aboutsummaryrefslogtreecommitdiff
path: root/drivers/usb/wusbcore
diff options
context:
space:
mode:
authorInaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>2008-09-17 16:34:24 +0100
committerDavid Vrabel <dv02@dv02pc01.europe.root.pri>2008-09-17 16:54:29 +0100
commitb69fada68b92fa7061d59a3e54b428759a5e5717 (patch)
tree8e68b9214f12583f8f588466532f087031d9363a /drivers/usb/wusbcore
parent90ff96f22426a9d1a06df97dead0a9098facb567 (diff)
wusb: add the Wireless USB core (protocol)
Add the WUSB protocol (MMC management and device connection) code. Signed-off-by: David Vrabel <david.vrabel@csr.com>
Diffstat (limited to 'drivers/usb/wusbcore')
-rw-r--r--drivers/usb/wusbcore/devconnect.c1314
-rw-r--r--drivers/usb/wusbcore/mmc.c329
2 files changed, 1643 insertions, 0 deletions
diff --git a/drivers/usb/wusbcore/devconnect.c b/drivers/usb/wusbcore/devconnect.c
new file mode 100644
index 00000000000..f05f9b4d775
--- /dev/null
+++ b/drivers/usb/wusbcore/devconnect.c
@@ -0,0 +1,1314 @@
+/*
+ * WUSB Wire Adapter: Control/Data Streaming Interface (WUSB[8])
+ * Device Connect handling
+ *
+ * Copyright (C) 2006 Intel Corporation
+ * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License version
+ * 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA.
+ *
+ *
+ * FIXME: docs
+ * FIXME: this file needs to be broken up, it's grown too big
+ *
+ *
+ * WUSB1.0[7.1, 7.5.1, ]
+ *
+ * WUSB device connection is kind of messy. Some background:
+ *
+ * When a device wants to connect it scans the UWB radio channels
+ * looking for a WUSB Channel; a WUSB channel is defined by MMCs
+ * (Micro Managed Commands or something like that) [see
+ * Design-overview for more on this] .
+ *
+ * So, device scans the radio, finds MMCs and thus a host and checks
+ * when the next DNTS is. It sends a Device Notification Connect
+ * (DN_Connect); the host picks it up (through nep.c and notif.c, ends
+ * up in wusb_devconnect_ack(), which creates a wusb_dev structure in
+ * wusbhc->port[port_number].wusb_dev), assigns an unauth address
+ * to the device (this means from 0x80 to 0xfe) and sends, in the MMC
+ * a Connect Ack Information Element (ConnAck IE).
+ *
+ * So now the device now has a WUSB address. From now on, we use
+ * that to talk to it in the RPipes.
+ *
+ * ASSUMPTIONS:
+ *
+ * - We use the the as device address the port number where it is
+ * connected (port 0 doesn't exist). For unauth, it is 128 + that.
+ *
+ * ROADMAP:
+ *
+ * This file contains the logic for doing that--entry points:
+ *
+ * wusb_devconnect_ack() Ack a device until _acked() called.
+ * Called by notif.c:wusb_handle_dn_connect()
+ * when a DN_Connect is received.
+ *
+ * wusbhc_devconnect_auth() Called by rh.c:wusbhc_rh_port_reset() when
+ * doing the device connect sequence.
+ *
+ * wusb_devconnect_acked() Ack done, release resources.
+ *
+ * wusb_handle_dn_alive() Called by notif.c:wusb_handle_dn()
+ * for processing a DN_Alive pong from a device.
+ *
+ * wusb_handle_dn_disconnect()Called by notif.c:wusb_handle_dn() to
+ * process a disconenct request from a
+ * device.
+ *
+ * wusb_dev_reset() Called by rh.c:wusbhc_rh_port_reset() when
+ * resetting a device.
+ *
+ * __wusb_dev_disable() Called by rh.c:wusbhc_rh_clear_port_feat() when
+ * disabling a port.
+ *
+ * wusb_devconnect_create() Called when creating the host by
+ * lc.c:wusbhc_create().
+ *
+ * wusb_devconnect_destroy() Cleanup called removing the host. Called
+ * by lc.c:wusbhc_destroy().
+ *
+ * Each Wireless USB host maintains a list of DN_Connect requests
+ * (actually we maintain a list of pending Connect Acks, the
+ * wusbhc->ca_list).
+ *
+ * LIFE CYCLE OF port->wusb_dev
+ *
+ * Before the @wusbhc structure put()s the reference it owns for
+ * port->wusb_dev [and clean the wusb_dev pointer], it needs to
+ * lock @wusbhc->mutex.
