aboutsummaryrefslogtreecommitdiff
path: root/drivers/net
diff options
context:
space:
mode:
author <jgarzik@pretzel.yyz.us>2005-05-25 13:57:03 -0400
committerJeff Garzik <jgarzik@pobox.com>2005-05-25 13:57:03 -0400
commit34812c9e188b47b1d6c9fff8ba530e6f2365ebc4 (patch)
tree63e968991d043a30b80f7e3f99a3f6445455a704 /drivers/net
parentd6d78f63cea62851806bf6ac40c6f53349de442b (diff)
parent2648345fcbadfae8e7113112ff9402e465a184dc (diff)
Automatic merge of /spare/repo/netdev-2.6 branch e1000
Diffstat (limited to 'drivers/net')
-rw-r--r--drivers/net/e1000/e1000.h37
-rw-r--r--drivers/net/e1000/e1000_ethtool.c105
-rw-r--r--drivers/net/e1000/e1000_hw.c1987
-rw-r--r--drivers/net/e1000/e1000_hw.h570
-rw-r--r--drivers/net/e1000/e1000_main.c1147
-rw-r--r--drivers/net/e1000/e1000_osdep.h32
-rw-r--r--drivers/net/e1000/e1000_param.c3
7 files changed, 3168 insertions, 713 deletions
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 148930d4e9b..af1e82c5b80 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -1,7 +1,7 @@
/*******************************************************************************
- Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+ Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
@@ -112,6 +112,8 @@ struct e1000_adapter;
#define E1000_MAX_82544_RXD 4096
/* Supported Rx Buffer Sizes */
+#define E1000_RXBUFFER_128 128 /* Used for packet split */
+#define E1000_RXBUFFER_256 256 /* Used for packet split */
#define E1000_RXBUFFER_2048 2048
#define E1000_RXBUFFER_4096 4096
#define E1000_RXBUFFER_8192 8192
@@ -137,15 +139,19 @@ struct e1000_adapter;
/* How many Rx Buffers do we bundle into one write to the hardware ? */
#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
-#define AUTO_ALL_MODES 0
-#define E1000_EEPROM_82544_APM 0x0004
-#define E1000_EEPROM_APME 0x0400
+#define AUTO_ALL_MODES 0
+#define E1000_EEPROM_82544_APM 0x0400
+#define E1000_EEPROM_APME 0x0400
#ifndef E1000_MASTER_SLAVE
/* Switch to override PHY master/slave setting */
#define E1000_MASTER_SLAVE e1000_ms_hw_default
#endif
+#define E1000_MNG_VLAN_NONE -1
+/* Number of packet split data buffers (not including the header buffer) */
+#define PS_PAGE_BUFFERS MAX_PS_BUFFERS-1
+
/* only works for sizes that are powers of 2 */
#define E1000_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1)))
@@ -159,6 +165,9 @@ struct e1000_buffer {
uint16_t next_to_watch;
};
+struct e1000_ps_page { struct page *ps_page[MAX_PS_BUFFERS]; };
+struct e1000_ps_page_dma { uint64_t ps_page_dma[MAX_PS_BUFFERS]; };
+
struct e1000_desc_ring {
/* pointer to the descriptor ring memory */
void *desc;
@@ -174,12 +183,19 @@ struct e1000_desc_ring {
unsigned int next_to_clean;
/* array of buffer information structs */
struct e1000_buffer *buffer_info;
+ /* arrays of page information for packet split */
+ struct e1000_ps_page *ps_page;
+ struct e1000_ps_page_dma *ps_page_dma;
};
#define E1000_DESC_UNUSED(R) \
((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
(R)->next_to_clean - (R)->next_to_use - 1)
+#define E1000_RX_DESC_PS(R, i) \
+ (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
+#define E1000_RX_DESC_EXT(R, i) \
+ (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc)
#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
@@ -192,6 +208,7 @@ struct e1000_adapter {
struct timer_list watchdog_timer;
struct timer_list phy_info_timer;
struct vlan_group *vlgrp;
+ uint16_t mng_vlan_id;
uint32_t bd_number;
uint32_t rx_buffer_len;
uint32_t part_num;
@@ -228,14 +245,23 @@ struct e1000_adapter {
boolean_t detect_tx_hung;
/* RX */
+#ifdef CONFIG_E1000_NAPI
+ boolean_t (*clean_rx) (struct e1000_adapter *adapter, int *work_done,
+ int work_to_do);
+#else
+ boolean_t (*clean_rx) (struct e1000_adapter *adapter);
+#endif
+ void (*alloc_rx_buf) (struct e1000_adapter *adapter);
struct e1000_desc_ring rx_ring;
uint64_t hw_csum_err;
uint64_t hw_csum_good;
uint32_t rx_int_delay;
uint32_t rx_abs_int_delay;
boolean_t rx_csum;
+ boolean_t rx_ps;
uint32_t gorcl;
uint64_t gorcl_old;
+ uint16_t rx_ps_bsize0;
/* Interrupt Throttle Rate */
uint32_t itr;
@@ -257,5 +283,8 @@ struct e1000_adapter {
int msg_enable;
+#ifdef CONFIG_PCI_MSI
+ boolean_t have_msi;
+#endif
};
#endif /* _E1000_H_ */
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c
index 0a2ca7c73a4..237247f74df 100644
--- a/drivers/net/e1000/e1000_ethtool.c
+++ b/drivers/net/e1000/e1000_ethtool.c
@@ -1,7 +1,7 @@
/*******************************************************************************
- Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+ Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
@@ -69,6 +69,7 @@ static const struct e1000_stats e1000_gstrings_stats[] = {
{ "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
{ "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
+ { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
{ "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
{ "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
{ "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
@@ -593,7 +594,7 @@ e1000_set_ringparam(struct net_device *netdev,
tx_old = adapter->tx_ring;
rx_old = adapter->rx_ring;
- if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+ if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
if(netif_running(adapter->netdev))
@@ -784,8 +785,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
/* Hook up test interrupt handler just for this test */
if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
shared_int = FALSE;
- } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
- netdev->name, netdev)){
+ } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
+ netdev->name, netdev)){
*data = 1;
return -1;
}
@@ -842,10 +843,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
* test failed.
*/
adapter->test_icr = 0;
- E1000_WRITE_REG(&adapter->hw, IMC,
- (~mask & 0x00007FFF));
- E1000_WRITE_REG(&adapter->hw, ICS,
- (~mask & 0x00007FFF));
+ E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
+ E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
msec_delay(10);
if(adapter->test_icr) {
@@ -919,7 +918,8 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter)
/* Setup Tx descriptor ring and Tx buffers */
- txdr->count = 80;
+ if(!txdr->count)
+ txdr->count = E1000_DEFAULT_TXD;
size = txdr->count * sizeof(struct e1000_buffer);
if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
@@ -974,7 +974,8 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter)
/* Setup Rx descriptor ring and Rx buffers */
- rxdr->count = 80;
+ if(!rxdr->count)
+ rxdr->count = E1000_DEFAULT_RXD;
size = rxdr->count * sizeof(struct e1000_buffer);
if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
@@ -1008,7 +1009,7 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter)
struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
struct sk_buff *skb;
- if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
+ if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
GFP_KERNEL))) {
ret_val = 6;
goto err_nomem;
@@ -1310,31 +1311,62 @@ e1000_run_loopback_test(struct e1000_adapter *adapter)
struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
- int i, ret_val;
+ int i, j, k, l, lc, good_cnt, ret_val=0;
+ unsigned long time;
E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
- for(i = 0; i < 64; i++) {
- e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024);
- pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma,
- txdr->buffer_info[i].length,
- PCI_DMA_TODEVICE);
- }
- E1000_WRITE_REG(&adapter->hw, TDT, i);
-
- msec_delay(200);
-
- i = 0;
- do {
- pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[i].dma,
- rxdr->buffer_info[i].length,
- PCI_DMA_FROMDEVICE);
-
- ret_val = e1000_check_lbtest_frame(rxdr->buffer_info[i].skb,
- 1024);
- i++;
- } while (ret_val != 0 && i < 64);
+ /* Calculate the loop count based on the largest descriptor ring
+ * The idea is to wrap the largest ring a number of times using 64
+ * send/receive pairs during each loop
+ */
+ if(rxdr->count <= txdr->count)
+ lc = ((txdr->count / 64) * 2) + 1;
+ else
+ lc = ((rxdr->count / 64) * 2) + 1;
+
+ k = l = 0;
+ for(j = 0; j <= lc; j++) { /* loop count loop */
+ for(i = 0; i < 64; i++) { /* send the packets */
+ e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
+ 1024);
+ pci_dma_sync_single_for_device(pdev,
+ txdr->buffer_info[k].dma,
+ txdr->buffer_info[k].length,
+ PCI_DMA_TODEVICE);
+ if(unlikely(++k == txdr->count)) k = 0;
+ }
+ E1000_WRITE_REG(&adapter->hw, TDT, k);
+ msec_delay(200);
+ time = jiffies; /* set the start time for the receive */
+ good_cnt = 0;
+ do { /* receive the sent packets */
+ pci_dma_sync_single_for_cpu(pdev,
+ rxdr->buffer_info[l].dma,
+ rxdr->buffer_info[l].length,
+ PCI_DMA_FROMDEVICE);
+
+ ret_val = e1000_check_lbtest_frame(
+ rxdr->buffer_info[l].skb,
+ 1024);
+ if(!ret_val)
+ good_cnt++;
+ if(unlikely(++l == rxdr->count)) l = 0;
+ /* time + 20 msecs (200 msecs on 2.4) is more than
+ * enough time to complete the receives, if it's
+ * exceeded, break and error off
+ */
+ } while (good_cnt < 64 && jiffies < (time + 20));
+ if(good_cnt != 64) {
+ ret_val = 13; /* ret_val is the same as mis-compare */
+ break;
+ }
+ if(jiffies >= (time + 2)) {
+ ret_val = 14; /* error code for time out error */
+ break;
+ }
+ } /* end loop count loop */
return ret_val;
}
@@ -1354,13 +1386,12 @@ static int
e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
{
*data = 0;
-
if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
int i = 0;
adapter->hw.serdes_link_down = TRUE;
- /* on some blade server designs link establishment */
- /* could take as long as 2-3 minutes. */
+ /* On some blade server designs, link establishment
+ * could take as long as 2-3 minutes */
do {
e1000_check_for_link(&adapter->hw);
if (adapter->hw.serdes_link_down == FALSE)
@@ -1368,9 +1399,11 @@ e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
msec_delay(20);
} while (i++ < 3750);
- *data = 1;
+ *data = 1;
} else {
e1000_check_for_link(&adapter->hw);
+ if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
+ msec_delay(4000);
if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
*data = 1;
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c
index 786a9b93565..723589b28be 100644
--- a/drivers/net/e1000/e1000_hw.c
+++ b/drivers/net/e1000/e1000_hw.c
@@ -1,7 +1,7 @@
/*******************************************************************************
- Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+ Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
@@ -63,10 +63,11 @@ static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
static void e1000_release_eeprom(struct e1000_hw *hw);
static void e1000_standby_eeprom(struct e1000_hw *hw);
-static int32_t e1000_id_led_init(struct e1000_hw * hw);
static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
+static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
+static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
/* IGP cable length table */
static const
@@ -80,6 +81,17 @@ uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
+static const
+uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
+ { 8, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43,
+ 22, 24, 27, 30, 32, 35, 37, 40, 42, 44, 47, 49, 51, 54, 56, 58,
+ 32, 35, 38, 41, 44, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74,
+ 43, 47, 51, 54, 58, 61, 64, 67, 71, 74, 77, 80, 82, 85, 88, 90,
+ 57, 62, 66, 70, 74, 77, 81, 85, 88, 91, 94, 97, 100, 103, 106, 108,
+ 73, 78, 82, 87, 91, 95, 98, 102, 105, 109, 112, 114, 117, 119, 122, 124,
+ 91, 96, 101, 105, 109, 113, 116, 119, 122, 125, 127, 128, 128, 128, 128, 128,
+ 108, 113, 117, 121, 124, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128};
+
/******************************************************************************
* Set the phy type member in the hw struct.
@@ -91,10 +103,14 @@ e1000_set_phy_type(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_set_phy_type");
+ if(hw->mac_type == e1000_undefined)
+ return -E1000_ERR_PHY_TYPE;
+
switch(hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
+ case M88E1111_I_PHY_ID:
hw->phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
@@ -128,7 +144,6 @@ e1000_phy_init_script(struct e1000_hw *hw)
DEBUGFUNC("e1000_phy_init_script");
-
if(hw->phy_init_script) {
msec_delay(20);
@@ -271,6 +286,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82546GB_PCIE:
+ case E1000_DEV_ID_82546GB_QUAD_COPPER:
hw->mac_type = e1000_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
@@ -289,12 +305,19 @@ e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_82547GI:
hw->mac_type = e1000_82547_rev_2;
break;
+ case E1000_DEV_ID_82573E:
+ case E1000_DEV_ID_82573E_IAMT:
+ hw->mac_type = e1000_82573;
+ break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
switch(hw->mac_type) {
+ case e1000_82573:
+ hw->eeprom_semaphore_present = TRUE;
+ /* fall through */
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
@@ -360,6 +383,9 @@ e1000_reset_hw(struct e1000_hw *hw)
uint32_t icr;
uint32_t manc;
uint32_t led_ctrl;
+ uint32_t timeout;
+ uint32_t extcnf_ctrl;
+ int32_t ret_val;
DEBUGFUNC("e1000_reset_hw");
@@ -369,6 +395,15 @@ e1000_reset_hw(struct e1000_hw *hw)
e1000_pci_clear_mwi(hw);
}
+ if(hw->bus_type == e1000_bus_type_pci_express) {
+ /* Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+ }
+ }
+
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, IMC, 0xffffffff);
@@ -393,10 +428,32 @@ e1000_reset_hw(struct e1000_hw *hw)
/* Must reset the PHY before resetting the MAC */
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
msec_delay(5);
}
+ /* Must acquire the MDIO ownership before MAC reset.
+ * Ownership defaults to firmware after a reset. */
+ if(hw->mac_type == e1000_82573) {
+ timeout = 10;
+
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+ do {
+ E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
+
+ if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+ break;
+ else
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+
+ msec_delay(2);
+ timeout--;
+ } while(timeout);
+ }
+
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
@@ -450,6 +507,18 @@ e1000_reset_hw(struct e1000_hw *hw)
/* Wait for EEPROM reload */
msec_delay(20);
break;
+ case e1000_82573:
+ udelay(10);
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ /* fall through */
+ ret_val = e1000_get_auto_rd_done(hw);
+ if(ret_val)
+ /* We don't want to continue accessing MAC registers. */
+ return ret_val;
+ break;
default:
/* Wait for EEPROM reload (it happens automatically) */
msec_delay(5);
@@ -457,7 +526,7 @@ e1000_reset_hw(struct e1000_hw *hw)
}
/* Disable HW ARPs on ASF enabled adapters */
- if(hw->mac_type >= e1000_82540) {
+ if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
manc = E1000_READ_REG(hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc);
@@ -510,6 +579,8 @@ e1000_init_hw(struct e1000_hw *hw)
uint16_t pcix_stat_hi_word;
uint16_t cmd_mmrbc;
uint16_t stat_mmrbc;
+ uint32_t mta_size;
+
DEBUGFUNC("e1000_init_hw");
/* Initialize Identification LED */
@@ -524,8 +595,8 @@ e1000_init_hw(struct e1000_hw *hw)
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
- E1000_WRITE_REG(hw, VET, 0);
-
+ if (hw->mac_type < e1000_82545_rev_3)
+ E1000_WRITE_REG(hw, VET, 0);
e1000_clear_vfta(hw);
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
@@ -553,14 +624,16 @@ e1000_init_hw(struct e1000_hw *hw)
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
- for(i = 0; i < E1000_MC_TBL_SIZE; i++)
+ mta_size = E1000_MC_TBL_SIZE;
+ for(i = 0; i < mta_size; i++)
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* Set the PCI priority bit correctly in the CTRL register. This
* determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives.
+ * gives equal priority to transmits and receives. Valid only on
+ * 82542 and 82543 silicon.
*/
- if(hw->dma_fairness) {
+ if(hw->dma_fairness && hw->mac_type <= e1000_82543) {
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
}
@@ -598,9 +671,21 @@ e1000_init_hw(struct e1000_hw *hw)
if(hw->mac_type > e1000_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
+ switch (hw->mac_type) {
+ default:
+ break;
+ case e1000_82573:
+ ctrl |= E1000_TXDCTL_COUNT_DESC;
+ break;
+ }
E1000_WRITE_REG(hw, TXDCTL, ctrl);
}
+ if (hw->mac_type == e1000_82573) {
+ e1000_enable_tx_pkt_filtering(hw);
+ }
+
+
/* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
@@ -679,7 +764,7 @@ e1000_setup_link(struct e1000_hw *hw)
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
- if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) {
+ if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
@@ -736,6 +821,7 @@ e1000_setup_link(struct e1000_hw *hw)
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
/* Set the flow control receive threshold registers. Normally,
@@ -906,20 +992,18 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
}
/******************************************************************************
-* Detects which PHY is present and the speed and duplex
+* Make sure we have a valid PHY and change PHY mode before link setup.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
-e1000_setup_copper_link(struct e1000_hw *hw)
+e1000_copper_link_preconfig(struct e1000_hw *hw)
{
uint32_t ctrl;
- uint32_t led_ctrl;
int32_t ret_val;
- uint16_t i;
uint16_t phy_data;
- DEBUGFUNC("e1000_setup_copper_link");
+ DEBUGFUNC("e1000_copper_link_preconfig");
ctrl = E1000_READ_REG(hw, CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to what
@@ -933,7 +1017,9 @@ e1000_setup_copper_link(struct e1000_hw *hw)
} else {
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl);
- e1000_phy_hw_reset(hw);
+ ret_val = e1000_phy_hw_reset(hw);
+ if(ret_val)
+ return ret_val;
}
/* Make sure we have a valid PHY */
@@ -961,274 +1047,398 @@ e1000_setup_copper_link(struct e1000_hw *hw)
hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
hw->phy_reset_disable = FALSE;
- if(!hw->phy_reset_disable) {
- if (hw->phy_type == e1000_phy_igp) {
+ return E1000_SUCCESS;
+}
- ret_val = e1000_phy_reset(hw);
- if(ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
- /* Wait 10ms for MAC to configure PHY from eeprom settings */
- msec_delay(15);
+/********************************************************************
+* Copper link setup for e1000_phy_igp series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_igp_setup(struct e1000_hw *hw)
+{
+ uint32_t led_ctrl;
+ int32_t ret_val;
+ uint16_t phy_data;
- /* Configure activity LED after PHY reset */
- led_ctrl = E1000_READ_REG(hw, LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ DEBUGFUNC("e1000_copper_link_igp_setup");
- /* disable lplu d3 during driver init */
- ret_val = e1000_set_d3_lplu_state(hw, FALSE);
- if(ret_val) {
- DEBUGOUT("Error Disabling LPLU D3\n");
- return ret_val;
- }
+ if (hw->phy_reset_disable)
+ return E1000_SUCCESS;
+
+ ret_val = e1000_phy_reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
- /* Configure mdi-mdix settings */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
- &phy_data);
- if(ret_val)
- return ret_val;
+ /* Wait 10ms for MAC to configure PHY from eeprom settings */
+ msec_delay(15);
- if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- hw->dsp_config_state = e1000_dsp_config_disabled;
- /* Force MDI for earlier revs of the IGP PHY */
- phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
- IGP01E1000_PSCR_FORCE_MDI_MDIX);
- hw->mdix = 1;
+ /* Configure activity LED after PHY reset */
+ led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
- } else {
- hw->dsp_config_state = e1000_dsp_config_enabled;
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (hw->mdix) {
- case 1:
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- }
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
- phy_data);
- if(ret_val)
- return ret_val;
+ /* disable lplu d3 during driver init */
+ ret_val = e1000_set_d3_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D3\n");
+ return ret_val;
+ }
- /* set auto-master slave resolution settings */
- if(hw->autoneg) {
- e1000_ms_type phy_ms_setting = hw->master_slave;
+ /* disable lplu d0 during driver init */
+ ret_val = e1000_set_d0_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D0\n");
+ return ret_val;
+ }
+ /* Configure mdi-mdix settings */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
- if(hw->ffe_config_state == e1000_ffe_config_active)
- hw->ffe_config_state = e1000_ffe_config_enabled;
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ hw->dsp_config_state = e1000_dsp_config_disabled;
+ /* Force MDI for earlier revs of the IGP PHY */
+ phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
+ hw->mdix = 1;
- if(hw->dsp_config_state == e1000_dsp_config_activated)
- hw->dsp_config_state = e1000_dsp_config_enabled;
+ } else {
+ hw->dsp_config_state = e1000_dsp_config_enabled;
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- /* when autonegotiation advertisment is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default. */
- if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if(ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
- return ret_val;
- /* Set auto Master/Slave resolution process */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
- phy_data &= ~CR_1000T_MS_ENABLE;
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
+ switch (hw->mdix) {
+ case 1:
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ }
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
+ /* set auto-master slave resolution settings */
+ if(hw->autoneg) {
+ e1000_ms_type phy_ms_setting = hw->master_slave;
- /* load defaults for future use */
- hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
- ((phy_data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) :
- e1000_ms_auto;
-
- switch (phy_ms_setting) {
- case e1000_ms_force_master:
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- phy_data |= CR_1000T_MS_ENABLE;
- phy_data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- phy_data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
- return ret_val;
- }
- } else {
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
- &phy_data);
+ if(hw->ffe_config_state == e1000_ffe_config_active)
+ hw->ffe_config_state = e1000_ffe_config_enabled;
+
+ if(hw->dsp_config_state == e1000_dsp_config_activated)
+ hw->dsp_config_state = e1000_dsp_config_enabled;
+
+ /* when autonegotiation advertisment is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default. */
+ if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if(ret_val)
+ return ret_val;
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if(ret_val)
+ return ret_val;
+ /* Set auto Master/Slave resolution process */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
if(ret_val)
return ret_val;
+ }
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ /* load defaults for future use */
+ hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+ ((phy_data & CR_1000T_MS_VALUE) ?
