONFIG _IOW (ME4000_MAGIC, 24, me4000_dio_config_t)
+#define ME4000_DIO_GET_BYTE _IOR (ME4000_MAGIC, 25, me4000_dio_byte_t)
+#define ME4000_DIO_SET_BYTE _IOW (ME4000_MAGIC, 26, me4000_dio_byte_t)
+#define ME4000_DIO_RESET _IO (ME4000_MAGIC, 27)
+
+#define ME4000_CNT_READ _IOR (ME4000_MAGIC, 28, me4000_cnt_t)
+#define ME4000_CNT_WRITE _IOW (ME4000_MAGIC, 29, me4000_cnt_t)
+#define ME4000_CNT_CONFIG _IOW (ME4000_MAGIC, 30, me4000_cnt_config_t)
+#define ME4000_CNT_RESET _IO (ME4000_MAGIC, 31)
+
+#define ME4000_EXT_INT_DISABLE _IO (ME4000_MAGIC, 32)
+#define ME4000_EXT_INT_ENABLE _IO (ME4000_MAGIC, 33)
+#define ME4000_EXT_INT_COUNT _IOR (ME4000_MAGIC, 34, int)
+
+#define ME4000_AI_OFFSET_ENABLE _IO (ME4000_MAGIC, 35)
+#define ME4000_AI_OFFSET_DISABLE _IO (ME4000_MAGIC, 36)
+#define ME4000_AI_FULLSCALE_ENABLE _IO (ME4000_MAGIC, 37)
+#define ME4000_AI_FULLSCALE_DISABLE _IO (ME4000_MAGIC, 38)
+
+#define ME4000_AI_EEPROM_READ _IOR (ME4000_MAGIC, 39, me4000_eeprom_t)
+#define ME4000_AI_EEPROM_WRITE _IOW (ME4000_MAGIC, 40, me4000_eeprom_t)
+
+#define ME4000_AO_SIMULTANEOUS_EX_TRIG _IO (ME4000_MAGIC, 41)
+#define ME4000_AO_SIMULTANEOUS_SW _IO (ME4000_MAGIC, 42)
+#define ME4000_AO_SIMULTANEOUS_DISABLE _IO (ME4000_MAGIC, 43)
+#define ME4000_AO_SIMULTANEOUS_UPDATE _IOW (ME4000_MAGIC, 44, me4000_ao_channel_list_t)
+
+#define ME4000_AO_SYNCHRONOUS_EX_TRIG _IO (ME4000_MAGIC, 45)
+#define ME4000_AO_SYNCHRONOUS_SW _IO (ME4000_MAGIC, 46)
+#define ME4000_AO_SYNCHRONOUS_DISABLE _IO (ME4000_MAGIC, 47)
+
+#define ME4000_AO_EX_TRIG_TIMEOUT _IOW (ME4000_MAGIC, 48, unsigned long)
+#define ME4000_AO_GET_FREE_BUFFER _IOR (ME4000_MAGIC, 49, unsigned long)
+
+#define ME4000_AI_GET_COUNT_BUFFER _IOR (ME4000_MAGIC, 50, unsigned long)
+
+#endif