+ */
+
+#include <linux/jiffies.h>
+#include <linux/ctype.h>
+#include <linux/workqueue.h>
+#include "wusbhc.h"
+
+#undef D_LOCAL
+#define D_LOCAL 1
+#include <linux/uwb/debug.h>
+
+static void wusbhc_devconnect_acked_work(struct work_struct *work);
+
+static void wusb_dev_free(struct wusb_dev *wusb_dev)
+{
+ if (wusb_dev) {
+ kfree(wusb_dev->set_gtk_req);
+ usb_free_urb(wusb_dev->set_gtk_urb);
+ kfree(wusb_dev);
+ }
+}
+
+static struct wusb_dev *wusb_dev_alloc(struct wusbhc *wusbhc)
+{
+ struct wusb_dev *wusb_dev;
+ struct urb *urb;
+ struct usb_ctrlrequest *req;
+
+ wusb_dev = kzalloc(sizeof(*wusb_dev), GFP_KERNEL);
+ if (wusb_dev == NULL)
+ goto err;
+
+ wusb_dev->wusbhc = wusbhc;
+
+ INIT_WORK(&wusb_dev->devconnect_acked_work, wusbhc_devconnect_acked_work);
+
+ urb = usb_alloc_urb(0, GFP_KERNEL);
+ if (urb == NULL)
+ goto err;
+
+ req = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
+ if (req == NULL)
+ goto err;
+
+ req->bRequestType = USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE;
+ req->bRequest = USB_REQ_SET_DESCRIPTOR;
+ req->wValue = cpu_to_le16(USB_DT_KEY << 8 | wusbhc->gtk_index);
+ req->wIndex = 0;
+ req->wLength = cpu_to_le16(wusbhc->gtk.descr.bLength);
+
+ wusb_dev->set_gtk_urb = urb;
+ wusb_dev->set_gtk_req = req;
+
+ return wusb_dev;
+err:
+ wusb_dev_free(wusb_dev);
+ return NULL;
+}
+
+
+/*
+ * Using the Connect-Ack list, fill out the @wusbhc Connect-Ack WUSB IE
+ * properly so that it can be added to the MMC.
+ *
+ * We just get the @wusbhc->ca_list and fill out the first four ones or
+ * less (per-spec WUSB1.0[7.5, before T7-38). If the ConnectAck WUSB
+ * IE is not allocated, we alloc it.
+ *
+ * @wusbhc->mutex must be taken
+ */
+static void wusbhc_fill_cack_ie(struct wusbhc *wusbhc)
+{
+ unsigned cnt;
+ struct wusb_dev *dev_itr;
+ struct wuie_connect_ack *cack_ie;
+
+ cack_ie = &wusbhc->cack_ie;
+ cnt = 0;
+ list_for_each_entry(dev_itr, &wusbhc->cack_list, cack_node) {
+ cack_ie->blk[cnt].CDID = dev_itr->cdid;
+ cack_ie->blk[cnt].bDeviceAddress = dev_itr->addr;
+ if (++cnt >= WUIE_ELT_MAX)
+ break;
+ }
+ cack_ie->hdr.bLength = sizeof(cack_ie->hdr)
+ + cnt * sizeof(cack_ie->blk[0]);
+}
+
+/*
+ * Register a new device that wants to connect
+ *
+ * A new device wants to connect, so we add it to the Connect-Ack
+ * list. We give it an address in the unauthorized range (bit 8 set);
+ * user space will have to drive authorization further on.
+ *
+ * @dev_addr: address to use for the device (which is also the port
+ * number).
+ *
+ * @wusbhc->mutex must be taken
+ */
+static struct wusb_dev *wusbhc_cack_add(struct wusbhc *wusbhc,
+ struct wusb_dn_connect *dnc,
+ const char *pr_cdid, u8 port_idx)
+{
+ struct device *dev = wusbhc->dev;
+ struct wusb_dev *wusb_dev;
+ int new_connection = wusb_dn_connect_new_connection(dnc);
+ u8 dev_addr;
+ int result;
+
+ d_fnstart(3, dev, "(wusbhc %p port_idx %d)\n", wusbhc, port_idx);
+ /* Is it registered already? */
+ list_for_each_entry(wusb_dev, &wusbhc->cack_list, cack_node)
+ if (!memcmp(&wusb_dev->cdid, &dnc->CDID,
+ sizeof(wusb_dev->cdid)))
+ return wusb_dev;
+ /* We don't have it, create an entry, register it */
+ wusb_dev = wusb_dev_alloc(wusbhc);
+ if (wusb_dev == NULL) {
+ if (printk_ratelimit())
+ dev_err(dev, "DN CONNECT: no memory to process %s's %s "
+ "request\n", pr_cdid,
+ new_connection ? "connect" : "reconnect");
+ return NULL;
+ }
+ wusb_dev_init(wusb_dev);
+ wusb_dev->cdid = dnc->CDID;
+ wusb_dev->port_idx = port_idx;
+
+ /*
+ * Devices are always available within the cluster reservation
+ * and since the hardware will take the intersection of the
+ * per-device availability and the cluster reservation, the
+ * per-device availability can simply be set to always
+ * available.