+ e1000_ms_force_master :
+ e1000_ms_force_slave) :
+ e1000_ms_auto;
- switch (hw->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
+ switch (phy_ms_setting) {
+ case e1000_ms_force_master:
+ phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_force_slave:
+ phy_data |= CR_1000T_MS_ENABLE;
+ phy_data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_auto:
+ phy_data &= ~CR_1000T_MS_ENABLE;
default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
+ break;
+ }
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+ }
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if(hw->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
- phy_data);
- if(ret_val)
- return ret_val;
+ return E1000_SUCCESS;
+}
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
- if(ret_val)
- return ret_val;
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
+/********************************************************************
+* Copper link setup for e1000_phy_m88 series.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_mgp_setup(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_copper_link_mgp_setup");
+
+ if(hw->phy_reset_disable)
+ return E1000_SUCCESS;
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if(hw->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
- if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if (hw->phy_revision < M88E1011_I_REV_4) {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if(ret_val)
- return ret_val;
- }
+ ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+ }
- /* SW Reset the PHY so all changes take effect */
- ret_val = e1000_phy_reset(hw);
- if(ret_val) {
- DEBUGOUT("Error Resetting the PHY\n");
- return ret_val;
- }
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = e1000_phy_reset(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/********************************************************************
+* Setup auto-negotiation and flow control advertisements,
+* and then perform auto-negotiation.
+*
+* hw - Struct containing variables accessed by shared code
+*********************************************************************/
+static int32_t
+e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_copper_link_autoneg");
+
+ /* Perform some bounds checking on the hw->autoneg_advertised
+ * parameter. If this variable is zero, then set it to the default.
+ */
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ /* If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if(hw->autoneg_advertised == 0)
+ hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if(hw->wait_autoneg_complete) {
+ ret_val = e1000_wait_autoneg(hw);
+ if(ret_val) {
+ DEBUGOUT("Error while waiting for autoneg to complete\n");
+ return ret_val;
}
+ }
- /* Options:
- * autoneg = 1 (default)
- * PHY will advertise value(s) parsed from
- * autoneg_advertised and fc
- * autoneg = 0
- * PHY will be set to 10H, 10F, 100H, or 100F
- * depending on value parsed from forced_speed_duplex.
- */
+ hw->get_link_status = TRUE;
- /* Is autoneg enabled? This is enabled by default or by software
- * override. If so, call e1000_phy_setup_autoneg routine to parse the
- * autoneg_advertised and fc options. If autoneg is NOT enabled, then
- * the user should have provided a speed/duplex override. If so, then
- * call e1000_phy_force_speed_duplex to parse and set this up.
- */
- if(hw->autoneg) {
- /* Perform some bounds checking on the hw->autoneg_advertised
- * parameter. If this variable is zero, then set it to the default.
- */
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ return E1000_SUCCESS;
+}
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if(hw->autoneg_advertised == 0)
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if(ret_val) {
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- DEBUGOUT("Restarting Auto-Neg\n");
+/******************************************************************************
+* Config the MAC and the PHY after link is up.
+* 1) Set up the MAC to the current PHY speed/duplex
+* if we are on 82543. If we
+* are on newer silicon, we only need to configure
+* collision distance in the Transmit Control Register.
+* 2) Set up flow control on the MAC to that established with
+* the link partner.
+* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ DEBUGFUNC("e1000_copper_link_postconfig");
+
+ if(hw->mac_type >= e1000_82544) {
+ e1000_config_collision_dist(hw);
+ } else {
+ ret_val = e1000_config_mac_to_phy(hw);
+ if(ret_val) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Configuring Flow Control\n");
+ return ret_val;
+ }
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if(ret_val)
- return ret_val;
+ /* Config DSP to improve Giga link quality */
+ if(hw->phy_type == e1000_phy_igp) {
+ ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
+ if(ret_val) {
+ DEBUGOUT("Error Configuring DSP after link up\n");
+ return ret_val;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if(ret_val)
- return ret_val;
+/******************************************************************************
+* Detects which PHY is present and setup the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_setup_copper_link(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t i;
+ uint16_t phy_data;
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if(hw->wait_autoneg_complete) {
- ret_val = e1000_wait_autoneg(hw);
- if(ret_val) {
- DEBUGOUT("Error while waiting for autoneg to complete\n");
- return ret_val;
- }
- }
- hw->get_link_status = TRUE;
- } else {
- DEBUGOUT("Forcing speed and duplex\n");
- ret_val = e1000_phy_force_speed_duplex(hw);
- if(ret_val) {
- DEBUGOUT("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
+ DEBUGFUNC("e1000_setup_copper_link");
+
+ /* Check if it is a valid PHY and set PHY mode if necessary. */
+ ret_val = e1000_copper_link_preconfig(hw);
+ if(ret_val)
+ return ret_val;
+
+ if (hw->phy_type == e1000_phy_igp ||
+ hw->phy_type == e1000_phy_igp_2) {
+ ret_val = e1000_copper_link_igp_setup(hw);
+ if(ret_val)
+ return ret_val;
+ } else if (hw->phy_type == e1000_phy_m88) {
+ ret_val = e1000_copper_link_mgp_setup(hw);
+ if(ret_val)
+ return ret_val;
+ }
+
+ if(hw->autoneg) {
+ /* Setup autoneg and flow control advertisement
+ * and perform autonegotiation */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if(ret_val)
+ return ret_val;
+ } else {
+ /* PHY will be set to 10H, 10F, 100H,or 100F
+ * depending on value from forced_speed_duplex. */
+ DEBUGOUT("Forcing speed and duplex\n");
+ ret_val = e1000_phy_force_speed_duplex(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ return ret_val;
}
- } /* !hw->phy_reset_disable */
+ }
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
@@ -1242,37 +1452,11 @@ e1000_setup_copper_link(struct e1000_hw *hw)
return ret_val;
if(phy_data & MII_SR_LINK_STATUS) {
- /* We have link, so we need to finish the config process:
- * 1) Set up the MAC to the current PHY speed/duplex
- * if we are on 82543. If we
- * are on newer silicon, we only need to configure
- * collision distance in the Transmit Control Register.
- * 2) Set up flow control on the MAC to that established with
- * the link partner.
- */
- if(hw->mac_type >= e1000_82544) {
- e1000_config_collision_dist(hw);
- } else {
- ret_val = e1000_config_mac_to_phy(hw);
- if(ret_val) {
- DEBUGOUT("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
- ret_val = e1000_config_fc_after_link_up(hw);
- if(ret_val) {
- DEBUGOUT("Error Configuring Flow Control\n");
+ /* Config the MAC and PHY after link is up */
+ ret_val = e1000_copper_link_postconfig(hw);
+ if(ret_val)
return ret_val;
- }
- DEBUGOUT("Valid link established!!!\n");
-
- if(hw->phy_type == e1000_phy_igp) {
- ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
- if(ret_val) {
- DEBUGOUT("Error Configuring DSP after link up\n");
- return ret_val;
- }
- }
+
DEBUGOUT("Valid link established!!!\n");
return E1000_SUCCESS;
}
@@ -1302,10 +1486,10 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
if(ret_val)
return ret_val;
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if(ret_val)
- return ret_val;
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+ if(ret_val)
+ return ret_val;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
@@ -1417,7 +1601,7 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
if(ret_val)
return ret_val;
@@ -1678,6 +1862,11 @@ e1000_config_mac_to_phy(struct e1000_hw *hw)
DEBUGFUNC("e1000_config_mac_to_phy");
+ /* 82544 or newer MAC, Auto Speed Detection takes care of
+ * MAC speed/duplex configuration.*/
+ if (hw->mac_type >= e1000_82544)
+ return E1000_SUCCESS;
+
/* Read the Device Control Register and set the bits to Force Speed
* and Duplex.
*/
@@ -1688,45 +1877,25 @@ e1000_config_mac_to_phy(struct e1000_hw *hw)
/* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
- if (hw->phy_type == e1000_phy_igp) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
-
- if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD;
- else ctrl &= ~E1000_CTRL_FD;
-
- e1000_config_collision_dist(hw);
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_100MBPS)
- ctrl |= E1000_CTRL_SPD_100;
- } else {
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if(ret_val)
- return ret_val;
+ if(phy_data & M88E1000_PSSR_DPLX)
+ ctrl |= E1000_CTRL_FD;
+ else
+ ctrl &= ~E1000_CTRL_FD;
- if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
- else ctrl &= ~E1000_CTRL_FD;
+ e1000_config_collision_dist(hw);
- e1000_config_collision_dist(hw);
+ /* Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
- }
/* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG(hw, CTRL, ctrl);
return E1000_SUCCESS;
@@ -2494,8 +2663,8 @@ e1000_read_phy_reg(struct e1000_hw *hw,
DEBUGFUNC("e1000_read_phy_reg");
-
- if(hw->phy_type == e1000_phy_igp &&
+ if((hw->phy_type == e1000_phy_igp ||
+ hw->phy_type == e1000_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
@@ -2600,8 +2769,8 @@ e1000_write_phy_reg(struct e1000_hw *hw,
DEBUGFUNC("e1000_write_phy_reg");
-
- if(hw->phy_type == e1000_phy_igp &&
+ if((hw->phy_type == e1000_phy_igp ||
+ hw->phy_type == e1000_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
@@ -2679,19 +2848,27 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw,
return E1000_SUCCESS;
}
+
/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
-void
+int32_t
e1000_phy_hw_reset(struct e1000_hw *hw)
{
uint32_t ctrl, ctrl_ext;
uint32_t led_ctrl;
+ int32_t ret_val;
DEBUGFUNC("e1000_phy_hw_reset");
+ /* In the case of the phy reset being blocked, it's not an error, we
+ * simply return success without performing the reset. */
+ ret_val = e1000_check_phy_reset_block(hw);
+ if (ret_val)
+ return E1000_SUCCESS;
+
DEBUGOUT("Resetting Phy...\n");
if(hw->mac_type > e1000_82543) {
@@ -2727,6 +2904,11 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
}
+
+ /* Wait for FW to finish PHY configuration. */
+ ret_val = e1000_get_phy_cfg_done(hw);
+
+ return ret_val;
}
/******************************************************************************
@@ -2744,7 +2926,19 @@ e1000_phy_reset(struct e1000_hw *hw)
DEBUGFUNC("e1000_phy_reset");
- if(hw->mac_type != e1000_82541_rev_2) {
+ /* In the case of the phy reset being blocked, it's not an error, we
+ * simply return success without performing the reset. */
+ ret_val = e1000_check_phy_reset_block(hw);
+ if (ret_val)
+ return E1000_SUCCESS;
+
+ switch (hw->mac_type) {
+ case e1000_82541_rev_2:
+ ret_val = e1000_phy_hw_reset(hw);
+ if(ret_val)
+ return ret_val;
+ break;
+ default:
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if(ret_val)
return ret_val;
@@ -2755,9 +2949,10 @@ e1000_phy_reset(struct e1000_hw *hw)
return ret_val;
udelay(1);
- } else e1000_phy_hw_reset(hw);
+ break;
+ }
- if(hw->phy_type == e1000_phy_igp)
+ if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
e1000_phy_init_script(hw);
return E1000_SUCCESS;
@@ -2811,6 +3006,9 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
case e1000_82547_rev_2:
if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
break;
+ case e1000_82573:
+ if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
+ break;
default:
DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
@@ -2866,7 +3064,7 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
/* The downshift status is checked only once, after link is established,
* and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = hw->speed_downgraded;
+ phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
/* IGP01E1000 does not need to support it. */
phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
@@ -2905,7 +3103,7 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
if(ret_val)
return ret_val;
- /* transalte to old method */
+ /* Translate to old method */
average = (max_length + min_length) / 2;
if(average <= e1000_igp_cable_length_50)
@@ -2940,7 +3138,7 @@ e1000_phy_m88_get_info(struct e1000_hw *hw,
/* The downshift status is checked only once, after link is established,
* and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = hw->speed_downgraded;
+ phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if(ret_val)
@@ -3029,7 +3227,8 @@ e1000_phy_get_info(struct e1000_hw *hw,
return -E1000_ERR_CONFIG;
}
- if(hw->phy_type == e1000_phy_igp)
+ if(hw->phy_type == e1000_phy_igp ||
+ hw->phy_type == e1000_phy_igp_2)
return e1000_phy_igp_get_info(hw, phy_info);
else
return e1000_phy_m88_get_info(hw, phy_info);
@@ -3055,11 +3254,12 @@ e1000_validate_mdi_setting(struct e1000_hw *hw)
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
-void
+int32_t
e1000_init_eeprom_params(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd = E1000_READ_REG(hw, EECD);
+ int32_t ret_val = E1000_SUCCESS;
uint16_t eeprom_size;
DEBUGFUNC("e1000_init_eeprom_params");
@@ -3074,6 +3274,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->opcode_bits = 3;
eeprom->address_bits = 6;
eeprom->delay_usec = 50;
+ eeprom->use_eerd = FALSE;
+ eeprom->use_eewr = FALSE;
break;
case e1000_82540:
case e1000_82545:
@@ -3090,6 +3292,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
+ eeprom->use_eerd = FALSE;
+ eeprom->use_eewr = FALSE;
break;
case e1000_82541:
case e1000_82541_rev_2:
@@ -3118,42 +3322,60 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->address_bits = 6;
}
}
+ eeprom->use_eerd = FALSE;
+ eeprom->use_eewr = FALSE;
+ break;
+ case e1000_82573:
+ eeprom->type = e1000_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ eeprom->use_eerd = TRUE;
+ eeprom->use_eewr = TRUE;
+ if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
+ eeprom->type = e1000_eeprom_flash;
+ eeprom->word_size = 2048;
+
+ /* Ensure that the Autonomous FLASH update bit is cleared due to
+ * Flash update issue on parts which use a FLASH for NVM. */
+ eecd &= ~E1000_EECD_AUPDEN;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
break;
default:
break;
}
if (eeprom->type == e1000_eeprom_spi) {
- eeprom->word_size = 64;
- if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) {
- eeprom_size &= EEPROM_SIZE_MASK;
-
- switch (eeprom_size) {
- case EEPROM_SIZE_16KB:
- eeprom->word_size = 8192;
- break;
- case EEPROM_SIZE_8KB:
- eeprom->word_size = 4096;
- break;
- case EEPROM_SIZE_4KB:
- eeprom->word_size = 2048;
- break;
- case EEPROM_SIZE_2KB:
- eeprom->word_size = 1024;
- break;
- case EEPROM_SIZE_1KB:
- eeprom->word_size = 512;
- break;
- case EEPROM_SIZE_512B:
- eeprom->word_size = 256;
- break;
- case EEPROM_SIZE_128B:
- default:
- eeprom->word_size = 64;
- break;
- }
+ /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
+ * 32KB (incremented by powers of 2).
+ */
+ if(hw->mac_type <= e1000_82547_rev_2) {
+ /* Set to default value for initial eeprom read. */
+ eeprom->word_size = 64;
+ ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
+ if(ret_val)
+ return ret_val;
+ eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
+ /* 256B eeprom size was not supported in earlier hardware, so we
+ * bump eeprom_size up one to ensure that "1" (which maps to 256B)
+ * is never the result used in the shifting logic below. */
+ if(eeprom_size)
+ eeprom_size++;
+ } else {
+ eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
}
+
+ eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
}
+ return ret_val;
}
/******************************************************************************
@@ -3306,8 +3528,12 @@ e1000_acquire_eeprom(struct e1000_hw *hw)
DEBUGFUNC("e1000_acquire_eeprom");
+ if(e1000_get_hw_eeprom_semaphore(hw))
+ return -E1000_ERR_EEPROM;
+
eecd = E1000_READ_REG(hw, EECD);
+ if (hw->mac_type != e1000_82573) {
/* Request EEPROM Access */
if(hw->mac_type > e1000_82544) {
eecd |= E1000_EECD_REQ;
@@ -3326,6 +3552,7 @@ e1000_acquire_eeprom(struct e1000_hw *hw)
return -E1000_ERR_EEPROM;
}
}
+ }
/* Setup EEPROM for Read/Write */
@@ -3443,6 +3670,8 @@ e1000_release_eeprom(struct e1000_hw *hw)
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
+
+ e1000_put_hw_eeprom_semaphore(hw);
}
/******************************************************************************
@@ -3504,8 +3733,10 @@ e1000_read_eeprom(struct e1000_hw *hw,
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t i = 0;
+ int32_t ret_val;
DEBUGFUNC("e1000_read_eeprom");
+
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
@@ -3515,9 +3746,23 @@ e1000_read_eeprom(struct e1000_hw *hw,
return -E1000_ERR_EEPROM;
}
- /* Prepare the EEPROM for reading */
- if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
+ /* FLASH reads without acquiring the semaphore are safe in 82573-based
+ * controllers.
+ */
+ if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
+ (hw->mac_type != e1000_82573)) {
+ /* Prepare the EEPROM for reading */
+ if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+ }
+
+ if(eeprom->use_eerd == TRUE) {
+ ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
+ if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
+ (hw->mac_type != e1000_82573))
+ e1000_release_eeprom(hw);
+ return ret_val;
+ }
if(eeprom->type == e1000_eeprom_spi) {
uint16_t word_in;
@@ -3569,6 +3814,132 @@ e1000_read_eeprom(struct e1000_hw *hw,
}
/******************************************************************************
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+int32_t
+e1000_read_eeprom_eerd(struct e1000_hw *hw,
+ uint16_t offset,
+ uint16_t words,
+ uint16_t *data)
+{
+ uint32_t i, eerd = 0;
+ int32_t error = 0;
+
+ for (i = 0; i < words; i++) {
+ eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
+ E1000_EEPROM_RW_REG_START;
+
+ E1000_WRITE_REG(hw, EERD, eerd);
+ error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
+
+ if(error) {
+ break;
+ }
+ data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
+
+ }
+
+ return error;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word from the EEPROM using the EEWR register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+int32_t
+e1000_write_eeprom_eewr(struct e1000_hw *hw,
+ uint16_t offset,
+ uint16_t words,
+ uint16_t *data)
+{
+ uint32_t register_value = 0;
+ uint32_t i = 0;
+ int32_t error = 0;
+
+ for (i = 0; i < words; i++) {
+ register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
+ ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
+ E1000_EEPROM_RW_REG_START;
+
+ error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
+ if(error) {
+ break;
+ }
+
+ E1000_WRITE_REG(hw, EEWR, register_value);
+
+ error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
+
+ if(error) {
+ break;
+ }
+ }
+
+ return error;
+}
+
+/******************************************************************************
+ * Polls the status bit (bit 1) of the EERD to determine when the read is done.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
+{
+ uint32_t attempts = 100000;
+ uint32_t i, reg = 0;
+ int32_t done = E1000_ERR_EEPROM;
+
+ for(i = 0; i < attempts; i++) {
+ if(eerd == E1000_EEPROM_POLL_READ)
+ reg = E1000_READ_REG(hw, EERD);
+ else
+ reg = E1000_READ_REG(hw, EEWR);
+
+ if(reg & E1000_EEPROM_RW_REG_DONE) {
+ done = E1000_SUCCESS;
+ break;
+ }
+ udelay(5);
+ }
+
+ return done;
+}
+
+/***************************************************************************
+* Description: Determines if the onboard NVM is FLASH or EEPROM.
+*
+* hw - Struct containing variables accessed by shared code
+****************************************************************************/
+boolean_t
+e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
+{
+ uint32_t eecd = 0;
+
+ if(hw->mac_type == e1000_82573) {
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Isolate bits 15 & 16 */
+ eecd = ((eecd >> 15) & 0x03);
+
+ /* If both bits are set, device is Flash type */
+ if(eecd == 0x03) {
+ return FALSE;
+ }
+ }
+ return TRUE;
+}
+
+/******************************************************************************
* Verifies that the EEPROM has a valid checksum
*
* hw - Struct containing variables accessed by shared code
@@ -3585,6 +3956,25 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
DEBUGFUNC("e1000_validate_eeprom_checksum");
+ if ((hw->mac_type == e1000_82573) &&
+ (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
+ /* Check bit 4 of word 10h. If it is 0, firmware is done updating
+ * 10h-12h. Checksum may need to be fixed. */
+ e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
+ if ((eeprom_data & 0x10) == 0) {
+ /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
+ * has already been fixed. If the checksum is still wrong and this
+ * bit is a 1, we need to return bad checksum. Otherwise, we need
+ * to set this bit to a 1 and update the checksum. */
+ e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
+ if ((eeprom_data & 0x8000) == 0) {
+ eeprom_data |= 0x8000;
+ e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
+ e1000_update_eeprom_checksum(hw);
+ }
+ }
+ }
+
for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
@@ -3628,6 +4018,8 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw)
if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
DEBUGOUT("EEPROM Write Error\n");
return -E1000_ERR_EEPROM;
+ } else if (hw->eeprom.type == e1000_eeprom_flash) {
+ e1000_commit_shadow_ram(hw);
}
return E1000_SUCCESS;
}
@@ -3663,6 +4055,10 @@ e1000_write_eeprom(struct e1000_hw *hw,
return -E1000_ERR_EEPROM;
}
+ /* 82573 reads only through eerd */
+ if(eeprom->use_eewr == TRUE)
+ return e1000_write_eeprom_eewr(hw, offset, words, data);
+
/* Prepare the EEPROM for writing */
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
@@ -3833,6 +4229,65 @@ e1000_write_eeprom_microwire(struct e1000_hw *hw,
}
/******************************************************************************
+ * Flushes the cached eeprom to NVM. This is done by saving the modified values
+ * in the eeprom cache and the non modified values in the currently active bank
+ * to the new bank.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+int32_t
+e1000_commit_shadow_ram(struct e1000_hw *hw)
+{
+ uint32_t attempts = 100000;
+ uint32_t eecd = 0;
+ uint32_t flop = 0;
+ uint32_t i = 0;
+ int32_t error = E1000_SUCCESS;
+
+ /* The flop register will be used to determine if flash type is STM */
+ flop = E1000_READ_REG(hw, FLOP);
+
+ if (hw->mac_type == e1000_82573) {
+ for (i=0; i < attempts; i++) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if ((eecd & E1000_EECD_FLUPD) == 0) {
+ break;
+ }
+ udelay(5);
+ }
+
+ if (i == attempts) {
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* If STM opcode located in bits 15:8 of flop, reset firmware */
+ if ((flop & 0xFF00) == E1000_STM_OPCODE) {
+ E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
+ }
+
+ /* Perform the flash update */
+ E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
+
+ for (i=0; i < attempts; i++) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if ((eecd & E1000_EECD_FLUPD) == 0) {
+ break;
+ }
+ udelay(5);
+ }
+
+ if (i == attempts) {
+ return -E1000_ERR_EEPROM;
+ }
+ }
+
+ return error;
+}
+
+/******************************************************************************
* Reads the adapter's part number from the EEPROM
*
* hw - Struct containing variables accessed by shared code
@@ -3911,6 +4366,7 @@ void
e1000_init_rx_addrs(struct e1000_hw *hw)
{
uint32_t i;
+ uint32_t rar_num;
DEBUGFUNC("e1000_init_rx_addrs");
@@ -3919,9 +4375,10 @@ e1000_init_rx_addrs(struct e1000_hw *hw)
e1000_rar_set(hw, hw->mac_addr, 0);
+ rar_num = E1000_RAR_ENTRIES;
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
- for(i = 1; i < E1000_RAR_ENTRIES; i++) {
+ for(i = 1; i < rar_num; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
@@ -3950,7 +4407,9 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
{
uint32_t hash_value;
uint32_t i;
-
+ uint32_t num_rar_entry;
+ uint32_t num_mta_entry;
+
DEBUGFUNC("e1000_mc_addr_list_update");
/* Set the new number of MC addresses that we are being requested to use. */
@@ -3958,14 +4417,16 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
/* Clear RAR[1-15] */
DEBUGOUT(" Clearing RAR[1-15]\n");
- for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) {
+ num_rar_entry = E1000_RAR_ENTRIES;
+ for(i = rar_used_count; i < num_rar_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
/* Clear the MTA */
DEBUGOUT(" Clearing MTA\n");
- for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) {
+ num_mta_entry = E1000_NUM_MTA_REGISTERS;
+ for(i = 0; i < num_mta_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
}
@@ -3989,7 +4450,7 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
/* Place this multicast address in the RAR if there is room, *
* else put it in the MTA
*/
- if(rar_used_count < E1000_RAR_ENTRIES) {
+ if (rar_used_count < num_rar_entry) {
e1000_rar_set(hw,
mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
rar_used_count);
@@ -4040,6 +4501,7 @@ e1000_hash_mc_addr(struct e1000_hw *hw,
}
hash_value &= 0xFFF;
+
return hash_value;
}
@@ -4144,12 +4606,33 @@ void
e1000_clear_vfta(struct e1000_hw *hw)
{
uint32_t offset;
-
- for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+ uint32_t vfta_value = 0;
+ uint32_t vfta_offset = 0;
+ uint32_t vfta_bit_in_reg = 0;
+
+ if (hw->mac_type == e1000_82573) {
+ if (hw->mng_cookie.vlan_id != 0) {
+ /* The VFTA is a 4096b bit-field, each identifying a single VLAN
+ * ID. The following operations determine which 32b entry
+ * (i.e. offset) into the array we want to set the VLAN ID
+ * (i.e. bit) of the manageability unit. */
+ vfta_offset = (hw->mng_cookie.vlan_id >>
+ E1000_VFTA_ENTRY_SHIFT) &
+ E1000_VFTA_ENTRY_MASK;
+ vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
+ E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+ }
+ }
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ /* If the offset we want to clear is the same offset of the
+ * manageability VLAN ID, then clear all bits except that of the
+ * manageability unit */
+ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+ }
}
-static int32_t
+int32_t
e1000_id_led_init(struct e1000_hw * hw)
{
uint32_t ledctl;
@@ -4480,6 +4963,19 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
temp = E1000_READ_REG(hw, MGTPRC);
temp = E1000_READ_REG(hw, MGTPDC);
temp = E1000_READ_REG(hw, MGTPTC);
+
+ if(hw->mac_type <= e1000_82547_rev_2) return;
+
+ temp = E1000_READ_REG(hw, IAC);
+ temp = E1000_READ_REG(hw, ICRXOC);
+ temp = E1000_READ_REG(hw, ICRXPTC);
+ temp = E1000_READ_REG(hw, ICRXATC);
+ temp = E1000_READ_REG(hw, ICTXPTC);
+ temp = E1000_READ_REG(hw, ICTXATC);
+ temp = E1000_READ_REG(hw, ICTXQEC);
+ temp = E1000_READ_REG(hw, ICTXQMTC);
+ temp = E1000_READ_REG(hw, ICRXDMTC);
+
}
/******************************************************************************
@@ -4646,6 +5142,11 @@ e1000_get_bus_info(struct e1000_hw *hw)
hw->bus_speed = e1000_bus_speed_unknown;
hw->bus_width = e1000_bus_width_unknown;
break;
+ case e1000_82573:
+ hw->bus_type = e1000_bus_type_pci_express;
+ hw->bus_speed = e1000_bus_speed_2500;
+ hw->bus_width = e1000_bus_width_pciex_4;
+ break;
default:
status = E1000_READ_REG(hw, STATUS);
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
@@ -4749,6 +5250,7 @@ e1000_get_cable_length(struct e1000_hw *hw,
/* Use old method for Phy older than IGP */
if(hw->phy_type == e1000_phy_m88) {
+
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
if(ret_val)
@@ -4865,7 +5367,8 @@ e1000_check_polarity(struct e1000_hw *hw,
return ret_val;
*polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
M88E1000_PSSR_REV_POLARITY_SHIFT;
- } else if(hw->phy_type == e1000_phy_igp) {
+ } else if(hw->phy_type == e1000_phy_igp ||
+ hw->phy_type == e1000_phy_igp_2) {
/* Read the Status register to check the speed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
&phy_data);
@@ -4917,7 +5420,8 @@ e1000_check_downshift(struct e1000_hw *hw)
DEBUGFUNC("e1000_check_downshift");
- if(hw->phy_type == e1000_phy_igp) {
+ if(hw->phy_type == e1000_phy_igp ||
+ hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
&phy_data);
if(ret_val)
@@ -4933,6 +5437,7 @@ e1000_check_downshift(struct e1000_hw *hw)
hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
M88E1000_PSSR_DOWNSHIFT_SHIFT;
}
+
return E1000_SUCCESS;
}
@@ -5047,7 +5552,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
if(ret_val)
return ret_val;
- msec_delay(20);
+ msec_delay_irq(20);
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
@@ -5071,7 +5576,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
if(ret_val)
return ret_val;
- msec_delay(20);
+ msec_delay_irq(20);
/* Now enable the transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
@@ -5096,7 +5601,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
if(ret_val)
return ret_val;
- msec_delay(20);
+ msec_delay_irq(20);
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
@@ -5112,7 +5617,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
if(ret_val)
return ret_val;
- msec_delay(20);
+ msec_delay_irq(20);
/* Now enable the transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
@@ -5187,22 +5692,36 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
uint16_t phy_data;
DEBUGFUNC("e1000_set_d3_lplu_state");
- if(!((hw->mac_type == e1000_82541_rev_2) ||
- (hw->mac_type == e1000_82547_rev_2)))
+ if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2)
return E1000_SUCCESS;
/* During driver activity LPLU should not be used or it will attain link
* from the lowest speeds starting from 10Mbps. The capability is used for
* Dx transitions and states */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if(ret_val)
- return ret_val;
-
- if(!active) {
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+ if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
if(ret_val)
return ret_val;
+ } else {
+ ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
+ if(ret_val)
+ return ret_val;
+ }
+
+ if(!active) {
+ if(hw->mac_type == e1000_82541_rev_2 ||
+ hw->mac_type == e1000_82547_rev_2) {
+ phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+ if(ret_val)
+ return ret_val;
+ } else {
+ phy_data &= ~IGP02E1000_PM_D3_LPLU;
+ ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
@@ -5236,11 +5755,105 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
- phy_data |= IGP01E1000_GMII_FLEX_SPD;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+ if(hw->mac_type == e1000_82541_rev_2 ||
+ hw->mac_type == e1000_82547_rev_2) {
+ phy_data |= IGP01E1000_GMII_FLEX_SPD;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+ if(ret_val)
+ return ret_val;
+ } else {
+ phy_data |= IGP02E1000_PM_D3_LPLU;
+ ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* When LPLU is enabled we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
if(ret_val)
return ret_val;
+ }
+ return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu d0 state according to the active flag. When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ * E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+int32_t
+e1000_set_d0_lplu_state(struct e1000_hw *hw,
+ boolean_t active)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("e1000_set_d0_lplu_state");
+
+ if(hw->mac_type <= e1000_82547_rev_2)
+ return E1000_SUCCESS;
+
+ ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if (!active) {
+ phy_data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
+ * Dx states where the power conservation is most important. During
+ * driver activity we should enable SmartSpeed, so performance is
+ * maintained. */
+ if (hw->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if(ret_val)
+ return ret_val;
+ } else if (hw->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if(ret_val)
+ return ret_val;
+ }
+
+
+ } else {
+
+ phy_data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
+ if (ret_val)
+ return ret_val;
+
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if(ret_val)
@@ -5318,6 +5931,338 @@ e1000_set_vco_speed(struct e1000_hw *hw)
return E1000_SUCCESS;
}
+
+/*****************************************************************************
+ * This function reads the cookie from ARC ram.
+ *
+ * returns: - E1000_SUCCESS .
+ ****************************************************************************/
+int32_t
+e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
+{
+ uint8_t i;
+ uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
+ uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
+
+ length = (length >> 2);
+ offset = (offset >> 2);
+
+ for (i = 0; i < length; i++) {
+ *((uint32_t *) buffer + i) =
+ E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
+ }
+ return E1000_SUCCESS;
+}
+
+
+/*****************************************************************************
+ * This function checks whether the HOST IF is enabled for command operaton
+ * and also checks whether the previous command is completed.
+ * It busy waits in case of previous command is not completed.
+ *
+ * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
+ * timeout
+ * - E1000_SUCCESS for success.
+ ****************************************************************************/
+int32_t
+e1000_mng_enable_host_if(struct e1000_hw * hw)
+{
+ uint32_t hicr;
+ uint8_t i;
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, HICR);
+ if ((hicr & E1000_HICR_EN) == 0) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+ /* check the previous command is completed */
+ for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay_irq(1);
+ }
+
+ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ DEBUGOUT("Previous command timeout failed .\n");
+ return -E1000_ERR_HOST_INTERFACE_COMMAND;
+ }
+ return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient way.
+ * Also fills up the sum of the buffer in *buffer parameter.
+ *
+ * returns - E1000_SUCCESS for success.
+ ****************************************************************************/
+int32_t
+e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
+ uint16_t length, uint16_t offset, uint8_t *sum)
+{
+ uint8_t *tmp;
+ uint8_t *bufptr = buffer;
+ uint32_t data;
+ uint16_t remaining, i, j, prev_bytes;
+
+ /* sum = only sum of the data and it is not checksum */
+
+ if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
+ return -E1000_ERR_PARAM;
+ }
+
+ tmp = (uint8_t *)&data;
+ prev_bytes = offset & 0x3;
+ offset &= 0xFFFC;
+ offset >>= 2;
+
+ if (prev_bytes) {
+ data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
+ for (j = prev_bytes; j < sizeof(uint32_t); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
+ length -= j - prev_bytes;
+ offset++;
+ }
+
+ remaining = length & 0x3;
+ length -= remaining;
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /* The device driver writes the relevant command block into the
+ * ram area. */
+ for (i = 0; i < length; i++) {
+ for (j = 0; j < sizeof(uint32_t); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+
+ E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
+ }
+ if (remaining) {
+ for (j = 0; j < sizeof(uint32_t); j++) {
+ if (j < remaining)
+ *(tmp + j) = *bufptr++;
+ else
+ *(tmp + j) = 0;
+
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
+ }
+
+ return E1000_SUCCESS;
+}
+
+
+/*****************************************************************************
+ * This function writes the command header after does the checksum calculation.
+ *
+ * returns - E1000_SUCCESS for success.
+ ****************************************************************************/
+int32_t
+e1000_mng_write_cmd_header(struct e1000_hw * hw,
+ struct e1000_host_mng_command_header * hdr)
+{
+ uint16_t i;
+ uint8_t sum;
+ uint8_t *buffer;
+
+ /* Write the whole command header structure which includes sum of
+ * the buffer */
+
+ uint16_t length = sizeof(struct e1000_host_mng_command_header);
+
+ sum = hdr->checksum;
+ hdr->checksum = 0;
+
+ buffer = (uint8_t *) hdr;
+ i = length;
+ while(i--)
+ sum += buffer[i];
+
+ hdr->checksum = 0 - sum;
+
+ length >>= 2;
+ /* The device driver writes the relevant command block into the ram area. */
+ for (i = 0; i < length; i++)
+ E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
+
+ return E1000_SUCCESS;
+}
+
+
+/*****************************************************************************
+ * This function indicates to ARC that a new command is pending which completes
+ * one write operation by the driver.
+ *
+ * returns - E1000_SUCCESS for success.
+ ****************************************************************************/
+int32_t
+e1000_mng_write_commit(
+ struct e1000_hw * hw)
+{
+ uint32_t hicr;
+
+ hicr = E1000_READ_REG(hw, HICR);
+ /* Setting this bit tells the ARC that a new command is pending. */
+ E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
+
+ return E1000_SUCCESS;
+}
+
+
+/*****************************************************************************
+ * This function checks the mode of the firmware.
+ *
+ * returns - TRUE when the mode is IAMT or FALSE.
+ ****************************************************************************/
+boolean_t
+e1000_check_mng_mode(
+ struct e1000_hw *hw)
+{
+ uint32_t fwsm;
+
+ fwsm = E1000_READ_REG(hw, FWSM);
+
+ if((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
+ return TRUE;
+
+ return FALSE;
+}
+
+
+/*****************************************************************************
+ * This function writes the dhcp info .
+ ****************************************************************************/
+int32_t
+e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
+ uint16_t length)
+{
+ int32_t ret_val;
+ struct e1000_host_mng_command_header hdr;
+
+ hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+ hdr.command_length = length;
+ hdr.reserved1 = 0;
+ hdr.reserved2 = 0;
+ hdr.checksum = 0;
+
+ ret_val = e1000_mng_enable_host_if(hw);
+ if (ret_val == E1000_SUCCESS) {
+ ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
+ &(hdr.checksum));
+ if (ret_val == E1000_SUCCESS) {
+ ret_val = e1000_mng_write_cmd_header(hw, &hdr);
+ if (ret_val == E1000_SUCCESS)
+ ret_val = e1000_mng_write_commit(hw);
+ }
+ }
+ return ret_val;
+}
+
+
+/*****************************************************************************
+ * This function calculates the checksum.
+ *
+ * returns - checksum of buffer contents.
+ ****************************************************************************/
+uint8_t
+e1000_calculate_mng_checksum(char *buffer, uint32_t length)
+{
+ uint8_t sum = 0;
+ uint32_t i;
+
+ if (!buffer)
+ return 0;
+
+ for (i=0; i < length; i++)
+ sum += buffer[i];
+
+ return (uint8_t) (0 - sum);
+}
+
+/*****************************************************************************
+ * This function checks whether tx pkt filtering needs to be enabled or not.
+ *
+ * returns - TRUE for packet filtering or FALSE.