+ */
+ bitmap_fill(wusb_dev->availability.bm, UWB_NUM_MAS);
+
+ /* FIXME: handle reconnects instead of assuming connects are
+ always new. */
+ if (1 && new_connection == 0)
+ new_connection = 1;
+ if (new_connection) {
+ dev_addr = (port_idx + 2) | WUSB_DEV_ADDR_UNAUTH;
+
+ dev_info(dev, "Connecting new WUSB device to address %u, "
+ "port %u\n", dev_addr, port_idx);
+
+ result = wusb_set_dev_addr(wusbhc, wusb_dev, dev_addr);
+ if (result)
+ return NULL;
+ }
+ wusb_dev->entry_ts = jiffies;
+ list_add_tail(&wusb_dev->cack_node, &wusbhc->cack_list);
+ wusbhc->cack_count++;
+ wusbhc_fill_cack_ie(wusbhc);
+ d_fnend(3, dev, "(wusbhc %p port_idx %d)\n", wusbhc, port_idx);
+ return wusb_dev;
+}
+
+/*
+ * Remove a Connect-Ack context entry from the HCs view
+ *
+ * @wusbhc->mutex must be taken
+ */
+static void wusbhc_cack_rm(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev)
+{
+ struct device *dev = wusbhc->dev;
+ d_fnstart(3, dev, "(wusbhc %p wusb_dev %p)\n", wusbhc, wusb_dev);
+ list_del_init(&wusb_dev->cack_node);
+ wusbhc->cack_count--;
+ wusbhc_fill_cack_ie(wusbhc);
+ d_fnend(3, dev, "(wusbhc %p wusb_dev %p) = void\n", wusbhc, wusb_dev);
+}
+
+/*
+ * @wusbhc->mutex must be taken */
+static
+void wusbhc_devconnect_acked(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev)
+{
+ struct device *dev = wusbhc->dev;
+ d_fnstart(3, dev, "(wusbhc %p wusb_dev %p)\n", wusbhc, wusb_dev);
+ wusbhc_cack_rm(wusbhc, wusb_dev);
+ if (wusbhc->cack_count)
+ wusbhc_mmcie_set(wusbhc, 0, 0, &wusbhc->cack_ie.hdr);
+ else
+ wusbhc_mmcie_rm(wusbhc, &wusbhc->cack_ie.hdr);
+ d_fnend(3, dev, "(wusbhc %p wusb_dev %p) = void\n", wusbhc, wusb_dev);
+}
+
+static void wusbhc_devconnect_acked_work(struct work_struct *work)
+{
+ struct wusb_dev *wusb_dev = container_of(work, struct wusb_dev,
+ devconnect_acked_work);
+ struct wusbhc *wusbhc = wusb_dev->wusbhc;
+
+ mutex_lock(&wusbhc->mutex);
+ wusbhc_devconnect_acked(wusbhc, wusb_dev);
+ mutex_unlock(&wusbhc->mutex);
+}
+
+/*
+ * Ack a device for connection
+ *
+ * FIXME: docs
+ *
+ * @pr_cdid: Printable CDID...hex Use @dnc->cdid for the real deal.
+ *
+ * So we get the connect ack IE (may have been allocated already),
+ * find an empty connect block, an empty virtual port, create an
+ * address with it (see below), make it an unauth addr [bit 7 set] and
+ * set the MMC.
+ *
+ * Addresses: because WUSB hosts have no downstream hubs, we can do a
+ * 1:1 mapping between 'port number' and device
+ * address. This simplifies many things, as during this
+ * initial connect phase the USB stack has no knoledge of
+ * the device and hasn't assigned an address yet--we know
+ * USB's choose_address() will use the same euristics we
+ * use here, so we can assume which address will be assigned.
+ *
+ * USB stack always assigns address 1 to the root hub, so
+ * to the port number we add 2 (thus virtual port #0 is
+ * addr #2).