+ ****************************************************************************/
+boolean_t
+e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+ /* called in init as well as watchdog timer functions */
+
+ int32_t ret_val, checksum;
+ boolean_t tx_filter = FALSE;
+ struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
+ uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
+
+ if (e1000_check_mng_mode(hw)) {
+ ret_val = e1000_mng_enable_host_if(hw);
+ if (ret_val == E1000_SUCCESS) {
+ ret_val = e1000_host_if_read_cookie(hw, buffer);
+ if (ret_val == E1000_SUCCESS) {
+ checksum = hdr->checksum;
+ hdr->checksum = 0;
+ if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
+ checksum == e1000_calculate_mng_checksum((char *)buffer,
+ E1000_MNG_DHCP_COOKIE_LENGTH)) {
+ if (hdr->status &
+ E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
+ tx_filter = TRUE;
+ } else
+ tx_filter = TRUE;
+ } else
+ tx_filter = TRUE;
+ }
+ }
+
+ hw->tx_pkt_filtering = tx_filter;
+ return tx_filter;
+}
+
+/******************************************************************************
+ * Verifies the hardware needs to allow ARPs to be processed by the host
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * returns: - TRUE/FALSE
+ *
+ *****************************************************************************/
+uint32_t
+e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+ uint32_t manc;
+ uint32_t fwsm, factps;
+
+ if (hw->asf_firmware_present) {
+ manc = E1000_READ_REG(hw, MANC);
+
+ if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+ !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+ return FALSE;
+ if (e1000_arc_subsystem_valid(hw) == TRUE) {
+ fwsm = E1000_READ_REG(hw, FWSM);
+ factps = E1000_READ_REG(hw, FACTPS);
+
+ if (((fwsm & E1000_FWSM_MODE_MASK) ==
+ (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
+ (factps & E1000_FACTPS_MNGCG))
+ return TRUE;
+ } else
+ if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
+ return TRUE;
+ }
+ return FALSE;
+}
+
static int32_t
e1000_polarity_reversal_workaround(struct e1000_hw *hw)
{
@@ -5403,3 +6348,265 @@ e1000_polarity_reversal_workaround(struct e1000_hw *hw)
return E1000_SUCCESS;
}
+/***************************************************************************
+ *
+ * Disables PCI-Express master access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - none.
+ *
+ ***************************************************************************/
+void
+e1000_set_pci_express_master_disable(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC("e1000_set_pci_express_master_disable");
+
+ if (hw->bus_type != e1000_bus_type_pci_express)
+ return;
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+}
+
+/***************************************************************************
+ *
+ * Enables PCI-Express master access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - none.
+ *
+ ***************************************************************************/
+void
+e1000_enable_pciex_master(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC("e1000_enable_pciex_master");
+
+ if (hw->bus_type != e1000_bus_type_pci_express)
+ return;
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+}
+
+/*******************************************************************************
+ *
+ * Disables PCI-Express master access and verifies there are no pending requests
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
+ * caused the master requests to be disabled.
+ * E1000_SUCCESS master requests disabled.
+ *
+ ******************************************************************************/
+int32_t
+e1000_disable_pciex_master(struct e1000_hw *hw)
+{
+ int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
+
+ DEBUGFUNC("e1000_disable_pciex_master");
+
+ if (hw->bus_type != e1000_bus_type_pci_express)
+ return E1000_SUCCESS;
+
+ e1000_set_pci_express_master_disable(hw);
+
+ while(timeout) {
+ if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
+ break;
+ else
+ udelay(100);
+ timeout--;
+ }
+
+ if(!timeout) {
+ DEBUGOUT("Master requests are pending.\n");
+ return -E1000_ERR_MASTER_REQUESTS_PENDING;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/*******************************************************************************
+ *
+ * Check for EEPROM Auto Read bit done.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ * E1000_SUCCESS at any other case.
+ *
+ ******************************************************************************/
+int32_t
+e1000_get_auto_rd_done(struct e1000_hw *hw)
+{
+ int32_t timeout = AUTO_READ_DONE_TIMEOUT;
+
+ DEBUGFUNC("e1000_get_auto_rd_done");
+
+ switch (hw->mac_type) {
+ default:
+ msec_delay(5);
+ break;
+ case e1000_82573:
+ while(timeout) {
+ if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
+ else msec_delay(1);
+ timeout--;
+ }
+
+ if(!timeout) {
+ DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
+ return -E1000_ERR_RESET;
+ }
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ * Checks if the PHY configuration is done
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ * E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+int32_t
+e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_phy_cfg_done");
+
+ /* Simply wait for 10ms */
+ msec_delay(10);
+
+ return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ *
+ * Using the combination of SMBI and SWESMBI semaphore bits when resetting
+ * adapter or Eeprom access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
+ * E1000_SUCCESS at any other case.
+ *
+ ***************************************************************************/
+int32_t
+e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+ int32_t timeout;
+ uint32_t swsm;
+
+ DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
+
+ if(!hw->eeprom_semaphore_present)
+ return E1000_SUCCESS;
+
+
+ /* Get the FW semaphore. */
+ timeout = hw->eeprom.word_size + 1;
+ while(timeout) {
+ swsm = E1000_READ_REG(hw, SWSM);
+ swsm |= E1000_SWSM_SWESMBI;
+ E1000_WRITE_REG(hw, SWSM, swsm);
+ /* if we managed to set the bit we got the semaphore. */
+ swsm = E1000_READ_REG(hw, SWSM);
+ if(swsm & E1000_SWSM_SWESMBI)
+ break;
+
+ udelay(50);
+ timeout--;
+ }
+
+ if(!timeout) {
+ /* Release semaphores */
+ e1000_put_hw_eeprom_semaphore(hw);
+ DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/***************************************************************************
+ * This function clears HW semaphore bits.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - None.
+ *
+ ***************************************************************************/
+void
+e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
+{
+ uint32_t swsm;
+
+ DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
+
+ if(!hw->eeprom_semaphore_present)
+ return;
+
+ swsm = E1000_READ_REG(hw, SWSM);
+ /* Release both semaphores. */
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+ E1000_WRITE_REG(hw, SWSM, swsm);
+}
+
+/******************************************************************************
+ * Checks if PHY reset is blocked due to SOL/IDER session, for example.
+ * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
+ * the caller to figure out how to deal with it.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_BLK_PHY_RESET
+ * E1000_SUCCESS
+ *
+ *****************************************************************************/
+int32_t
+e1000_check_phy_reset_block(struct e1000_hw *hw)
+{
+ uint32_t manc = 0;
+ if(hw->mac_type > e1000_82547_rev_2)
+ manc = E1000_READ_REG(hw, MANC);
+ return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+ E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+uint8_t
+e1000_arc_subsystem_valid(struct e1000_hw *hw)
+{
+ uint32_t fwsm;
+
+ /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
+ * may not be provided a DMA clock when no manageability features are
+ * enabled. We do not want to perform any reads/writes to these registers
+ * if this is the case. We read FWSM to determine the manageability mode.
+ */
+ switch (hw->mac_type) {
+ case e1000_82573:
+ fwsm = E1000_READ_REG(hw, FWSM);
+ if((fwsm & E1000_FWSM_MODE_MASK) != 0)
+ return TRUE;
+ break;
+ default:
+ break;
+ }
+ return FALSE;
+}
+
+
+
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h
index f397e637a3c..a0263ee96c6 100644
--- a/drivers/net/e1000/e1000_hw.h
+++ b/drivers/net/e1000/e1000_hw.h
@@ -1,7 +1,7 @@
/*******************************************************************************
- Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+ Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
@@ -57,6 +57,7 @@ typedef enum {
e1000_82541_rev_2,
e1000_82547,
e1000_82547_rev_2,
+ e1000_82573,
e1000_num_macs
} e1000_mac_type;
@@ -64,6 +65,7 @@ typedef enum {
e1000_eeprom_uninitialized = 0,
e1000_eeprom_spi,
e1000_eeprom_microwire,
+ e1000_eeprom_flash,
e1000_num_eeprom_types
} e1000_eeprom_type;
@@ -96,6 +98,7 @@ typedef enum {
e1000_bus_type_unknown = 0,
e1000_bus_type_pci,
e1000_bus_type_pcix,
+ e1000_bus_type_pci_express,
e1000_bus_type_reserved
} e1000_bus_type;
@@ -107,6 +110,7 @@ typedef enum {
e1000_bus_speed_100,
e1000_bus_speed_120,
e1000_bus_speed_133,
+ e1000_bus_speed_2500,
e1000_bus_speed_reserved
} e1000_bus_speed;
@@ -115,6 +119,8 @@ typedef enum {
e1000_bus_width_unknown = 0,
e1000_bus_width_32,
e1000_bus_width_64,
+ e1000_bus_width_pciex_1,
+ e1000_bus_width_pciex_4,
e1000_bus_width_reserved
} e1000_bus_width;
@@ -196,6 +202,7 @@ typedef enum {
typedef enum {
e1000_phy_m88 = 0,
e1000_phy_igp,
+ e1000_phy_igp_2,
e1000_phy_undefined = 0xFF
} e1000_phy_type;
@@ -242,8 +249,19 @@ struct e1000_eeprom_info {
uint16_t address_bits;
uint16_t delay_usec;
uint16_t page_size;
+ boolean_t use_eerd;
+ boolean_t use_eewr;
};
+/* Flex ASF Information */
+#define E1000_HOST_IF_MAX_SIZE 2048
+
+typedef enum {
+ e1000_byte_align = 0,
+ e1000_word_align = 1,
+ e1000_dword_align = 2
+} e1000_align_type;
+
/* Error Codes */
@@ -254,11 +272,16 @@ struct e1000_eeprom_info {
#define E1000_ERR_PARAM 4
#define E1000_ERR_MAC_TYPE 5
#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET 9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET 12
/* Function prototypes */
/* Initialization */
int32_t e1000_reset_hw(struct e1000_hw *hw);
int32_t e1000_init_hw(struct e1000_hw *hw);
+int32_t e1000_id_led_init(struct e1000_hw * hw);
int32_t e1000_set_mac_type(struct e1000_hw *hw);
void e1000_set_media_type(struct e1000_hw *hw);
@@ -275,7 +298,7 @@ int32_t e1000_force_mac_fc(struct e1000_hw *hw);
/* PHY */
int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
-void e1000_phy_hw_reset(struct e1000_hw *hw);
+int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
int32_t e1000_phy_reset(struct e1000_hw *hw);
int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
@@ -287,13 +310,86 @@ int32_t e1000_check_downshift(struct e1000_hw *hw);
int32_t e1000_validate_mdi_setting(struct e1000_hw *hw);
/* EEPROM Functions */
-void e1000_init_eeprom_params(struct e1000_hw *hw);
+int32_t e1000_init_eeprom_params(struct e1000_hw *hw);
+boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
+int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
+
+/* MNG HOST IF functions */
+uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */
+
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */
+#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
+#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
+#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
+
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */
+#define E1000_VFTA_ENTRY_SHIFT 0x5
+#define E1000_VFTA_ENTRY_MASK 0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
+
+struct e1000_host_mng_command_header {
+ uint8_t command_id;
+ uint8_t checksum;
+ uint16_t reserved1;
+ uint16_t reserved2;
+ uint16_t command_length;
+};
+
+struct e1000_host_mng_command_info {
+ struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
+ uint8_t command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658*/
+};
+#ifdef __BIG_ENDIAN
+struct e1000_host_mng_dhcp_cookie{
+ uint32_t signature;
+ uint16_t vlan_id;
+ uint8_t reserved0;
+ uint8_t status;
+ uint32_t reserved1;
+ uint8_t checksum;
+ uint8_t reserved3;
+ uint16_t reserved2;
+};
+#else
+struct e1000_host_mng_dhcp_cookie{
+ uint32_t signature;
+ uint8_t status;
+ uint8_t reserved0;
+ uint16_t vlan_id;
+ uint32_t reserved1;
+ uint16_t reserved2;
+ uint8_t reserved3;
+ uint8_t checksum;
+};
+#endif
+
+int32_t e1000_mng_write_dhcp_info(struct e1000_hw *hw, uint8_t *buffer,
+ uint16_t length);
+boolean_t e1000_check_mng_mode(struct e1000_hw *hw);
+boolean_t e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
+int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer,
+ uint16_t length, uint16_t offset, uint8_t *sum);
+int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw,
+ struct e1000_host_mng_command_header* hdr);
+
+int32_t e1000_mng_write_commit(struct e1000_hw *hw);
+
int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw);
int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw);
int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num);
int32_t e1000_read_mac_addr(struct e1000_hw * hw);
+int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
+void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
/* Filters (multicast, vlan, receive) */
void e1000_init_rx_addrs(struct e1000_hw *hw);
@@ -313,7 +409,6 @@ int32_t e1000_led_off(struct e1000_hw *hw);
/* Adaptive IFS Functions */
/* Everything else */
-uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw);
void e1000_clear_hw_cntrs(struct e1000_hw *hw);
void e1000_reset_adaptive(struct e1000_hw *hw);
void e1000_update_adaptive(struct e1000_hw *hw);
@@ -330,6 +425,19 @@ void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value);
void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
+int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
+void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
+void e1000_enable_pciex_master(struct e1000_hw *hw);
+int32_t e1000_disable_pciex_master(struct e1000_hw *hw);
+int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
+int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
+int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
+void e1000_release_software_semaphore(struct e1000_hw *hw);
+int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
+int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
+void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
+int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
+uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
#define E1000_READ_REG_IO(a, reg) \
e1000_read_reg_io((a), E1000_##reg)
@@ -369,6 +477,10 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
#define E1000_DEV_ID_82546GB_SERDES 0x107B
#define E1000_DEV_ID_82546GB_PCIE 0x108A
#define E1000_DEV_ID_82547EI 0x1019
+#define E1000_DEV_ID_82573E 0x108B
+#define E1000_DEV_ID_82573E_IAMT 0x108C
+
+#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
#define NODE_ADDRESS_SIZE 6
#define ETH_LENGTH_OF_ADDRESS 6
@@ -381,6 +493,7 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
#define E1000_REVISION_0 0
#define E1000_REVISION_1 1
#define E1000_REVISION_2 2
+#define E1000_REVISION_3 3
#define SPEED_10 10
#define SPEED_100 100
@@ -437,6 +550,7 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
E1000_IMS_RXSEQ | \
E1000_IMS_LSC)
+
/* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor. We
* reserve one of these spots for our directed address, allowing us room for
@@ -457,14 +571,74 @@ struct e1000_rx_desc {
uint16_t special;
};
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+ struct {
+ uint64_t buffer_addr;
+ uint64_t reserved;
+ } read;
+ struct {
+ struct {
+ uint32_t mrq; /* Multiple Rx Queues */
+ union {
+ uint32_t rss; /* RSS Hash */
+ struct {
+ uint16_t ip_id; /* IP id */
+ uint16_t csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ uint32_t status_error; /* ext status/error */
+ uint16_t length;
+ uint16_t vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+ struct {
+ /* one buffer for protocol header(s), three data buffers */
+ uint64_t buffer_addr[MAX_PS_BUFFERS];
+ } read;
+ struct {
+ struct {
+ uint32_t mrq; /* Multiple Rx Queues */
+ union {
+ uint32_t rss; /* RSS Hash */
+ struct {
+ uint16_t ip_id; /* IP id */
+ uint16_t csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ uint32_t status_error; /* ext status/error */
+ uint16_t length0; /* length of buffer 0 */
+ uint16_t vlan; /* VLAN tag */
+ } middle;
+ struct {
+ uint16_t header_status;
+ uint16_t length[3]; /* length of buffers 1-3 */
+ } upper;
+ uint64_t reserved;
+ } wb; /* writeback */
+};
+
/* Receive Decriptor bit definitions */
#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
+#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
+#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
@@ -474,9 +648,20 @@ struct e1000_rx_desc {
#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
-#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */
+#define E1000_RXD_SPC_PRI_SHIFT 13
#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
-#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_CE 0x01000000
+#define E1000_RXDEXT_STATERR_SE 0x02000000
+#define E1000_RXDEXT_STATERR_SEQ 0x04000000
+#define E1000_RXDEXT_STATERR_CXE 0x10000000
+#define E1000_RXDEXT_STATERR_TCPE 0x20000000
+#define E1000_RXDEXT_STATERR_IPE 0x40000000
+#define E1000_RXDEXT_STATERR_RXE 0x80000000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
/* mask to determine if packets should be dropped due to frame errors */
#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
@@ -486,6 +671,15 @@ struct e1000_rx_desc {
E1000_RXD_ERR_CXE | \
E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+ E1000_RXDEXT_STATERR_CE | \
+ E1000_RXDEXT_STATERR_SE | \
+ E1000_RXDEXT_STATERR_SEQ | \
+ E1000_RXDEXT_STATERR_CXE | \
+ E1000_RXDEXT_STATERR_RXE)
+
/* Transmit Descriptor */
struct e1000_tx_desc {
uint64_t buffer_addr; /* Address of the descriptor's data buffer */
@@ -667,6 +861,7 @@ struct e1000_ffvt_entry {
#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
#define E1000_RCTL 0x00100 /* RX Control - RW */
#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
@@ -676,9 +871,23 @@ struct e1000_ffvt_entry {
#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_PBS 0x01008 /* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
+#define E1000_FLASH_UPDATES 1000
+#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
+#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL 0x01030 /* FLASH control register */
+#define E1000_FLSWDATA 0x01034 /* FLASH data register */
+#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
+#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
+#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
@@ -688,6 +897,7 @@ struct e1000_ffvt_entry {
#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */
#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
+#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
@@ -703,6 +913,14 @@ struct e1000_ffvt_entry {
#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */
+#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */
+#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */
+#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */
+#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */
+#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */
+#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */
+#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */
#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
@@ -761,7 +979,17 @@ struct e1000_ffvt_entry {
#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_IAC 0x4100 /* Interrupt Assertion Count */
+#define E1000_ICRXPTC 0x4104 /* Interrupt Cause Rx Packet Timer Expire Count */
+#define E1000_ICRXATC 0x4108 /* Interrupt Cause Rx Absolute Timer Expire Count */
+#define E1000_ICTXPTC 0x410C /* Interrupt Cause Tx Packet Timer Expire Count */