+ *
+ * @wusbhc shall be referenced
+ */
+static
+void wusbhc_devconnect_ack(struct wusbhc *wusbhc, struct wusb_dn_connect *dnc,
+ const char *pr_cdid)
+{
+ int result;
+ struct device *dev = wusbhc->dev;
+ struct wusb_dev *wusb_dev;
+ struct wusb_port *port;
+ unsigned idx, devnum;
+
+ d_fnstart(3, dev, "(%p, %p, %s)\n", wusbhc, dnc, pr_cdid);
+ mutex_lock(&wusbhc->mutex);
+
+ /* Check we are not handling it already */
+ for (idx = 0; idx < wusbhc->ports_max; idx++) {
+ port = wusb_port_by_idx(wusbhc, idx);
+ if (port->wusb_dev
+ && !memcmp(&dnc->CDID, &port->wusb_dev->cdid,
+ sizeof(dnc->CDID))) {
+ if (printk_ratelimit())
+ dev_err(dev, "Already handling dev %s "
+ " (it might be slow)\n", pr_cdid);
+ goto error_unlock;
+ }
+ }
+ /* Look up those fake ports we have for a free one */
+ for (idx = 0; idx < wusbhc->ports_max; idx++) {
+ port = wusb_port_by_idx(wusbhc, idx);
+ if ((port->status & USB_PORT_STAT_POWER)
+ && !(port->status & USB_PORT_STAT_CONNECTION))
+ break;
+ }
+ if (idx >= wusbhc->ports_max) {
+ dev_err(dev, "Host controller can't connect more devices "
+ "(%u already connected); device %s rejected\n",
+ wusbhc->ports_max, pr_cdid);
+ /* NOTE: we could send a WUIE_Disconnect here, but we haven't
+ * event acked, so the device will eventually timeout the
+ * connection, right? */
+ goto error_unlock;
+ }
+
+ devnum = idx + 2;
+
+ /* Make sure we are using no crypto on that "virtual port" */
+ wusbhc->set_ptk(wusbhc, idx, 0, NULL, 0);
+
+ /* Grab a filled in Connect-Ack context, fill out the
+ * Connect-Ack Wireless USB IE, set the MMC */
+ wusb_dev = wusbhc_cack_add(wusbhc, dnc, pr_cdid, idx);
+ if (wusb_dev == NULL)
+ goto error_unlock;
+ result = wusbhc_mmcie_set(wusbhc, 0, 0, &wusbhc->cack_ie.hdr);
+ if (result < 0)
+ goto error_unlock;
+ /* Give the device at least 2ms (WUSB1.0[7.5.1p3]), let's do
+ * three for a good measure */
+ msleep(3);
+ port->wusb_dev = wusb_dev;
+ port->status |= USB_PORT_STAT_CONNECTION;
+ port->change |= USB_PORT_STAT_C_CONNECTION;
+ port->reset_count = 0;
+ /* Now the port status changed to connected; khubd will
+ * pick the change up and try to reset the port to bring it to
+ * the enabled state--so this process returns up to the stack
+ * and it calls back into wusbhc_rh_port_reset() who will call
+ * devconnect_auth().
+ */
+error_unlock:
+ mutex_unlock(&wusbhc->mutex);
+ d_fnend(3, dev, "(%p, %p, %s) = void\n", wusbhc, dnc, pr_cdid);
+ return;
+
+}
+
+/*
+ * Disconnect a Wireless USB device from its fake port
+ *
+ * Marks the port as disconnected so that khubd can pick up the change
+ * and drops our knowledge about the device.
+ *
+ * Assumes there is a device connected
+ *
+ * @port_index: zero based port number
+ *
+ * NOTE: @wusbhc->mutex is locked
+ *
+ * WARNING: From here it is not very safe to access anything hanging off
+ * wusb_dev
+ */
+static void __wusbhc_dev_disconnect(struct wusbhc *wusbhc,
+ struct wusb_port *port)
+{
+ struct device *dev = wusbhc->dev;
+ struct wusb_dev *wusb_dev = port->wusb_dev;
+
+ d_fnstart(3, dev, "(wusbhc %p, port %p)\n", wusbhc, port);
+ port->status &= ~(USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE
+ | USB_PORT_STAT_SUSPEND | USB_PORT_STAT_RESET
+ | USB_PORT_STAT_LOW_SPEED | USB_PORT_STAT_HIGH_SPEED);
+ port->change |= USB_PORT_STAT_C_CONNECTION | USB_PORT_STAT_C_ENABLE;
+ if (wusb_dev) {
+ if (!list_empty(&wusb_dev->cack_node))
+ list_del_init(&wusb_dev->cack_node);
+ /* For the one in cack_add() */
+ wusb_dev_put(wusb_dev);
+ }
+ port->wusb_dev = NULL;
+ /* don't reset the reset_count to zero or wusbhc_rh_port_reset will get
+ * confused! We only reset to zero when we connect a new device.
+ */
+
+ /* After a device disconnects, change the GTK (see [WUSB]
+ * section 6.2.11.2). */
+ wusbhc_gtk_rekey(wusbhc);
+
+ d_fnend(3, dev, "(wusbhc %p, port %p) = void\n", wusbhc, port);
+ /* The Wireless USB part has forgotten about the device already; now
+ * khubd's timer will pick up the disconnection and remove the USB
+ * device from the system
+ */
+}
+
+/*
+ * Authenticate a device into the WUSB Cluster
+ *
+ * Called from the Root Hub code (rh.c:wusbhc_rh_port_reset()) when
+ * asking for a reset on a port that is not enabled (ie: first connect
+ * on the port).
+ *
+ * Performs the 4way handshake to allow the device to comunicate w/ the
+ * WUSB Cluster securely; once done, issue a request to the device for
+ * it to change to address 0.
+ *
+ * This mimics the reset step of Wired USB that once resetting a
+ * device, leaves the port in enabled state and the dev with the
+ * default address (0).
+ *
+ * WUSB1.0[7.1.2]
+ *
+ * @port_idx: port where the change happened--This is the index into
+ * the wusbhc port array, not the USB port number.
+ */
+int wusbhc_devconnect_auth(struct wusbhc *wusbhc, u8 port_idx)
+{
+ struct device *dev = wusbhc->dev;
+ struct wusb_port *port = wusb_port_by_idx(wusbhc, port_idx);
+
+ d_fnstart(3, dev, "(%p, %u)\n", wusbhc, port_idx);
+ port->status &= ~USB_PORT_STAT_RESET;
+ port->status |= USB_PORT_STAT_ENABLE;
+ port->change |= USB_PORT_STAT_C_RESET | USB_PORT_STAT_C_ENABLE;
+ d_fnend(3, dev, "(%p, %u) = 0\n", wusbhc, port_idx);
+ return 0;
+}
+
+/*
+ * Refresh the list of keep alives to emit in the MMC
+ *
+ * Some devices don't respond to keep alives unless they've been
+ * authenticated, so skip unauthenticated devices.
+ *
+ * We only publish the first four devices that have a coming timeout
+ * condition. Then when we are done processing those, we go for the
+ * next ones. We ignore the ones that have timed out already (they'll
+ * be purged).
+ *
+ * This might cause the first devices to timeout the last devices in
+ * the port array...FIXME: come up with a better algorithm?
+ *
+ * Note we can't do much about MMC's ops errors; we hope next refresh
+ * will kind of handle it.
+ *
+ * NOTE: @wusbhc->mutex is locked
+ */
+static void __wusbhc_keep_alive(struct wusbhc *wusbhc)
+{
+ int result;
+ struct device *dev = wusbhc->dev;
+ unsigned cnt;
+ struct wusb_dev *wusb_dev;
+ struct wusb_port *wusb_port;
+ struct wuie_keep_alive *ie = &wusbhc->keep_alive_ie;
+ unsigned keep_alives, old_keep_alives;
+
+ d_fnstart(5, dev, "(wusbhc %p)\n", wusbhc);
+ old_keep_alives = ie->hdr.bLength - sizeof(ie->hdr);
+ keep_alives = 0;
+ for (cnt = 0;
+ keep_alives <= WUIE_ELT_MAX && cnt < wusbhc->ports_max;
+ cnt++) {
+ unsigned tt = msecs_to_jiffies(wusbhc->trust_timeout);
+
+ wusb_port = wusb_port_by_idx(wusbhc, cnt);
+ wusb_dev = wusb_port->wusb_dev;
+
+ if (wusb_dev == NULL)
+ continue;
+ if (wusb_dev->usb_dev == NULL || !wusb_dev->usb_dev->authenticated)
+ continue;
+
+ if (time_after(jiffies, wusb_dev->entry_ts + tt)) {
+ dev_err(dev, "KEEPALIVE: device %u timed out\n",
+ wusb_dev->addr);
+ __wusbhc_dev_disconnect(wusbhc, wusb_port);
+ } else if (time_after(jiffies, wusb_dev->entry_ts + tt/2)) {
+ /* Approaching timeout cut out, need to refresh */
+ ie->bDeviceAddress[keep_alives++] = wusb_dev->addr;
+ }
+ }
+ if (keep_alives & 0x1) /* pad to even number ([WUSB] section 7.5.9) */
+ ie->bDeviceAddress[keep_alives++] = 0x7f;
+ ie->hdr.bLength = sizeof(ie->hdr) +
+ keep_alives*sizeof(ie->bDeviceAddress[0]);
+ if (keep_alives > 0) {
+ result = wusbhc_mmcie_set(wusbhc, 10, 5, &ie->hdr);
+ if (result < 0 && printk_ratelimit())
+ dev_err(dev, "KEEPALIVE: can't set MMC: %d\n", result);
+ } else if (old_keep_alives != 0)
+ wusbhc_mmcie_rm(wusbhc, &ie->hdr);
+ d_fnend(5, dev, "(wusbhc %p) = void\n", wusbhc);
+}
+
+/*
+ * Do a run through all devices checking for timeouts
+ */
+static void wusbhc_keep_alive_run(struct work_struct *ws)
+{
+ struct delayed_work *dw =
+ container_of(ws, struct delayed_work, work);
+ struct wusbhc *wusbhc =
+ container_of(dw, struct wusbhc, keep_alive_timer);
+
+ d_fnstart(5, wusbhc->dev, "(wusbhc %p)\n", wusbhc);
+ if (wusbhc->active) {
+ mutex_lock(&wusbhc->mutex);
+ __wusbhc_keep_alive(wusbhc);
+ mutex_unlock(&wusbhc->mutex);
+ queue_delayed_work(wusbd, &wusbhc->keep_alive_timer,
+ (wusbhc->trust_timeout * CONFIG_HZ)/1000/2);
+ }
+ d_fnend(5, wusbhc->dev, "(wusbhc %p) = void\n", wusbhc);
+ return;
+}
+
+/*
+ * Find the wusb_dev from its device address.