+#define E1000_ICTXATC 0x4110 /* Interrupt Cause Tx Absolute Timer Expire Count */
+#define E1000_ICTXQEC 0x4118 /* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC 0x411C /* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define E1000_ICRXDMTC 0x4120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define E1000_ICRXOC 0x4124 /* Interrupt Cause Receiver Overrun Count */
#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
+#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
#define E1000_RA 0x05400 /* Receive Address - RW Array */
#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
@@ -779,6 +1007,16 @@ struct e1000_ffvt_entry {
#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+#define E1000_GCR 0x05B00 /* PCI-Ex Control */
+#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM 0x05B50 /* SW Semaphore */
+#define E1000_FWSM 0x05B54 /* FW Semaphore */
+#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
+#define E1000_HICR 0x08F00 /* Host Inteface Control */
/* Register Set (82542)
*
* Some of the 82542 registers are located at different offsets than they are
@@ -829,6 +1067,18 @@ struct e1000_ffvt_entry {
#define E1000_82542_VFTA 0x00600
#define E1000_82542_LEDCTL E1000_LEDCTL
#define E1000_82542_PBA E1000_PBA
+#define E1000_82542_PBS E1000_PBS
+#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
+#define E1000_82542_EEARBC E1000_EEARBC
+#define E1000_82542_FLASHT E1000_FLASHT
+#define E1000_82542_EEWR E1000_EEWR
+#define E1000_82542_FLSWCTL E1000_FLSWCTL
+#define E1000_82542_FLSWDATA E1000_FLSWDATA
+#define E1000_82542_FLSWCNT E1000_FLSWCNT
+#define E1000_82542_FLOP E1000_FLOP
+#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL
+#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE
+#define E1000_82542_ERT E1000_ERT
#define E1000_82542_RXDCTL E1000_RXDCTL
#define E1000_82542_RADV E1000_RADV
#define E1000_82542_RSRPD E1000_RSRPD
@@ -913,6 +1163,38 @@ struct e1000_ffvt_entry {
#define E1000_82542_FFMT E1000_FFMT
#define E1000_82542_FFVT E1000_FFVT
#define E1000_82542_HOST_IF E1000_HOST_IF
+#define E1000_82542_IAM E1000_IAM
+#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
+#define E1000_82542_PSRCTL E1000_PSRCTL
+#define E1000_82542_RAID E1000_RAID
+#define E1000_82542_TARC0 E1000_TARC0
+#define E1000_82542_TDBAL1 E1000_TDBAL1
+#define E1000_82542_TDBAH1 E1000_TDBAH1
+#define E1000_82542_TDLEN1 E1000_TDLEN1
+#define E1000_82542_TDH1 E1000_TDH1
+#define E1000_82542_TDT1 E1000_TDT1
+#define E1000_82542_TXDCTL1 E1000_TXDCTL1
+#define E1000_82542_TARC1 E1000_TARC1
+#define E1000_82542_RFCTL E1000_RFCTL
+#define E1000_82542_GCR E1000_GCR
+#define E1000_82542_GSCL_1 E1000_GSCL_1
+#define E1000_82542_GSCL_2 E1000_GSCL_2
+#define E1000_82542_GSCL_3 E1000_GSCL_3
+#define E1000_82542_GSCL_4 E1000_GSCL_4
+#define E1000_82542_FACTPS E1000_FACTPS
+#define E1000_82542_SWSM E1000_SWSM
+#define E1000_82542_FWSM E1000_FWSM
+#define E1000_82542_FFLT_DBG E1000_FFLT_DBG
+#define E1000_82542_IAC E1000_IAC
+#define E1000_82542_ICRXPTC E1000_ICRXPTC
+#define E1000_82542_ICRXATC E1000_ICRXATC
+#define E1000_82542_ICTXPTC E1000_ICTXPTC
+#define E1000_82542_ICTXATC E1000_ICTXATC
+#define E1000_82542_ICTXQEC E1000_ICTXQEC
+#define E1000_82542_ICTXQMTC E1000_ICTXQMTC
+#define E1000_82542_ICRXDMTC E1000_ICRXDMTC
+#define E1000_82542_ICRXOC E1000_ICRXOC
+#define E1000_82542_HICR E1000_HICR
/* Statistics counters collected by the MAC */
struct e1000_hw_stats {
@@ -974,11 +1256,21 @@ struct e1000_hw_stats {
uint64_t bptc;
uint64_t tsctc;
uint64_t tsctfc;
+ uint64_t iac;
+ uint64_t icrxptc;
+ uint64_t icrxatc;
+ uint64_t ictxptc;
+ uint64_t ictxatc;
+ uint64_t ictxqec;
+ uint64_t ictxqmtc;
+ uint64_t icrxdmtc;
+ uint64_t icrxoc;
};
/* Structure containing variables used by the shared code (e1000_hw.c) */
struct e1000_hw {
- uint8_t __iomem *hw_addr;
+ uint8_t *hw_addr;
+ uint8_t *flash_address;
e1000_mac_type mac_type;
e1000_phy_type phy_type;
uint32_t phy_init_script;
@@ -993,6 +1285,7 @@ struct e1000_hw {
e1000_ms_type original_master_slave;
e1000_ffe_config ffe_config_state;
uint32_t asf_firmware_present;
+ uint32_t eeprom_semaphore_present;
unsigned long io_base;
uint32_t phy_id;
uint32_t phy_revision;
@@ -1009,6 +1302,8 @@ struct e1000_hw {
uint32_t ledctl_default;
uint32_t ledctl_mode1;
uint32_t ledctl_mode2;
+ boolean_t tx_pkt_filtering;
+ struct e1000_host_mng_dhcp_cookie mng_cookie;
uint16_t phy_spd_default;
uint16_t autoneg_advertised;
uint16_t pci_cmd_word;
@@ -1047,16 +1342,24 @@ struct e1000_hw {
boolean_t adaptive_ifs;
boolean_t ifs_params_forced;
boolean_t in_ifs_mode;
+ boolean_t mng_reg_access_disabled;
};
#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
+#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */
+#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
+#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */
+#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
+#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */
+#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */
/* Register Bit Masks */
/* Device Control */
#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
@@ -1070,6 +1373,7 @@ struct e1000_hw {
#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
@@ -1089,6 +1393,7 @@ struct e1000_hw {
#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
@@ -1098,6 +1403,8 @@ struct e1000_hw {
#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
+#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
@@ -1128,6 +1435,18 @@ struct e1000_hw {
#ifndef E1000_EEPROM_GRANT_ATTEMPTS
#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
#endif
+#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */
+#define E1000_EECD_SIZE_EX_SHIFT 11
+#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
+#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
+#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
+#define E1000_STM_OPCODE 0xDB00
+#define E1000_HICR_FW_RESET 0xC0
/* EEPROM Read */
#define E1000_EERD_START 0x00000001 /* Start Read */
@@ -1171,6 +1490,8 @@ struct e1000_hw {
#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
+#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
/* MDI Control */
#define E1000_MDIC_DATA_MASK 0x0000FFFF
@@ -1187,14 +1508,17 @@ struct e1000_hw {
/* LED Control */
#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_BLINK_RATE 0x0000020
#define E1000_LEDCTL_LED0_IVRT 0x00000040
#define E1000_LEDCTL_LED0_BLINK 0x00000080
#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
#define E1000_LEDCTL_LED1_MODE_SHIFT 8
+#define E1000_LEDCTL_LED1_BLINK_RATE 0x0002000
#define E1000_LEDCTL_LED1_IVRT 0x00004000
#define E1000_LEDCTL_LED1_BLINK 0x00008000
#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
#define E1000_LEDCTL_LED2_MODE_SHIFT 16
+#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
#define E1000_LEDCTL_LED2_IVRT 0x00400000
#define E1000_LEDCTL_LED2_BLINK 0x00800000
#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
@@ -1238,6 +1562,10 @@ struct e1000_hw {
#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
#define E1000_ICR_TXD_LOW 0x00008000
#define E1000_ICR_SRPD 0x00010000
+#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
+#define E1000_ICR_MNG 0x00040000 /* Manageability event */
+#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
+#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
/* Interrupt Cause Set */
#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
@@ -1255,6 +1583,9 @@ struct e1000_hw {
#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
#define E1000_ICS_SRPD E1000_ICR_SRPD
+#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
/* Interrupt Mask Set */
#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
@@ -1272,6 +1603,9 @@ struct e1000_hw {
#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
#define E1000_IMS_SRPD E1000_ICR_SRPD
+#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
/* Interrupt Mask Clear */
#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
@@ -1289,6 +1623,9 @@ struct e1000_hw {
#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
#define E1000_IMC_SRPD E1000_ICR_SRPD
+#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */
/* Receive Control */
#define E1000_RCTL_RST 0x00000001 /* Software reset */
@@ -1301,6 +1638,8 @@ struct e1000_hw {
#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
@@ -1327,6 +1666,34 @@ struct e1000_hw {
#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
+
+/* Use byte values for the following shift parameters
+ * Usage:
+ * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ * E1000_PSRCTL_BSIZE0_MASK) |
+ * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ * E1000_PSRCTL_BSIZE1_MASK) |
+ * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ * E1000_PSRCTL_BSIZE2_MASK) |
+ * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ * E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256], default=256
+ * value1 = [1024..64512], default=4096
+ * value2 = [0..64512], default=4096
+ * value3 = [0..64512], default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
/* Receive Descriptor */
#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
@@ -1341,6 +1708,23 @@ struct e1000_hw {
#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS 0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
+#define E1000_RFCTL_NFSW_DIS 0x00000040
+#define E1000_RFCTL_NFSR_DIS 0x00000080
+#define E1000_RFCTL_NFS_VER_MASK 0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT 8
+#define E1000_RFCTL_IPV6_DIS 0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
+#define E1000_RFCTL_ACK_DIS 0x00001000
+#define E1000_RFCTL_ACKD_DIS 0x00002000
+#define E1000_RFCTL_IPFRSP_DIS 0x00004000
+#define E1000_RFCTL_EXTEN 0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
+
/* Receive Descriptor Control */
#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
@@ -1354,6 +1738,8 @@ struct e1000_hw {
#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
+ still to be processed. */
/* Transmit Configuration Word */
#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
@@ -1387,12 +1773,16 @@ struct e1000_hw {
#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
+#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
/* Receive Checksum Control */
#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
+#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
+
/* Definitions for power management and wakeup registers */
/* Wake Up Control */
@@ -1411,6 +1801,7 @@ struct e1000_hw {
#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
@@ -1446,13 +1837,19 @@ struct e1000_hw {
#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
* Filtering */
+#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
* filtering */
#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
* memory */
+#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address
+ * filtering */
+#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
+#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
@@ -1463,11 +1860,97 @@ struct e1000_hw {
#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
+
+/* FW Semaphore Register */
+#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */
+#define E1000_FWSM_MODE_SHIFT 1
+#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
+
+/* FFLT Debug Register */
+#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
+
+typedef enum {
+ e1000_mng_mode_none = 0,
+ e1000_mng_mode_asf,
+ e1000_mng_mode_pt,
+ e1000_mng_mode_ipmi,
+ e1000_mng_mode_host_interface_only
+} e1000_mng_mode;
+
+/* Host Inteface Control Register */
+#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */
+#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done
+ * to put command in RAM */
+#define E1000_HICR_SV 0x00000004 /* Status Validity */
+#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */
+
+/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
+#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */
+
+struct e1000_host_command_header {
+ uint8_t command_id;
+ uint8_t command_length;
+ uint8_t command_options; /* I/F bits for command, status for return */
+ uint8_t checksum;
+};
+struct e1000_host_command_info {
+ struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
+ uint8_t command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */
+};
+
+/* Host SMB register #0 */
+#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */
+#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */
+#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */
+#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */
+
+/* Host SMB register #1 */
+#define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN
+#define E1000_HSMC1R_DATAIN E1000_HSMC0R_DATAIN
+#define E1000_HSMC1R_DATAOUT E1000_HSMC0R_DATAOUT
+#define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT
+
+/* FW Status Register */
+#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */
+
/* Wake Up Packet Length */
#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
#define E1000_MDALIGN 4096
+#define E1000_GCR_BEM32 0x00400000
+/* Function Active and Power State to MNG */
+#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003
+#define E1000_FACTPS_LAN0_VALID 0x00000004
+#define E1000_FACTPS_FUNC0_AUX_EN 0x00000008
+#define E1000_FACTPS_FUNC1_POWER_STATE_MASK 0x000000C0
+#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT 6
+#define E1000_FACTPS_LAN1_VALID 0x00000100
+#define E1000_FACTPS_FUNC1_AUX_EN 0x00000200
+#define E1000_FACTPS_FUNC2_POWER_STATE_MASK 0x00003000
+#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT 12
+#define E1000_FACTPS_IDE_ENABLE 0x00004000
+#define E1000_FACTPS_FUNC2_AUX_EN 0x00008000
+#define E1000_FACTPS_FUNC3_POWER_STATE_MASK 0x000C0000
+#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT 18
+#define E1000_FACTPS_SP_ENABLE 0x00100000
+#define E1000_FACTPS_FUNC3_AUX_EN 0x00200000
+#define E1000_FACTPS_FUNC4_POWER_STATE_MASK 0x03000000
+#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT 24
+#define E1000_FACTPS_IPMI_ENABLE 0x04000000
+#define E1000_FACTPS_FUNC4_AUX_EN 0x08000000
+#define E1000_FACTPS_MNGCG 0x20000000
+#define E1000_FACTPS_LAN_FUNC_SEL 0x40000000
+#define E1000_FACTPS_PM_STATE_CHANGED 0x80000000
+
/* EEPROM Commands - Microwire */
#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */
#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */
@@ -1477,22 +1960,20 @@ struct e1000_hw {
/* EEPROM Commands - SPI */
#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define EEPROM_READ_OPCODE_SPI 0x3 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_SPI 0x2 /* EEPROM write opcode */
-#define EEPROM_A8_OPCODE_SPI 0x8 /* opcode bit-3 = address bit-8 */
-#define EEPROM_WREN_OPCODE_SPI 0x6 /* EEPROM set Write Enable latch */
-#define EEPROM_WRDI_OPCODE_SPI 0x4 /* EEPROM reset Write Enable latch */
-#define EEPROM_RDSR_OPCODE_SPI 0x5 /* EEPROM read Status register */
-#define EEPROM_WRSR_OPCODE_SPI 0x1 /* EEPROM write Status register */
+#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */
+#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
+#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */
+#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */
+#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */
+#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */
+#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */
+#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */
+#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */
/* EEPROM Size definitions */
-#define EEPROM_SIZE_16KB 0x1800
-#define EEPROM_SIZE_8KB 0x1400
-#define EEPROM_SIZE_4KB 0x1000
-#define EEPROM_SIZE_2KB 0x0C00
-#define EEPROM_SIZE_1KB 0x0800
-#define EEPROM_SIZE_512B 0x0400
-#define EEPROM_SIZE_128B 0x0000
+#define EEPROM_WORD_SIZE_SHIFT 6
+#define EEPROM_SIZE_SHIFT 10
#define EEPROM_SIZE_MASK 0x1C00
/* EEPROM Word Offsets */
@@ -1606,7 +2087,22 @@ struct e1000_hw {
#define IFS_MIN 40
#define IFS_RATIO 4
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE 0x00000002
+#define E1000_EXTCNF_CTRL_D_UD_ENABLE 0x00000004
+#define E1000_EXTCNF_CTRL_D_UD_LATENCY 0x00000008
+#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000
+
+#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF
+#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000
+
/* PBA constants */
+#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
#define E1000_PBA_22K 0x0016
#define E1000_PBA_24K 0x0018
@@ -1663,6 +2159,13 @@ struct e1000_hw {
/* Number of milliseconds we wait for auto-negotiation to complete */
#define LINK_UP_TIMEOUT 500
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT 800
+/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
+#define AUTO_READ_DONE_TIMEOUT 10
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT 40
+
#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
/* The carrier extension symbol, as received by the NIC. */
@@ -1763,6 +2266,7 @@ struct e1000_hw {
#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */
#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
+#define IGP02E1000_PHY_POWER_MGMT 0x19
#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */
/* IGP01E1000 AGC Registers - stores the cable length values*/
@@ -1771,12 +2275,20 @@ struct e1000_hw {
#define IGP01E1000_PHY_AGC_C 0x1472
#define IGP01E1000_PHY_AGC_D 0x1872
+/* IGP02E1000 AGC Registers for cable length values */
+#define IGP02E1000_PHY_AGC_A 0x11B1
+#define IGP02E1000_PHY_AGC_B 0x12B1
+#define IGP02E1000_PHY_AGC_C 0x14B1
+#define IGP02E1000_PHY_AGC_D 0x18B1
+
/* IGP01E1000 DSP Reset Register */
#define IGP01E1000_PHY_DSP_RESET 0x1F33
#define IGP01E1000_PHY_DSP_SET 0x1F71
#define IGP01E1000_PHY_DSP_FFE 0x1F35
#define IGP01E1000_PHY_CHANNEL_NUM 4
+#define IGP02E1000_PHY_CHANNEL_NUM 4
+
#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
@@ -2060,20 +2572,30 @@ struct e1000_hw {
#define IGP01E1000_MSE_CHANNEL_B 0x0F00
#define IGP01E1000_MSE_CHANNEL_A 0xF000
+#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */
+#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */
+
/* IGP01E1000 DSP reset macros */
#define DSP_RESET_ENABLE 0x0
#define DSP_RESET_DISABLE 0x2
#define E1000_MAX_DSP_RESETS 10
-/* IGP01E1000 AGC Registers */
+/* IGP01E1000 & IGP02E1000 AGC Registers */
#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */
+#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */
+
+/* IGP02E1000 AGC Register Length 9-bit mask */
+#define IGP02E1000_AGC_LENGTH_MASK 0x7F
/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
+#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 128
-/* The precision of the length is +/- 10 meters */
+/* The precision error of the cable length is +/- 10 meters */
#define IGP01E1000_AGC_RANGE 10
+#define IGP02E1000_AGC_RANGE 10
/* IGP01E1000 PCS Initialization register */
/* bits 3:6 in the PCS registers stores the channels polarity */
@@ -2113,6 +2635,8 @@ struct e1000_hw {
#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
#define M88E1011_I_REV_4 0x04
+#define M88E1111_I_PHY_ID 0x01410CC0
+#define L1LXT971A_PHY_ID 0x001378E0
/* Miscellaneous PHY bit definitions. */
#define PHY_PREAMBLE 0xFFFFFFFF
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c
index 82549a6fcfb..325495b8b60 100644
--- a/drivers/net/e1000/e1000_main.c
+++ b/drivers/net/e1000/e1000_main.c
@@ -1,7 +1,7 @@
/*******************************************************************************
- Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+ Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
@@ -29,33 +29,9 @@
#include "e1000.h"
/* Change Log
- * 5.3.12 6/7/04
- * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
- * - if_mii support and associated kcompat for older kernels
- * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
- * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
- *
- * 5.7.1 12/16/04
- * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
- * fix was removed as it caused system instability. The suspected cause of
- * this is the called to e1000_irq_disable in e1000_intr. Inlined the
- * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
- * 5.7.0 12/10/04
- * - include fix to the condition that determines when to quit NAPI - Robert Olsson
- * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
- * 5.6.5 11/01/04
- * - Enabling NETIF_F_SG without checksum offload is illegal -
- John Mason <jdmason@us.ibm.com>
- * 5.6.3 10/26/04
- * - Remove redundant initialization - Jamal Hadi
- * - Reset buffer_info->dma in tx resource cleanup logic
- * 5.6.2 10/12/04
- * - Avoid filling tx_ring completely - shemminger@osdl.org
- * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
- * nacc@us.ibm.com
- * - Sparse cleanup - shemminger@osdl.org
- * - Fix tx resource cleanup logic
- * - LLTX support - ak@suse.de and hadi@cyberus.ca
+ * 6.0.44+ 2/15/05
+ * o applied Anton's patch to resolve tx hang in hardware
+ * o Applied Andrew Mortons patch - e1000 stops working after resume
*/
char e1000_driver_name[] = "e1000";
@@ -65,7 +41,7 @@ char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
#else
#define DRIVERNAPI "-NAPI"
#endif
-#define DRV_VERSION "5.7.6-k2"DRIVERNAPI
+#define DRV_VERSION "6.0.54-k2"DRIVERNAPI
char e1000_driver_version[] = DRV_VERSION;
char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
@@ -96,6 +72,7 @@ static struct pci_device_id e1000_pci_tbl[] = {
INTEL_E1000_ETHERNET_DEVICE(0x1017),
INTEL_E1000_ETHERNET_DEVICE(0x1018),
INTEL_E1000_ETHERNET_DEVICE(0x1019),
+ INTEL_E1000_ETHERNET_DEVICE(0x101A),
INTEL_E1000_ETHERNET_DEVICE(0x101D),
INTEL_E1000_ETHERNET_DEVICE(0x101E),
INTEL_E1000_ETHERNET_DEVICE(0x1026),
@@ -110,6 +87,9 @@ static struct pci_device_id e1000_pci_tbl[] = {
INTEL_E1000_ETHERNET_DEVICE(0x107B),
INTEL_E1000_ETHERNET_DEVICE(0x107C),
INTEL_E1000_ETHERNET_DEVICE(0x108A),
+ INTEL_E1000_ETHERNET_DEVICE(0x108B),
+ INTEL_E1000_ETHERNET_DEVICE(0x108C),
+ INTEL_E1000_ETHERNET_DEVICE(0x1099),
/* required last entry */
{0,}
};
@@ -155,10 +135,14 @@ static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
static int e1000_clean(struct net_device *netdev, int *budget);
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
int *work_done, int work_to_do);
+static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
+ int *work_done, int work_to_do);
#else
static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
+static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
#endif
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
+static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd);
@@ -286,7 +270,29 @@ e1000_irq_enable(struct e1000_adapter *adapter)
E1000_WRITE_FLUSH(&adapter->hw);
}
}
-
+void
+e1000_update_mng_vlan(struct e1000_adapter *adapter)
+{
+ struct net_device *netdev = adapter->netdev;
+ uint16_t vid = adapter->hw.mng_cookie.vlan_id;
+ uint16_t old_vid = adapter->mng_vlan_id;
+ if(adapter->vlgrp) {
+ if(!adapter->vlgrp->vlan_devices[vid]) {
+ if(adapter->hw.mng_cookie.status &
+ E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
+ e1000_vlan_rx_add_vid(netdev, vid);
+ adapter->mng_vlan_id = vid;
+ } else
+ adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+
+ if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
+ (vid != old_vid) &&
+ !adapter->vlgrp->vlan_devices[old_vid])
+ e1000_vlan_rx_kill_vid(netdev, old_vid);
+ }
+ }
+}
+
int
e1000_up(struct e1000_adapter *adapter)
{
@@ -310,19 +316,33 @@ e1000_up(struct e1000_adapter *adapter)
e1000_configure_tx(adapter);
e1000_setup_rctl(adapter);
e1000_configure_rx(adapter);
- e1000_alloc_rx_buffers(adapter);
+ adapter->alloc_rx_buf(adapter);
+#ifdef CONFIG_PCI_MSI
+ if(adapter->hw.mac_type > e1000_82547_rev_2) {
+ adapter->have_msi = TRUE;
+ if((err = pci_enable_msi(adapter->pdev))) {
+ DPRINTK(PROBE, ERR,
+ "Unable to allocate MSI interrupt Error: %d\n", err);
+ adapter->have_msi = FALSE;
+ }
+ }
+#endif
if((err = request_irq(adapter->pdev->irq, &e1000_intr,
SA_SHIRQ | SA_SAMPLE_RANDOM,
- netdev->name, netdev)))
+ netdev->name, netdev))) {
+ DPRINTK(PROBE, ERR,
+ "Unable to allocate interrupt Error: %d\n", err);
return err;
+ }
mod_timer(&adapter->watchdog_timer, jiffies);
- e1000_irq_enable(adapter);
#ifdef CONFIG_E1000_NAPI
netif_poll_enable(netdev);
#endif
+ e1000_irq_enable(adapter);
+
return 0;
}
@@ -333,6 +353,11 @@ e1000_down(struct e1000_adapter *adapter)
e1000_irq_disable(adapter);
free_irq(adapter->pdev->irq, netdev);
+#ifdef CONFIG_PCI_MSI
+ if(adapter->hw.mac_type > e1000_82547_rev_2 &&
+ adapter->have_msi == TRUE)
+ pci_disable_msi(adapter->pdev);
+#endif
del_timer_sync(&adapter->tx_fifo_stall_timer);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
@@ -350,62 +375,93 @@ e1000_down(struct e1000_adapter *adapter)
e1000_clean_rx_ring(adapter);
/* If WoL is not enabled
+ * and management mode is not IAMT
* Power down the PHY so no link is implied when interface is down */
- if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
+ if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
+ adapter->hw.media_type == e1000_media_type_copper &&
+ !e1000_check_mng_mode(&adapter->hw) &&
+ !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
uint16_t mii_reg;
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
+ mdelay(1);
}
}
void
e1000_reset(struct e1000_adapter *adapter)
{
- uint32_t pba;
+ struct net_device *netdev = adapter->netdev;
+ uint32_t pba, manc;
+ uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
+ uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
- if(adapter->hw.mac_type < e1000_82547) {
- if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
- pba = E1000_PBA_40K;
- else
- pba = E1000_PBA_48K;
- } else {
- if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
- pba = E1000_PBA_22K;
- else
- pba = E1000_PBA_30K;
+ switch (adapter->hw.mac_type) {
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ pba = E1000_PBA_30K;
+ break;
+ case e1000_82573:
+ pba = E1000_PBA_12K;
+ break;
+ default:
+ pba = E1000_PBA_48K;
+ break;
+ }
+
+ if((adapter->hw.mac_type != e1000_82573) &&
+ (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
+ pba -= 8; /* allocate more FIFO for Tx */
+ /* send an XOFF when there is enough space in the
+ * Rx FIFO to hold one extra full size Rx packet
+ */
+ fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE +
+ ETHERNET_FCS_SIZE + 1;
+ fc_low_water_mark = fc_high_water_mark + 8;
+ }
+
+
+ if(adapter->hw.mac_type == e1000_82547) {
adapter->tx_fifo_head = 0;
adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
adapter->tx_fifo_size =
(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
atomic_set(&adapter->tx_fifo_stall, 0);
}
+
E1000_WRITE_REG(&adapter->hw, PBA, pba);
/* flow control settings */
adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
- E1000_FC_HIGH_DIFF;
+ fc_high_water_mark;
adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
- E1000_FC_LOW_DIFF;
+ fc_low_water_mark;
adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
adapter->hw.fc_send_xon = 1;
adapter->hw.fc = adapter->hw.original_fc;
+ /* Allow time for pending master requests to run */
e1000_reset_hw(&adapter->hw);
if(adapter->hw.mac_type >= e1000_82544)
E1000_WRITE_REG(&adapter->hw, WUC, 0);
if(e1000_init_hw(&adapter->hw))
DPRINTK(PROBE, ERR, "Hardware Error\n");
-
+ e1000_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
e1000_reset_adaptive(&adapter->hw);
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
+ if (adapter->en_mng_pt) {
+ manc = E1000_READ_REG(&adapter->hw, MANC);
+ manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
+ E1000_WRITE_REG(&adapter->hw, MANC, manc);
+ }
}
/**
@@ -426,15 +482,13 @@ e1000_probe(struct pci_dev *pdev,
{
struct net_device *netdev;
struct e1000_adapter *adapter;
+ unsigned long mmio_start, mmio_len;
+ uint32_t swsm;
+
static int cards_found = 0;
- unsigned long mmio_start;
- int mmio_len;
- int pci_using_dac;
- int i;
- int err;
+ int i, err, pci_using_dac;
uint16_t eeprom_data;
uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
-
if((err = pci_enable_device(pdev)))
return err;
@@ -521,6 +575,9 @@ e1000_probe(struct pci_dev *pdev,
if((err = e1000_sw_init(adapter)))
goto err_sw_init;
+ if((err = e1000_check_phy_reset_block(&adapter->hw)))
+ DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
+
if(adapter->hw.mac_type >= e1000_82543) {
netdev->features = NETIF_F_SG |
NETIF_F_HW_CSUM |
@@ -533,6 +590,11 @@ e1000_probe(struct pci_dev *pdev,
if((adapter->hw.mac_type >= e1000_82544) &&
(adapter->hw.mac_type != e1000_82547))
netdev->features |= NETIF_F_TSO;
+
+#ifdef NETIF_F_TSO_IPV6
+ if(adapter->hw.mac_type > e1000_82547_rev_2)
+ netdev->features |= NETIF_F_TSO_IPV6;
+#endif
#endif
if(pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
@@ -540,6 +602,8 @@ e1000_probe(struct pci_dev *pdev,
/* hard_start_xmit is safe against parallel locking */
netdev->features |= NETIF_F_LLTX;
+ adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
+
/* before reading the EEPROM, reset the controller to
* put the device in a known good starting state */
@@ -555,7 +619,7 @@ e1000_probe(struct pci_dev *pdev,
/* copy the MAC address out of the EEPROM */
- if (e1000_read_mac_addr(&adapter->hw))
+ if(e1000_read_mac_addr(&adapter->hw))
DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
@@ -629,6 +693,17 @@ e1000_probe(struct pci_dev *pdev,
/* reset the hardware with the new settings */
e1000_reset(adapter);
+ /* Let firmware know the driver has taken over */
+ switch(adapter->hw.mac_type) {
+ case e1000_82573:
+ swsm = E1000_READ_REG(&adapter->hw, SWSM);
+ E1000_WRITE_REG(&adapter->hw, SWSM,
+ swsm | E1000_SWSM_DRV_LOAD);
+ break;
+ default:
+ break;
+ }
+
strcpy(netdev->name, "eth%d");
if((err = register_netdev(netdev)))
goto err_register;
@@ -664,7 +739,7 @@ e1000_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev->priv;
- uint32_t manc;
+ uint32_t manc, swsm;
flush_scheduled_work();
@@ -677,9 +752,21 @@ e1000_remove(struct pci_dev *pdev)
}
}
+ switch(adapter->hw.mac_type) {
+ case e1000_82573:
+ swsm = E1000_READ_REG(&adapter->hw, SWSM);
+ E1000_WRITE_REG(&adapter->hw, SWSM,
+ swsm & ~E1000_SWSM_DRV_LOAD);
+ break;
+
+ default:
+ break;
+ }
+
unregister_netdev(netdev);
- e1000_phy_hw_reset(&adapter->hw);
+ if(!e1000_check_phy_reset_block(&adapter->hw))
+ e1000_phy_hw_reset(&adapter->hw);
iounmap(adapter->hw.hw_addr);
pci_release_regions(pdev);
@@ -717,6 +804,7 @@ e1000_sw_init(struct e1000_adapter *adapter)
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
adapter->rx_buffer_len = E1000_RXBUFFER_2048;
+ adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
hw->max_frame_size = netdev->mtu +
ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
@@ -730,7 +818,10 @@ e1000_sw_init(struct e1000_adapter *adapter)
/* initialize eeprom parameters */
- e1000_init_eeprom_params(hw);
+ if(e1000_init_eeprom_params(hw)) {
+ E1000_ERR("EEPROM initialization failed\n");
+ return -EIO;
+ }
switch(hw->mac_type) {
default:
@@ -795,6 +886,11 @@ e1000_open(struct net_device *netdev)
if((err = e1000_up(adapter)))
goto err_up;
+ adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+ if((adapter->hw.mng_cookie.status &
+ E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
+ e1000_update_mng_vlan(adapter);
+ }
return E1000_SUCCESS;
@@ -830,14 +926,18 @@ e1000_close(struct net_device *netdev)
e1000_free_tx_resources(adapter);
e1000_free_rx_resources(adapter);
+ if((adapter->hw.mng_cookie.status &
+ E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
+ e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+ }
return 0;
}
/**
* e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
* @adapter: address of board private structure
- * @begin: address of beginning of memory
- * @end: address of end of memory
+ * @start: address of beginning of memory
+ * @len: length of memory
**/
static inline boolean_t
e1000_check_64k_bound(struct e1000_adapter *adapter,
@@ -846,12 +946,10 @@ e1000_check_64k_bound(struct e1000_adapter *adapter,
unsigned long begin = (unsigned long) start;
unsigned long end = begin + len;
- /* first rev 82545 and 82546 need to not allow any memory
- * write location to cross a 64k boundary due to errata 23 */
+ /* First rev 82545 and 82546 need to not allow any memory
+ * write location to cross 64k boundary due to errata 23 */
if (adapter->hw.mac_type == e1000_82545 ||
- adapter->hw.mac_type == e1000_82546 ) {
-
- /* check buffer doesn't cross 64kB */
+ adapter->hw.mac_type == e1000_82546) {
return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
}
@@ -875,8 +973,8 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter)
size = sizeof(struct e1000_buffer) * txdr->count;
txdr->buffer_info = vmalloc(size);
if(!txdr->buffer_info) {
- DPRINTK(PROBE, ERR,
- "Unable to Allocate Memory for the Transmit descriptor ring\n");
+ DPRINTK(PROBE, ERR,
+ "Unable to allocate memory for the transmit descriptor ring\n");
return -ENOMEM;
}
memset(txdr->buffer_info, 0, size);
@@ -889,38 +987,38 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter)
txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
if(!txdr->desc) {
setup_tx_desc_die:
- DPRINTK(PROBE, ERR,
- "Unable to Allocate Memory for the Transmit descriptor ring\n");
vfree(txdr->buffer_info);
+ DPRINTK(PROBE, ERR,
+ "Unable to allocate memory for the transmit descriptor ring\n");
return -ENOMEM;
}
- /* fix for errata 23, cant cross 64kB boundary */
+ /* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
void *olddesc = txdr->desc;
dma_addr_t olddma = txdr->dma;
- DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
- txdr->size, txdr->desc);
- /* try again, without freeing the previous */
+ DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
+ "at %p\n", txdr->size, txdr->desc);
+ /* Try again, without freeing the previous */
txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
- /* failed allocation, critial failure */
if(!txdr->desc) {
+ /* Failed allocation, critical failure */
pci_free_consistent(pdev, txdr->size, olddesc, olddma);
goto setup_tx_desc_die;
}
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
/* give up */
- pci_free_consistent(pdev, txdr->size,
- txdr->desc, txdr->dma);
+ pci_free_consistent(pdev, txdr->size, txdr->desc,
+ txdr->dma);
pci_free_consistent(pdev, txdr->size, olddesc, olddma);
DPRINTK(PROBE, ERR,
- "Unable to Allocate aligned Memory for the Transmit"
- " descriptor ring\n");
+ "Unable to allocate aligned memory "
+ "for the transmit descriptor ring\n");
vfree(txdr->buffer_info);
return -ENOMEM;
} else {
- /* free old, move on with the new one since its okay */
+ /* Free old allocation, new allocation was successful */
pci_free_consistent(pdev, txdr->size, olddesc, olddma);
}
}
@@ -1022,59 +1120,88 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter)
{
struct e1000_desc_ring *rxdr = &adapter->rx_ring;
struct pci_dev *pdev = adapter->pdev;
- int size;
+ int size, desc_len;
size = sizeof(struct e1000_buffer) * rxdr->count;
rxdr->buffer_info = vmalloc(size);
if(!rxdr->buffer_info) {
- DPRINTK(PROBE, ERR,
- "Unable to Allocate Memory for the Recieve descriptor ring\n");
+ DPRINTK(PROBE, ERR,
+ "Unable to allocate memory for the receive descriptor ring\n");
return -ENOMEM;
}
memset(rxdr->buffer_info, 0, size);
+ size = sizeof(struct e1000_ps_page) * rxdr->count;
+ rxdr->ps_page = kmalloc(size, GFP_KERNEL);
+ if(!rxdr->ps_page) {
+ vfree(rxdr->buffer_info);
+ DPRINTK(PROBE, ERR,
+ "Unable to allocate memory for the receive descriptor ring\n");
+ return -ENOMEM;
+ }
+ memset(rxdr->ps_page, 0, size);
+
+ size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
+ rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
+ if(!rxdr->ps_page_dma) {
+ vfree(rxdr->buffer_info);
+ kfree(rxdr->ps_page);
+ DPRINTK(PROBE, ERR,
+ "Unable to allocate memory for the receive descriptor ring\n");
+ return -ENOMEM;
+ }
+ memset(rxdr->ps_page_dma, 0, size);
+
+ if(adapter->hw.mac_type <= e1000_82547_rev_2)
+ desc_len = sizeof(struct e1000_rx_desc);
+ else
+ desc_len = sizeof(union e1000_rx_desc_packet_split);
+
/* Round up to nearest 4K */
- rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
+ rxdr->size = rxdr->count * desc_len;
E1000_ROUNDUP(rxdr->size, 4096);
rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
if(!rxdr->desc) {
setup_rx_desc_die:
- DPRINTK(PROBE, ERR,
- "Unble to Allocate Memory for the Recieve descriptor ring\n");
vfree(rxdr->buffer_info);
+ kfree(rxdr->ps_page);
+ kfree(rxdr->ps_page_dma);
+ DPRINTK(PROBE, ERR,
+ "Unable to allocate memory for the receive descriptor ring\n");
return -ENOMEM;
}
- /* fix for errata 23, cant cross 64kB boundary */
+ /* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
void *olddesc = rxdr->desc;
dma_addr_t olddma = rxdr->dma;
- DPRINTK(RX_ERR,ERR,
- "rxdr align check failed: %u bytes at %p\n",
- rxdr->size, rxdr->desc);
- /* try again, without freeing the previous */
+ DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
+ "at %p\n", rxdr->size, rxdr->desc);
+ /* Try again, without freeing the previous */
rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
- /* failed allocation, critial failure */
if(!rxdr->desc) {
+ /* Failed allocation, critical failure */
pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
goto setup_rx_desc_die;
}
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
/* give up */
- pci_free_consistent(pdev, rxdr->size,
- rxdr->desc, rxdr->dma);
+ pci_free_consistent(pdev, rxdr->size, rxdr->desc,
+ rxdr->dma);
pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
- DPRINTK(PROBE, ERR,
- "Unable to Allocate aligned Memory for the"
- " Receive descriptor ring\n");
+ DPRINTK(PROBE, ERR,
+ "Unable to allocate aligned memory "
+ "for the receive descriptor ring\n");
vfree(rxdr->buffer_info);
+ kfree(rxdr->ps_page);
+ kfree(rxdr->ps_page_dma);
return -ENOMEM;
} else {
- /* free old, move on with the new one since its okay */
+ /* Free old allocation, new allocation was successful */
pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
}
}
@@ -1087,14 +1214,15 @@ setup_rx_desc_die:
}
/**
- * e1000_setup_rctl - configure the receive control register
+ * e1000_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
static void
e1000_setup_rctl(struct e1000_adapter *adapter)
{
- uint32_t rctl;
+ uint32_t rctl, rfctl;
+ uint32_t psrctl = 0;
rctl = E1000_READ_REG(&adapter->hw, RCTL);
@@ -1109,24 +1237,69 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
else
rctl &= ~E1000_RCTL_SBP;
+ if (adapter->netdev->mtu <= ETH_DATA_LEN)
+ rctl &= ~E1000_RCTL_LPE;
+ else
+ rctl |= E1000_RCTL_LPE;
+
/* Setup buffer sizes */
- rctl &= ~(E1000_RCTL_SZ_4096);
- rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
- switch (adapter->rx_buffer_len) {
- case E1000_RXBUFFER_2048:
- default:
- rctl |= E1000_RCTL_SZ_2048;
- rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
- break;
- case E1000_RXBUFFER_4096:
- rctl |= E1000_RCTL_SZ_4096;
- break;
- case E1000_RXBUFFER_8192:
- rctl |= E1000_RCTL_SZ_8192;
- break;
- case E1000_RXBUFFER_16384:
- rctl |= E1000_RCTL_SZ_16384;
- break;
+ if(adapter->hw.mac_type == e1000_82573) {
+ /* We can now specify buffers in 1K increments.
+ * BSIZE and BSEX are ignored in this case. */
+ rctl |= adapter->rx_buffer_len << 0x11;
+ } else {
+ rctl &= ~E1000_RCTL_SZ_4096;
+ rctl |= E1000_RCTL_BSEX;
+ switch (adapter->rx_buffer_len) {
+ case E1000_RXBUFFER_2048:
+ default:
+ rctl |= E1000_RCTL_SZ_2048;
+ rctl &= ~E1000_RCTL_BSEX;
+ break;
+ case E1000_RXBUFFER_4096:
+ rctl |= E1000_RCTL_SZ_4096;
+ break;
+ case E1000_RXBUFFER_8192:
+ rctl |= E1000_RCTL_SZ_8192;
+ break;
+ case E1000_RXBUFFER_16384:
+ rctl |= E1000_RCTL_SZ_16384;
+ break;
+ }
+ }
+
+#ifdef CONFIG_E1000_PACKET_SPLIT
+ /* 82571 and greater support packet-split where the protocol
+ * header is placed in skb->data and the packet data is
+ * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
+ * In the case of a non-split, skb->data is linearly filled,
+ * followed by the page buffers. Therefore, skb->data is
+ * sized to hold the largest protocol header.