+ *
+ * The device can be found directly from the address (see
+ * wusb_cack_add() for where the device address is set to port_idx
+ * +2), except when the address is zero.
+ */
+static struct wusb_dev *wusbhc_find_dev_by_addr(struct wusbhc *wusbhc, u8 addr)
+{
+ int p;
+
+ if (addr == 0xff) /* unconnected */
+ return NULL;
+
+ if (addr > 0) {
+ int port = (addr & ~0x80) - 2;
+ if (port < 0 || port >= wusbhc->ports_max)
+ return NULL;
+ return wusb_port_by_idx(wusbhc, port)->wusb_dev;
+ }
+
+ /* Look for the device with address 0. */
+ for (p = 0; p < wusbhc->ports_max; p++) {
+ struct wusb_dev *wusb_dev = wusb_port_by_idx(wusbhc, p)->wusb_dev;
+ if (wusb_dev && wusb_dev->addr == addr)
+ return wusb_dev;
+ }
+ return NULL;
+}
+
+/*
+ * Handle a DN_Alive notification (WUSB1.0[7.6.1])
+ *
+ * This just updates the device activity timestamp and then refreshes
+ * the keep alive IE.
+ *
+ * @wusbhc shall be referenced and unlocked
+ */
+static void wusbhc_handle_dn_alive(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev)
+{
+ struct device *dev = wusbhc->dev;
+
+ d_printf(2, dev, "DN ALIVE: device 0x%02x pong\n", wusb_dev->addr);
+
+ mutex_lock(&wusbhc->mutex);
+ wusb_dev->entry_ts = jiffies;
+ __wusbhc_keep_alive(wusbhc);
+ mutex_unlock(&wusbhc->mutex);
+}
+
+/*
+ * Handle a DN_Connect notification (WUSB1.0[7.6.1])
+ *
+ * @wusbhc
+ * @pkt_hdr
+ * @size: Size of the buffer where the notification resides; if the
+ * notification data suggests there should be more data than
+ * available, an error will be signaled and the whole buffer
+ * consumed.
+ *
+ * @wusbhc->mutex shall be held
+ */
+static void wusbhc_handle_dn_connect(struct wusbhc *wusbhc,
+ struct wusb_dn_hdr *dn_hdr,
+ size_t size)
+{
+ struct device *dev = wusbhc->dev;
+ struct wusb_dn_connect *dnc;
+ char pr_cdid[WUSB_CKHDID_STRSIZE];
+ static const char *beacon_behaviour[] = {
+ "reserved",
+ "self-beacon",
+ "directed-beacon",
+ "no-beacon"
+ };
+
+ d_fnstart(3, dev, "(%p, %p, %zu)\n", wusbhc, dn_hdr, size);
+ if (size < sizeof(*dnc)) {
+ dev_err(dev, "DN CONNECT: short notification (%zu < %zu)\n",
+ size, sizeof(*dnc));
+ goto out;
+ }
+
+ dnc = container_of(dn_hdr, struct wusb_dn_connect, hdr);
+ ckhdid_printf(pr_cdid, sizeof(pr_cdid), &dnc->CDID);
+ dev_info(dev, "DN CONNECT: device %s @ %x (%s) wants to %s\n",
+ pr_cdid,
+ wusb_dn_connect_prev_dev_addr(dnc),
+ beacon_behaviour[wusb_dn_connect_beacon_behavior(dnc)],
+ wusb_dn_connect_new_connection(dnc) ? "connect" : "reconnect");
+ /* ACK the connect */
+ wusbhc_devconnect_ack(wusbhc, dnc, pr_cdid);
+out:
+ d_fnend(3, dev, "(%p, %p, %zu) = void\n",
+ wusbhc, dn_hdr, size);
+ return;
+}
+
+/*
+ * Handle a DN_Disconnect notification (WUSB1.0[7.6.1])
+ *
+ * Device is going down -- do the disconnect.
+ *
+ * @wusbhc shall be referenced and unlocked
+ */
+static void wusbhc_handle_dn_disconnect(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev)
+{
+ struct device *dev = wusbhc->dev;
+
+ dev_info(dev, "DN DISCONNECT: device 0x%02x going down\n", wusb_dev->addr);
+
+ mutex_lock(&wusbhc->mutex);
+ __wusbhc_dev_disconnect(wusbhc, wusb_port_by_idx(wusbhc, wusb_dev->port_idx));
+ mutex_unlock(&wusbhc->mutex);
+}
+
+/*
+ * Reset a WUSB device on a HWA
+ *
+ * @wusbhc
+ * @port_idx Index of the port where the device is
+ *
+ * In Wireless USB, a reset is more or less equivalent to a full
+ * disconnect; so we just do a full disconnect and send the device a
+ * Device Reset IE (WUSB1.0[7.5.11]) giving it a few millisecs (6 MMCs).