+ */
+ adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2)
+ && (adapter->netdev->mtu
+ < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
+#endif
+ if(adapter->rx_ps) {
+ /* Configure extra packet-split registers */
+ rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
+ rfctl |= E1000_RFCTL_EXTEN;
+ /* disable IPv6 packet split support */
+ rfctl |= E1000_RFCTL_IPV6_DIS;
+ E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
+
+ rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
+
+ psrctl |= adapter->rx_ps_bsize0 >>
+ E1000_PSRCTL_BSIZE0_SHIFT;
+ psrctl |= PAGE_SIZE >>
+ E1000_PSRCTL_BSIZE1_SHIFT;
+ psrctl |= PAGE_SIZE <<
+ E1000_PSRCTL_BSIZE2_SHIFT;
+ psrctl |= PAGE_SIZE <<
+ E1000_PSRCTL_BSIZE3_SHIFT;
+
+ E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
}
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
@@ -1143,9 +1316,18 @@ static void
e1000_configure_rx(struct e1000_adapter *adapter)
{
uint64_t rdba = adapter->rx_ring.dma;
- uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
- uint32_t rctl;
- uint32_t rxcsum;
+ uint32_t rdlen, rctl, rxcsum;
+
+ if(adapter->rx_ps) {
+ rdlen = adapter->rx_ring.count *
+ sizeof(union e1000_rx_desc_packet_split);
+ adapter->clean_rx = e1000_clean_rx_irq_ps;
+ adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
+ } else {
+ rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
+ adapter->clean_rx = e1000_clean_rx_irq;
+ adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
+ }
/* disable receives while setting up the descriptors */
rctl = E1000_READ_REG(&adapter->hw, RCTL);
@@ -1172,13 +1354,27 @@ e1000_configure_rx(struct e1000_adapter *adapter)
E1000_WRITE_REG(&adapter->hw, RDT, 0);
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
- if((adapter->hw.mac_type >= e1000_82543) &&
- (adapter->rx_csum == TRUE)) {
+ if(adapter->hw.mac_type >= e1000_82543) {
rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
- rxcsum |= E1000_RXCSUM_TUOFL;
+ if(adapter->rx_csum == TRUE) {
+ rxcsum |= E1000_RXCSUM_TUOFL;
+
+ /* Enable 82573 IPv4 payload checksum for UDP fragments
+ * Must be used in conjunction with packet-split. */
+ if((adapter->hw.mac_type > e1000_82547_rev_2) &&
+ (adapter->rx_ps)) {
+ rxcsum |= E1000_RXCSUM_IPPCSE;
+ }
+ } else {
+ rxcsum &= ~E1000_RXCSUM_TUOFL;
+ /* don't need to clear IPPCSE as it defaults to 0 */
+ }
E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
}
+ if (adapter->hw.mac_type == e1000_82573)
+ E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
+
/* Enable Receives */
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
}
@@ -1210,13 +1406,11 @@ static inline void
e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
struct e1000_buffer *buffer_info)
{
- struct pci_dev *pdev = adapter->pdev;
-
if(buffer_info->dma) {
- pci_unmap_page(pdev,
- buffer_info->dma,
- buffer_info->length,
- PCI_DMA_TODEVICE);
+ pci_unmap_page(adapter->pdev,
+ buffer_info->dma,
+ buffer_info->length,
+ PCI_DMA_TODEVICE);
buffer_info->dma = 0;
}
if(buffer_info->skb) {
@@ -1241,7 +1435,7 @@ e1000_clean_tx_ring(struct e1000_adapter *adapter)
/* Free all the Tx ring sk_buffs */
if (likely(adapter->previous_buffer_info.skb != NULL)) {
- e1000_unmap_and_free_tx_resource(adapter,
+ e1000_unmap_and_free_tx_resource(adapter,
&adapter->previous_buffer_info);
}
@@ -1281,6 +1475,10 @@ e1000_free_rx_resources(struct e1000_adapter *adapter)
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
+ kfree(rx_ring->ps_page);
+ rx_ring->ps_page = NULL;
+ kfree(rx_ring->ps_page_dma);
+ rx_ring->ps_page_dma = NULL;
pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
@@ -1297,16 +1495,19 @@ e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
struct e1000_buffer *buffer_info;
+ struct e1000_ps_page *ps_page;
+ struct e1000_ps_page_dma *ps_page_dma;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
- unsigned int i;
+ unsigned int i, j;
/* Free all the Rx ring sk_buffs */
for(i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
if(buffer_info->skb) {
-
+ ps_page = &rx_ring->ps_page[i];
+ ps_page_dma = &rx_ring->ps_page_dma[i];
pci_unmap_single(pdev,
buffer_info->dma,
buffer_info->length,
@@ -1314,11 +1515,25 @@ e1000_clean_rx_ring(struct e1000_adapter *adapter)
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
+
+ for(j = 0; j < PS_PAGE_BUFFERS; j++) {
+ if(!ps_page->ps_page[j]) break;
+ pci_unmap_single(pdev,
+ ps_page_dma->ps_page_dma[j],
+ PAGE_SIZE, PCI_DMA_FROMDEVICE);
+ ps_page_dma->ps_page_dma[j] = 0;
+ put_page(ps_page->ps_page[j]);
+ ps_page->ps_page[j] = NULL;
+ }
}
}
size = sizeof(struct e1000_buffer) * rx_ring->count;
memset(rx_ring->buffer_info, 0, size);
+ size = sizeof(struct e1000_ps_page) * rx_ring->count;
+ memset(rx_ring->ps_page, 0, size);
+ size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
+ memset(rx_ring->ps_page_dma, 0, size);
/* Zero out the descriptor ring */
@@ -1422,15 +1637,15 @@ e1000_set_multi(struct net_device *netdev)
struct e1000_adapter *adapter = netdev->priv;
struct e1000_hw *hw = &adapter->hw;
struct dev_mc_list *mc_ptr;
+ unsigned long flags;
uint32_t rctl;
uint32_t hash_value;
int i;
- unsigned long flags;
-
- /* Check for Promiscuous and All Multicast modes */
spin_lock_irqsave(&adapter->tx_lock, flags);
+ /* Check for Promiscuous and All Multicast modes */
+
rctl = E1000_READ_REG(hw, RCTL);
if(netdev->flags & IFF_PROMISC) {
@@ -1556,6 +1771,11 @@ e1000_watchdog_task(struct e1000_adapter *adapter)
uint32_t link;
e1000_check_for_link(&adapter->hw);
+ if (adapter->hw.mac_type == e1000_82573) {
+ e1000_enable_tx_pkt_filtering(&adapter->hw);
+ if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
+ e1000_update_mng_vlan(adapter);
+ }
if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
!(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
@@ -1632,7 +1852,7 @@ e1000_watchdog_task(struct e1000_adapter *adapter)
/* Cause software interrupt to ensure rx ring is cleaned */
E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
- /* Force detection of hung controller every watchdog period*/
+ /* Force detection of hung controller every watchdog period */
adapter->detect_tx_hung = TRUE;
/* Reset the timer */
@@ -1642,6 +1862,7 @@ e1000_watchdog_task(struct e1000_adapter *adapter)
#define E1000_TX_FLAGS_CSUM 0x00000001
#define E1000_TX_FLAGS_VLAN 0x00000002
#define E1000_TX_FLAGS_TSO 0x00000004
+#define E1000_TX_FLAGS_IPV4 0x00000008
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT 16
@@ -1652,7 +1873,7 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
struct e1000_context_desc *context_desc;
unsigned int i;
uint32_t cmd_length = 0;
- uint16_t ipcse, tucse, mss;
+ uint16_t ipcse = 0, tucse, mss;
uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
int err;
@@ -1665,23 +1886,37 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
mss = skb_shinfo(skb)->tso_size;
- skb->nh.iph->tot_len = 0;
- skb->nh.iph->check = 0;
- skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
- skb->nh.iph->daddr,
- 0,
- IPPROTO_TCP,
- 0);
+ if(skb->protocol == ntohs(ETH_P_IP)) {
+ skb->nh.iph->tot_len = 0;
+ skb->nh.iph->check = 0;
+ skb->h.th->check =
+ ~csum_tcpudp_magic(skb->nh.iph->saddr,
+ skb->nh.iph->daddr,
+ 0,
+ IPPROTO_TCP,
+ 0);
+ cmd_length = E1000_TXD_CMD_IP;
+ ipcse = skb->h.raw - skb->data - 1;
+#ifdef NETIF_F_TSO_IPV6
+ } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
+ skb->nh.ipv6h->payload_len = 0;
+ skb->h.th->check =
+ ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
+ &skb->nh.ipv6h->daddr,
+ 0,
+ IPPROTO_TCP,
+ 0);
+ ipcse = 0;
+#endif
+ }
ipcss = skb->nh.raw - skb->data;
ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
- ipcse = skb->h.raw - skb->data - 1;
tucss = skb->h.raw - skb->data;
tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
tucse = 0;
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
- E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
- (skb->len - (hdr_len)));
+ E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
i = adapter->tx_ring.next_to_use;
context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
@@ -1760,6 +1995,15 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
if(unlikely(mss && !nr_frags && size == len && size > 8))
size -= 4;
#endif
+ /* work-around for errata 10 and it applies
+ * to all controllers in PCI-X mode
+ * The fix is to make sure that the first descriptor of a
+ * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
+ */
+ if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
+ (size > 2015) && count == 0))
+ size = 2015;
+
/* Workaround for potential 82544 hang in PCI-X. Avoid
* terminating buffers within evenly-aligned dwords. */
if(unlikely(adapter->pcix_82544 &&
@@ -1840,7 +2084,10 @@ e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
E1000_TXD_CMD_TSE;
- txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
+ txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+
+ if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
+ txd_upper |= E1000_TXD_POPTS_IXSM << 8;
}
if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
@@ -1915,6 +2162,53 @@ no_fifo_stall_required:
return 0;
}
+#define MINIMUM_DHCP_PACKET_SIZE 282
+static inline int
+e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ uint16_t length, offset;
+ if(vlan_tx_tag_present(skb)) {
+ if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
+ ( adapter->hw.mng_cookie.status &
+ E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
+ return 0;
+ }
+ if(htons(ETH_P_IP) == skb->protocol) {
+ const struct iphdr *ip = skb->nh.iph;
+ if(IPPROTO_UDP == ip->protocol) {
+ struct udphdr *udp = (struct udphdr *)(skb->h.uh);
+ if(ntohs(udp->dest) == 67) {
+ offset = (uint8_t *)udp + 8 - skb->data;
+ length = skb->len - offset;
+
+ return e1000_mng_write_dhcp_info(hw,
+ (uint8_t *)udp + 8, length);
+ }
+ }
+ } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
+ struct ethhdr *eth = (struct ethhdr *) skb->data;
+ if((htons(ETH_P_IP) == eth->h_proto)) {
+ const struct iphdr *ip =
+ (struct iphdr *)((uint8_t *)skb->data+14);
+ if(IPPROTO_UDP == ip->protocol) {
+ struct udphdr *udp =
+ (struct udphdr *)((uint8_t *)ip +
+ (ip->ihl << 2));
+ if(ntohs(udp->dest) == 67) {
+ offset = (uint8_t *)udp + 8 - skb->data;
+ length = skb->len - offset;
+
+ return e1000_mng_write_dhcp_info(hw,
+ (uint8_t *)udp + 8,
+ length);
+ }
+ }
+ }
+ }
+ return 0;
+}
+
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
static int
e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
@@ -1939,7 +2233,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
#ifdef NETIF_F_TSO
mss = skb_shinfo(skb)->tso_size;
- /* The controller does a simple calculation to
+ /* The controller does a simple calculation to
* make sure there is enough room in the FIFO before
* initiating the DMA for each buffer. The calc is:
* 4 = ceil(buffer len/mss). To make sure we don't
@@ -1952,7 +2246,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
if((mss) || (skb->ip_summed == CHECKSUM_HW))
count++;
- count++; /* for sentinel desc */
+ count++;
#else
if(skb->ip_summed == CHECKSUM_HW)
count++;
@@ -1962,6 +2256,13 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
if(adapter->pcix_82544)
count++;
+ /* work-around for errata 10 and it applies to all controllers
+ * in PCI-X mode, so add one more descriptor to the count
+ */
+ if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
+ (len > 2015)))
+ count++;
+
nr_frags = skb_shinfo(skb)->nr_frags;
for(f = 0; f < nr_frags; f++)
count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
@@ -1975,6 +2276,9 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
local_irq_restore(flags);
return NETDEV_TX_LOCKED;
}
+ if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
+ e1000_transfer_dhcp_info(adapter, skb);
+
/* need: count + 2 desc gap to keep tail from touching
* head, otherwise try next time */
@@ -2011,6 +2315,12 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
else if(likely(e1000_tx_csum(adapter, skb)))
tx_flags |= E1000_TX_FLAGS_CSUM;
+ /* Old method was to assume IPv4 packet by default if TSO was enabled.
+ * 82573 hardware supports TSO capabilities for IPv6 as well...
+ * no longer assume, we must. */
+ if(likely(skb->protocol == ntohs(ETH_P_IP)))
+ tx_flags |= E1000_TX_FLAGS_IPV4;
+
e1000_tx_queue(adapter,
e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
tx_flags);
@@ -2077,7 +2387,6 @@ static int
e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
struct e1000_adapter *adapter = netdev->priv;
- int old_mtu = adapter->rx_buffer_len;
int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
@@ -2086,29 +2395,45 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
return -EINVAL;
}
- if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
- adapter->rx_buffer_len = E1000_RXBUFFER_2048;
-
- } else if(adapter->hw.mac_type < e1000_82543) {
- DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
+#define MAX_STD_JUMBO_FRAME_SIZE 9216
+ /* might want this to be bigger enum check... */
+ if (adapter->hw.mac_type == e1000_82573 &&
+ max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
+ DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
+ "on 82573\n");
return -EINVAL;
+ }
- } else if(max_frame <= E1000_RXBUFFER_4096) {
- adapter->rx_buffer_len = E1000_RXBUFFER_4096;
-
- } else if(max_frame <= E1000_RXBUFFER_8192) {
- adapter->rx_buffer_len = E1000_RXBUFFER_8192;
-
+ if(adapter->hw.mac_type > e1000_82547_rev_2) {
+ adapter->rx_buffer_len = max_frame;
+ E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
} else {
- adapter->rx_buffer_len = E1000_RXBUFFER_16384;
+ if(unlikely((adapter->hw.mac_type < e1000_82543) &&
+ (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
+ DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
+ "on 82542\n");
+ return -EINVAL;
+
+ } else {
+ if(max_frame <= E1000_RXBUFFER_2048) {
+ adapter->rx_buffer_len = E1000_RXBUFFER_2048;
+ } else if(max_frame <= E1000_RXBUFFER_4096) {
+ adapter->rx_buffer_len = E1000_RXBUFFER_4096;
+ } else if(max_frame <= E1000_RXBUFFER_8192) {
+ adapter->rx_buffer_len = E1000_RXBUFFER_8192;
+ } else if(max_frame <= E1000_RXBUFFER_16384) {
+ adapter->rx_buffer_len = E1000_RXBUFFER_16384;
+ }
+ }
}
- if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
+ netdev->mtu = new_mtu;
+
+ if(netif_running(netdev)) {
e1000_down(adapter);
e1000_up(adapter);
}
- netdev->mtu = new_mtu;
adapter->hw.max_frame_size = max_frame;
return 0;
@@ -2199,6 +2524,17 @@ e1000_update_stats(struct e1000_adapter *adapter)
adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
}
+ if(hw->mac_type > e1000_82547_rev_2) {
+ adapter->stats.iac += E1000_READ_REG(hw, IAC);
+ adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
+ adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
+ adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
+ adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
+ adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
+ adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
+ adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
+ adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
+ }
/* Fill out the OS statistics structure */
@@ -2213,9 +2549,9 @@ e1000_update_stats(struct e1000_adapter *adapter)
adapter->net_stats.rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
- adapter->stats.rlec + adapter->stats.rnbc +
- adapter->stats.mpc + adapter->stats.cexterr;
- adapter->net_stats.rx_dropped = adapter->stats.rnbc;
+ adapter->stats.rlec + adapter->stats.mpc +
+ adapter->stats.cexterr;
+ adapter->net_stats.rx_dropped = adapter->stats.mpc;
adapter->net_stats.rx_length_errors = adapter->stats.rlec;
adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
@@ -2300,11 +2636,11 @@ e1000_intr(int irq, void *data, struct pt_regs *regs)
*/
if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
atomic_inc(&adapter->irq_sem);
- E1000_WRITE_REG(&adapter->hw, IMC, ~0);
+ E1000_WRITE_REG(hw, IMC, ~0);
}
for(i = 0; i < E1000_MAX_INTR; i++)
- if(unlikely(!e1000_clean_rx_irq(adapter) &
+ if(unlikely(!adapter->clean_rx(adapter) &
!e1000_clean_tx_irq(adapter)))
break;
@@ -2328,16 +2664,15 @@ e1000_clean(struct net_device *netdev, int *budget)
int work_to_do = min(*budget, netdev->quota);
int tx_cleaned;
int work_done = 0;
-
+
tx_cleaned = e1000_clean_tx_irq(adapter);
- e1000_clean_rx_irq(adapter, &work_done, work_to_do);
+ adapter->clean_rx(adapter, &work_done, work_to_do);
*budget -= work_done;
netdev->quota -= work_done;
- /* if no Tx and not enough Rx work done, exit the polling mode */
- if((!tx_cleaned && (work_done < work_to_do)) ||
- !netif_running(netdev)) {
+ /* If no Tx and no Rx work done, exit the polling mode */
+ if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
netif_rx_complete(netdev);
e1000_irq_enable(adapter);
return 0;
@@ -2367,11 +2702,10 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter)
eop_desc = E1000_TX_DESC(*tx_ring, eop);
while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
- /* pre-mature writeback of Tx descriptors */
- /* clear (free buffers and unmap pci_mapping) */
- /* previous_buffer_info */
+ /* Premature writeback of Tx descriptors clear (free buffers
+ * and unmap pci_mapping) previous_buffer_info */
if (likely(adapter->previous_buffer_info.skb != NULL)) {
- e1000_unmap_and_free_tx_resource(adapter,
+ e1000_unmap_and_free_tx_resource(adapter,
&adapter->previous_buffer_info);
}
@@ -2380,26 +2714,30 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter)
buffer_info = &tx_ring->buffer_info[i];
cleaned = (i == eop);
- /* pre-mature writeback of Tx descriptors */
- /* save the cleaning of the this for the */
- /* next iteration */
- if (cleaned) {
- memcpy(&adapter->previous_buffer_info,
- buffer_info,
- sizeof(struct e1000_buffer));
- memset(buffer_info,
- 0,
- sizeof(struct e1000_buffer));
+#ifdef NETIF_F_TSO
+ if (!(netdev->features & NETIF_F_TSO)) {
+#endif
+ e1000_unmap_and_free_tx_resource(adapter,
+ buffer_info);
+#ifdef NETIF_F_TSO
} else {
- e1000_unmap_and_free_tx_resource(adapter,
- buffer_info);
+ if (cleaned) {
+ memcpy(&adapter->previous_buffer_info,
+ buffer_info,
+ sizeof(struct e1000_buffer));
+ memset(buffer_info, 0,
+ sizeof(struct e1000_buffer));
+ } else {
+ e1000_unmap_and_free_tx_resource(
+ adapter, buffer_info);
+ }
}
+#endif
tx_desc->buffer_addr = 0;
tx_desc->lower.data = 0;
tx_desc->upper.data = 0;
- cleaned = (i == eop);
if(unlikely(++i == tx_ring->count)) i = 0;
}
@@ -2416,57 +2754,107 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter)
netif_wake_queue(netdev);
spin_unlock(&adapter->tx_lock);
-
if(adapter->detect_tx_hung) {
- /* detect a transmit hang in hardware, this serializes the
+
+ /* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i */
adapter->detect_tx_hung = FALSE;
- if(tx_ring->buffer_info[i].dma &&
- time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) &&
- !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
+ if (tx_ring->buffer_info[i].dma &&
+ time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
+ && !(E1000_READ_REG(&adapter->hw, STATUS) &
+ E1000_STATUS_TXOFF)) {
+
+ /* detected Tx unit hang */
+ i = tx_ring->next_to_clean;
+ eop = tx_ring->buffer_info[i].next_to_watch;
+ eop_desc = E1000_TX_DESC(*tx_ring, eop);
+ DPRINTK(TX_ERR, ERR, "Detected Tx Unit Hang\n"
+ " TDH <%x>\n"
+ " TDT <%x>\n"
+ " next_to_use <%x>\n"
+ " next_to_clean <%x>\n"
+ "buffer_info[next_to_clean]\n"
+ " dma <%llx>\n"
+ " time_stamp <%lx>\n"
+ " next_to_watch <%x>\n"
+ " jiffies <%lx>\n"
+ " next_to_watch.status <%x>\n",
+ E1000_READ_REG(&adapter->hw, TDH),
+ E1000_READ_REG(&adapter->hw, TDT),
+ tx_ring->next_to_use,
+ i,
+ tx_ring->buffer_info[i].dma,
+ tx_ring->buffer_info[i].time_stamp,
+ eop,
+ jiffies,
+ eop_desc->upper.fields.status);
netif_stop_queue(netdev);
+ }
}
+#ifdef NETIF_F_TSO
+
+ if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
+ time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
+ e1000_unmap_and_free_tx_resource(
+ adapter, &adapter->previous_buffer_info);
+#endif
return cleaned;
}
/**
* e1000_rx_checksum - Receive Checksum Offload for 82543
- * @adapter: board private structure
- * @rx_desc: receive descriptor
- * @sk_buff: socket buffer with received data
+ * @adapter: board private structure
+ * @status_err: receive descriptor status and error fields
+ * @csum: receive descriptor csum field
+ * @sk_buff: socket buffer with received data
**/
static inline void
e1000_rx_checksum(struct e1000_adapter *adapter,
- struct e1000_rx_desc *rx_desc,
- struct sk_buff *skb)
+ uint32_t status_err, uint32_t csum,
+ struct sk_buff *skb)
{
+ uint16_t status = (uint16_t)status_err;
+ uint8_t errors = (uint8_t)(status_err >> 24);
+ skb->ip_summed = CHECKSUM_NONE;
+
/* 82543 or newer only */
- if(unlikely((adapter->hw.mac_type < e1000_82543) ||
+ if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
/* Ignore Checksum bit is set */
- (rx_desc->status & E1000_RXD_STAT_IXSM) ||
- /* TCP Checksum has not been calculated */
- (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
- skb->ip_summed = CHECKSUM_NONE;
- return;
- }
-
- /* At this point we know the hardware did the TCP checksum */
- /* now look at the TCP checksum error bit */
- if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
+ if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
+ /* TCP/UDP checksum error bit is set */
+ if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
/* let the stack verify checksum errors */
- skb->ip_summed = CHECKSUM_NONE;
adapter->hw_csum_err++;
+ return;
+ }
+ /* TCP/UDP Checksum has not been calculated */
+ if(adapter->hw.mac_type <= e1000_82547_rev_2) {
+ if(!(status & E1000_RXD_STAT_TCPCS))
+ return;
} else {
+ if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
+ return;
+ }
+ /* It must be a TCP or UDP packet with a valid checksum */
+ if (likely(status & E1000_RXD_STAT_TCPCS)) {
/* TCP checksum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY;
- adapter->hw_csum_good++;
+ } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
+ /* IP fragment with UDP payload */
+ /* Hardware complements the payload checksum, so we undo it
+ * and then put the value in host order for further stack use.