+ *
+ * @wusbhc should be refcounted and unlocked
+ */
+int wusbhc_dev_reset(struct wusbhc *wusbhc, u8 port_idx)
+{
+ int result;
+ struct device *dev = wusbhc->dev;
+ struct wusb_dev *wusb_dev;
+ struct wuie_reset *ie;
+
+ d_fnstart(3, dev, "(%p, %u)\n", wusbhc, port_idx);
+ mutex_lock(&wusbhc->mutex);
+ result = 0;
+ wusb_dev = wusb_port_by_idx(wusbhc, port_idx)->wusb_dev;
+ if (wusb_dev == NULL) {
+ /* reset no device? ignore */
+ dev_dbg(dev, "RESET: no device at port %u, ignoring\n",
+ port_idx);
+ goto error_unlock;
+ }
+ result = -ENOMEM;
+ ie = kzalloc(sizeof(*ie), GFP_KERNEL);
+ if (ie == NULL)
+ goto error_unlock;
+ ie->hdr.bLength = sizeof(ie->hdr) + sizeof(ie->CDID);
+ ie->hdr.bIEIdentifier = WUIE_ID_RESET_DEVICE;
+ ie->CDID = wusb_dev->cdid;
+ result = wusbhc_mmcie_set(wusbhc, 0xff, 6, &ie->hdr);
+ if (result < 0) {
+ dev_err(dev, "RESET: cant's set MMC: %d\n", result);
+ goto error_kfree;
+ }
+ __wusbhc_dev_disconnect(wusbhc, wusb_port_by_idx(wusbhc, port_idx));
+
+ /* 120ms, hopefully 6 MMCs (FIXME) */
+ msleep(120);
+ wusbhc_mmcie_rm(wusbhc, &ie->hdr);
+error_kfree:
+ kfree(ie);
+error_unlock:
+ mutex_unlock(&wusbhc->mutex);
+ d_fnend(3, dev, "(%p, %u) = %d\n", wusbhc, port_idx, result);
+ return result;
+}
+
+/*
+ * Handle a Device Notification coming a host
+ *
+ * The Device Notification comes from a host (HWA, DWA or WHCI)
+ * wrapped in a set of headers. Somebody else has peeled off those
+ * headers for us and we just get one Device Notifications.
+ *
+ * Invalid DNs (e.g., too short) are discarded.
+ *
+ * @wusbhc shall be referenced
+ *
+ * FIXMES:
+ * - implement priorities as in WUSB1.0[Table 7-55]?
+ */
+void wusbhc_handle_dn(struct wusbhc *wusbhc, u8 srcaddr,
+ struct wusb_dn_hdr *dn_hdr, size_t size)
+{
+ struct device *dev = wusbhc->dev;
+ struct wusb_dev *wusb_dev;
+
+ d_fnstart(3, dev, "(%p, %p)\n", wusbhc, dn_hdr);
+
+ if (size < sizeof(struct wusb_dn_hdr)) {
+ dev_err(dev, "DN data shorter than DN header (%d < %d)\n",
+ (int)size, (int)sizeof(struct wusb_dn_hdr));
+ goto out;
+ }
+
+ wusb_dev = wusbhc_find_dev_by_addr(wusbhc, srcaddr);
+ if (wusb_dev == NULL && dn_hdr->bType != WUSB_DN_CONNECT) {
+ dev_dbg(dev, "ignoring DN %d from unconnected device %02x\n",
+ dn_hdr->bType, srcaddr);
+ goto out;
+ }
+
+ switch (dn_hdr->bType) {
+ case WUSB_DN_CONNECT:
+ wusbhc_handle_dn_connect(wusbhc, dn_hdr, size);
+ break;
+ case WUSB_DN_ALIVE:
+ wusbhc_handle_dn_alive(wusbhc, wusb_dev);
+ break;
+ case WUSB_DN_DISCONNECT:
+ wusbhc_handle_dn_disconnect(wusbhc, wusb_dev);
+ break;
+ case WUSB_DN_MASAVAILCHANGED:
+ case WUSB_DN_RWAKE:
+ case WUSB_DN_SLEEP:
+ /* FIXME: handle these DNs. */
+ break;
+ case WUSB_DN_EPRDY:
+ /* The hardware handles these. */
+ break;
+ default:
+ dev_warn(dev, "unknown DN %u (%d octets) from %u\n",
+ dn_hdr->bType, (int)size, srcaddr);
+ }
+out:
+ d_fnend(3, dev, "(%p, %p) = void\n", wusbhc, dn_hdr);
+ return;
+}
+EXPORT_SYMBOL_GPL(wusbhc_handle_dn);
+
+/*
+ * Disconnect a WUSB device from a the cluster
+ *
+ * @wusbhc
+ * @port Fake port where the device is (wusbhc index, not USB port number).