+ */
+ csum = ntohl(csum ^ 0xFFFF);
+ skb->csum = csum;
+ skb->ip_summed = CHECKSUM_HW;
}
+ adapter->hw_csum_good++;
}
/**
- * e1000_clean_rx_irq - Send received data up the network stack
+ * e1000_clean_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
**/
@@ -2513,7 +2901,7 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
/* All receives must fit into a single buffer */
E1000_DBG("%s: Receive packet consumed multiple"
- " buffers\n", netdev->name);
+ " buffers\n", netdev->name);
dev_kfree_skb_irq(skb);
goto next_desc;
}
@@ -2539,15 +2927,17 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
skb_put(skb, length - ETHERNET_FCS_SIZE);
/* Receive Checksum Offload */
- e1000_rx_checksum(adapter, rx_desc, skb);
-
+ e1000_rx_checksum(adapter,
+ (uint32_t)(rx_desc->status) |
+ ((uint32_t)(rx_desc->errors) << 24),
+ rx_desc->csum, skb);
skb->protocol = eth_type_trans(skb, netdev);
#ifdef CONFIG_E1000_NAPI
if(unlikely(adapter->vlgrp &&
(rx_desc->status & E1000_RXD_STAT_VP))) {
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
- le16_to_cpu(rx_desc->special) &
- E1000_RXD_SPC_VLAN_MASK);
+ le16_to_cpu(rx_desc->special) &
+ E1000_RXD_SPC_VLAN_MASK);
} else {
netif_receive_skb(skb);
}
@@ -2570,16 +2960,142 @@ next_desc:
rx_desc = E1000_RX_DESC(*rx_ring, i);
}
-
rx_ring->next_to_clean = i;
+ adapter->alloc_rx_buf(adapter);
+
+ return cleaned;
+}
+
+/**
+ * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
+ * @adapter: board private structure
+ **/
+
+static boolean_t
+#ifdef CONFIG_E1000_NAPI
+e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
+ int work_to_do)
+#else
+e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
+#endif
+{
+ struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
+ union e1000_rx_desc_packet_split *rx_desc;
+ struct net_device *netdev = adapter->netdev;
+ struct pci_dev *pdev = adapter->pdev;
+ struct e1000_buffer *buffer_info;
+ struct e1000_ps_page *ps_page;
+ struct e1000_ps_page_dma *ps_page_dma;
+ struct sk_buff *skb;
+ unsigned int i, j;
+ uint32_t length, staterr;
+ boolean_t cleaned = FALSE;
+
+ i = rx_ring->next_to_clean;
+ rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
+ staterr = rx_desc->wb.middle.status_error;
+
+ while(staterr & E1000_RXD_STAT_DD) {
+ buffer_info = &rx_ring->buffer_info[i];
+ ps_page = &rx_ring->ps_page[i];
+ ps_page_dma = &rx_ring->ps_page_dma[i];
+#ifdef CONFIG_E1000_NAPI
+ if(unlikely(*work_done >= work_to_do))
+ break;
+ (*work_done)++;
+#endif
+ cleaned = TRUE;
+ pci_unmap_single(pdev, buffer_info->dma,
+ buffer_info->length,
+ PCI_DMA_FROMDEVICE);
+
+ skb = buffer_info->skb;
+
+ if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
+ E1000_DBG("%s: Packet Split buffers didn't pick up"
+ " the full packet\n", netdev->name);
+ dev_kfree_skb_irq(skb);
+ goto next_desc;
+ }
+
+ if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
+ dev_kfree_skb_irq(skb);
+ goto next_desc;
+ }
+
+ length = le16_to_cpu(rx_desc->wb.middle.length0);
+
+ if(unlikely(!length)) {
+ E1000_DBG("%s: Last part of the packet spanning"
+ " multiple descriptors\n", netdev->name);
+ dev_kfree_skb_irq(skb);
+ goto next_desc;
+ }
+
+ /* Good Receive */
+ skb_put(skb, length);
+
+ for(j = 0; j < PS_PAGE_BUFFERS; j++) {
+ if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
+ break;
+
+ pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
+ PAGE_SIZE, PCI_DMA_FROMDEVICE);
+ ps_page_dma->ps_page_dma[j] = 0;
+ skb_shinfo(skb)->frags[j].page =
+ ps_page->ps_page[j];
+ ps_page->ps_page[j] = NULL;
+ skb_shinfo(skb)->frags[j].page_offset = 0;
+ skb_shinfo(skb)->frags[j].size = length;
+ skb_shinfo(skb)->nr_frags++;
+ skb->len += length;
+ skb->data_len += length;
+ }
- e1000_alloc_rx_buffers(adapter);
+ e1000_rx_checksum(adapter, staterr,
+ rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
+ skb->protocol = eth_type_trans(skb, netdev);
+
+#ifdef HAVE_RX_ZERO_COPY
+ if(likely(rx_desc->wb.upper.header_status &
+ E1000_RXDPS_HDRSTAT_HDRSP))
+ skb_shinfo(skb)->zero_copy = TRUE;
+#endif
+#ifdef CONFIG_E1000_NAPI
+ if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
+ vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
+ le16_to_cpu(rx_desc->wb.middle.vlan &
+ E1000_RXD_SPC_VLAN_MASK));
+ } else {
+ netif_receive_skb(skb);
+ }
+#else /* CONFIG_E1000_NAPI */
+ if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
+ vlan_hwaccel_rx(skb, adapter->vlgrp,
+ le16_to_cpu(rx_desc->wb.middle.vlan &
+ E1000_RXD_SPC_VLAN_MASK));
+ } else {
+ netif_rx(skb);
+ }
+#endif /* CONFIG_E1000_NAPI */
+ netdev->last_rx = jiffies;
+
+next_desc:
+ rx_desc->wb.middle.status_error &= ~0xFF;
+ buffer_info->skb = NULL;
+ if(unlikely(++i == rx_ring->count)) i = 0;
+
+ rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
+ staterr = rx_desc->wb.middle.status_error;
+ }
+ rx_ring->next_to_clean = i;
+ adapter->alloc_rx_buf(adapter);
return cleaned;
}
/**
- * e1000_alloc_rx_buffers - Replace used receive buffers
+ * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
* @adapter: address of board private structure
**/
@@ -2592,43 +3108,43 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
struct e1000_rx_desc *rx_desc;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
- unsigned int i, bufsz;
+ unsigned int i;
+ unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while(!buffer_info->skb) {
- bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
-
skb = dev_alloc_skb(bufsz);
+
if(unlikely(!skb)) {
/* Better luck next round */
break;
}
- /* fix for errata 23, cant cross 64kB boundary */
+ /* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
struct sk_buff *oldskb = skb;
- DPRINTK(RX_ERR,ERR,
- "skb align check failed: %u bytes at %p\n",
- bufsz, skb->data);
- /* try again, without freeing the previous */
+ DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
+ "at %p\n", bufsz, skb->data);
+ /* Try again, without freeing the previous */
skb = dev_alloc_skb(bufsz);
+ /* Failed allocation, critical failure */
if (!skb) {
dev_kfree_skb(oldskb);
break;
}
+
if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
/* give up */
dev_kfree_skb(skb);
dev_kfree_skb(oldskb);
break; /* while !buffer_info->skb */
} else {
- /* move on with the new one */
+ /* Use new allocation */
dev_kfree_skb(oldskb);
}
}
-
/* Make buffer alignment 2 beyond a 16 byte boundary
* this will result in a 16 byte aligned IP header after
* the 14 byte MAC header is removed
@@ -2644,25 +3160,23 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
adapter->rx_buffer_len,
PCI_DMA_FROMDEVICE);
- /* fix for errata 23, cant cross 64kB boundary */
- if(!e1000_check_64k_bound(adapter,
- (void *)(unsigned long)buffer_info->dma,
- adapter->rx_buffer_len)) {
- DPRINTK(RX_ERR,ERR,
- "dma align check failed: %u bytes at %ld\n",
- adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
-
+ /* Fix for errata 23, can't cross 64kB boundary */
+ if (!e1000_check_64k_bound(adapter,
+ (void *)(unsigned long)buffer_info->dma,
+ adapter->rx_buffer_len)) {
+ DPRINTK(RX_ERR, ERR,
+ "dma align check failed: %u bytes at %p\n",
+ adapter->rx_buffer_len,
+ (void *)(unsigned long)buffer_info->dma);
dev_kfree_skb(skb);
buffer_info->skb = NULL;
- pci_unmap_single(pdev,
- buffer_info->dma,
+ pci_unmap_single(pdev, buffer_info->dma,
adapter->rx_buffer_len,
PCI_DMA_FROMDEVICE);
break; /* while !buffer_info->skb */
}
-
rx_desc = E1000_RX_DESC(*rx_ring, i);
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
@@ -2672,7 +3186,6 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
* applicable for weak-ordered memory model archs,
* such as IA-64). */
wmb();
-
E1000_WRITE_REG(&adapter->hw, RDT, i);
}
@@ -2684,6 +3197,95 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
}
/**
+ * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
+ * @adapter: address of board private structure
+ **/
+
+static void
+e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
+ struct net_device *netdev = adapter->netdev;
+ struct pci_dev *pdev = adapter->pdev;
+ union e1000_rx_desc_packet_split *rx_desc;
+ struct e1000_buffer *buffer_info;
+ struct e1000_ps_page *ps_page;
+ struct e1000_ps_page_dma *ps_page_dma;
+ struct sk_buff *skb;
+ unsigned int i, j;
+
+ i = rx_ring->next_to_use;
+ buffer_info = &rx_ring->buffer_info[i];
+ ps_page = &rx_ring->ps_page[i];
+ ps_page_dma = &rx_ring->ps_page_dma[i];
+
+ while(!buffer_info->skb) {
+ rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
+
+ for(j = 0; j < PS_PAGE_BUFFERS; j++) {
+ if(unlikely(!ps_page->ps_page[j])) {
+ ps_page->ps_page[j] =
+ alloc_page(GFP_ATOMIC);
+ if(unlikely(!ps_page->ps_page[j]))
+ goto no_buffers;
+ ps_page_dma->ps_page_dma[j] =
+ pci_map_page(pdev,
+ ps_page->ps_page[j],
+ 0, PAGE_SIZE,
+ PCI_DMA_FROMDEVICE);
+ }
+ /* Refresh the desc even if buffer_addrs didn't
+ * change because each write-back erases this info.
+ */
+ rx_desc->read.buffer_addr[j+1] =
+ cpu_to_le64(ps_page_dma->ps_page_dma[j]);
+ }
+
+ skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
+
+ if(unlikely(!skb))
+ break;
+
+ /* Make buffer alignment 2 beyond a 16 byte boundary
+ * this will result in a 16 byte aligned IP header after
+ * the 14 byte MAC header is removed
+ */
+ skb_reserve(skb, NET_IP_ALIGN);
+
+ skb->dev = netdev;
+
+ buffer_info->skb = skb;
+ buffer_info->length = adapter->rx_ps_bsize0;
+ buffer_info->dma = pci_map_single(pdev, skb->data,
+ adapter->rx_ps_bsize0,
+ PCI_DMA_FROMDEVICE);
+
+ rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
+
+ if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
+ /* Force memory writes to complete before letting h/w
+ * know there are new descriptors to fetch. (Only
+ * applicable for weak-ordered memory model archs,
+ * such as IA-64). */
+ wmb();
+ /* Hardware increments by 16 bytes, but packet split
+ * descriptors are 32 bytes...so we increment tail
+ * twice as much.
+ */
+ E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
+ }
+
+ if(unlikely(++i == rx_ring->count)) i = 0;
+ buffer_info = &rx_ring->buffer_info[i];
+ ps_page = &rx_ring->ps_page[i];
+ ps_page_dma = &rx_ring->ps_page_dma[i];
+ }
+
+no_buffers:
+ rx_ring->next_to_use = i;
+}
+
+/**
* e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
* @adapter:
**/
@@ -2856,9 +3458,10 @@ void
e1000_pci_set_mwi(struct e1000_hw *hw)
{
struct e1000_adapter *adapter = hw->back;
+ int ret_val = pci_set_mwi(adapter->pdev);
- int ret;
- ret = pci_set_mwi(adapter->pdev);
+ if(ret_val)
+ DPRINTK(PROBE, ERR, "Error in setting MWI\n");
}
void
@@ -2917,6 +3520,7 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
rctl |= E1000_RCTL_VFE;
rctl &= ~E1000_RCTL_CFIEN;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+ e1000_update_mng_vlan(adapter);
} else {
/* disable VLAN tag insert/strip */
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
@@ -2927,6 +3531,10 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl &= ~E1000_RCTL_VFE;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+ if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
+ e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
+ adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
+ }
}
e1000_irq_enable(adapter);
@@ -2937,7 +3545,10 @@ e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
{
struct e1000_adapter *adapter = netdev->priv;
uint32_t vfta, index;
-
+ if((adapter->hw.mng_cookie.status &
+ E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+ (vid == adapter->mng_vlan_id))
+ return;
/* add VID to filter table */
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
@@ -2958,6 +3569,10 @@ e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
e1000_irq_enable(adapter);
+ if((adapter->hw.mng_cookie.status &
+ E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
+ (vid == adapter->mng_vlan_id))
+ return;
/* remove VID from filter table */
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
@@ -3004,8 +3619,7 @@ e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
- DPRINTK(PROBE, ERR,
- "Unsupported Speed/Duplexity configuration\n");
+ DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
return 0;
@@ -3033,7 +3647,7 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev->priv;
- uint32_t ctrl, ctrl_ext, rctl, manc, status;
+ uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
uint32_t wufc = adapter->wol;
netif_device_detach(netdev);
@@ -3075,6 +3689,9 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state)
E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
}
+ /* Allow time for pending master requests to run */
+ e1000_disable_pciex_master(&adapter->hw);
+
E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
pci_enable_wake(pdev, 3, 1);
@@ -3099,6 +3716,16 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state)
}
}
+ switch(adapter->hw.mac_type) {
+ case e1000_82573:
+ swsm = E1000_READ_REG(&adapter->hw, SWSM);
+ E1000_WRITE_REG(&adapter->hw, SWSM,
+ swsm & ~E1000_SWSM_DRV_LOAD);
+ break;
+ default:
+ break;
+ }
+
pci_disable_device(pdev);
state = (state > 0) ? 3 : 0;
@@ -3113,13 +3740,12 @@ e1000_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev->priv;
- uint32_t manc, ret;
+ uint32_t manc, ret, swsm;
pci_set_power_state(pdev, 0);
pci_restore_state(pdev);
ret = pci_enable_device(pdev);
- if (pdev->is_busmaster)
- pci_set_master(pdev);
+ pci_set_master(pdev);
pci_enable_wake(pdev, 3, 0);
pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
@@ -3139,10 +3765,19 @@ e1000_resume(struct pci_dev *pdev)
E1000_WRITE_REG(&adapter->hw, MANC, manc);
}
+ switch(adapter->hw.mac_type) {
+ case e1000_82573:
+ swsm = E1000_READ_REG(&adapter->hw, SWSM);
+ E1000_WRITE_REG(&adapter->hw, SWSM,
+ swsm | E1000_SWSM_DRV_LOAD);
+ break;
+ default:
+ break;
+ }
+
return 0;
}
#endif
-
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
@@ -3150,7 +3785,7 @@ e1000_resume(struct pci_dev *pdev)
* the interrupt routine is executing.
*/
static void
-e1000_netpoll (struct net_device *netdev)
+e1000_netpoll(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev->priv;
disable_irq(adapter->pdev->irq);
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h
index 970c656a517..aac64de6143 100644
--- a/drivers/net/e1000/e1000_osdep.h
+++ b/drivers/net/e1000/e1000_osdep.h
@@ -1,7 +1,7 @@
/*******************************************************************************
- Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+ Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
@@ -42,7 +42,12 @@
#include <linux/sched.h>
#ifndef msec_delay
-#define msec_delay(x) msleep(x)
+#define msec_delay(x) do { if(in_interrupt()) { \
+ /* Don't mdelay in interrupt context! */ \
+ BUG(); \
+ } else { \
+ msleep(x); \
+ } } while(0)
/* Some workarounds require millisecond delays and are run during interrupt
* context. Most notably, when establishing link, the phy may need tweaking
@@ -96,6 +101,29 @@ typedef enum {
(((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
((offset) << 2)))
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \
+ writew((value), ((a)->hw_addr + \
+ (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+ ((offset) << 1))))
+
+#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \
+ readw((a)->hw_addr + \
+ (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+ ((offset) << 1)))
+
+#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \
+ writeb((value), ((a)->hw_addr + \
+ (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+ (offset))))
+
+#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \
+ readb((a)->hw_addr + \
+ (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+ (offset)))
+
#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS)
#endif /* _E1000_OSDEP_H_ */
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c
index e914d09fe6f..676247f9f1c 100644
--- a/drivers/net/e1000/e1000_param.c
+++ b/drivers/net/e1000/e1000_param.c
@@ -1,7 +1,7 @@
/*******************************************************************************
- Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+ Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
@@ -478,7 +478,6 @@ e1000_check_options(struct e1000_adapter *adapter)
DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
opt.name);
break;
- case -1:
default:
e1000_validate_option(&adapter->itr, &opt,
adapter);