+ *
+ * In Wireless USB, a disconnect is basically telling the device he is
+ * being disconnected and forgetting about him.
+ *
+ * We send the device a Device Disconnect IE (WUSB1.0[7.5.11]) for 100
+ * ms and then keep going.
+ *
+ * We don't do much in case of error; we always pretend we disabled
+ * the port and disconnected the device. If physically the request
+ * didn't get there (many things can fail in the way there), the stack
+ * will reject the device's communication attempts.
+ *
+ * @wusbhc should be refcounted and locked
+ */
+void __wusbhc_dev_disable(struct wusbhc *wusbhc, u8 port_idx)
+{
+ int result;
+ struct device *dev = wusbhc->dev;
+ struct wusb_dev *wusb_dev;
+ struct wuie_disconnect *ie;
+
+ d_fnstart(3, dev, "(%p, %u)\n", wusbhc, port_idx);
+ result = 0;
+ wusb_dev = wusb_port_by_idx(wusbhc, port_idx)->wusb_dev;
+ if (wusb_dev == NULL) {
+ /* reset no device? ignore */
+ dev_dbg(dev, "DISCONNECT: no device at port %u, ignoring\n",
+ port_idx);
+ goto error;
+ }
+ __wusbhc_dev_disconnect(wusbhc, wusb_port_by_idx(wusbhc, port_idx));
+
+ result = -ENOMEM;
+ ie = kzalloc(sizeof(*ie), GFP_KERNEL);
+ if (ie == NULL)
+ goto error;
+ ie->hdr.bLength = sizeof(*ie);
+ ie->hdr.bIEIdentifier = WUIE_ID_DEVICE_DISCONNECT;
+ ie->bDeviceAddress = wusb_dev->addr;
+ result = wusbhc_mmcie_set(wusbhc, 0, 0, &ie->hdr);
+ if (result < 0) {
+ dev_err(dev, "DISCONNECT: can't set MMC: %d\n", result);
+ goto error_kfree;
+ }
+
+ /* 120ms, hopefully 6 MMCs */
+ msleep(100);
+ wusbhc_mmcie_rm(wusbhc, &ie->hdr);
+error_kfree:
+ kfree(ie);
+error:
+ d_fnend(3, dev, "(%p, %u) = %d\n", wusbhc, port_idx, result);
+ return;
+}
+
+static void wusb_cap_descr_printf(const unsigned level, struct device *dev,
+ const struct usb_wireless_cap_descriptor *wcd)
+{
+ d_printf(level, dev,
+ "WUSB Capability Descriptor\n"
+ " bDevCapabilityType 0x%02x\n"
+ " bmAttributes 0x%02x\n"
+ " wPhyRates 0x%04x\n"
+ " bmTFITXPowerInfo 0x%02x\n"
+ " bmFFITXPowerInfo 0x%02x\n"
+ " bmBandGroup 0x%04x\n"
+ " bReserved 0x%02x\n",
+ wcd->bDevCapabilityType,
+ wcd->bmAttributes,
+ le16_to_cpu(wcd->wPHYRates),
+ wcd->bmTFITXPowerInfo,
+ wcd->bmFFITXPowerInfo,
+ wcd->bmBandGroup,
+ wcd->bReserved);
+}
+
+/*
+ * Walk over the BOS descriptor, verify and grok it
+ *
+ * @usb_dev: referenced
+ * @wusb_dev: referenced and unlocked
+ *
+ * The BOS descriptor is defined at WUSB1.0[7.4.1], and it defines a
+ * "flexible" way to wrap all kinds of descriptors inside an standard
+ * descriptor (wonder why they didn't use normal descriptors,
+ * btw). Not like they lack code.
+ *
+ * At the end we go to look for the WUSB Device Capabilities
+ * (WUSB1.0[7.4.1.1]) that is wrapped in a device capability descriptor
+ * that is part of the BOS descriptor set. That tells us what does the
+ * device support (dual role, beacon type, UWB PHY rates).
+ */
+static int wusb_dev_bos_grok(struct usb_device *usb_dev,
+ struct wusb_dev *wusb_dev,
+ struct usb_bos_descriptor *bos, size_t desc_size)
+{
+ ssize_t result;
+ struct device *dev = &usb_dev->dev;
+ void *itr, *top;
+
+ /* Walk over BOS capabilities, verify them */
+ itr = (void *)bos + sizeof(*bos);
+ top = itr + desc_size - sizeof(*bos);
+ while (itr < top) {
+ struct usb_dev_cap_header *cap_hdr = itr;
+ size_t cap_size;
+ u8 cap_type;
+ if (top - itr < sizeof(*cap_hdr)) {
+ dev_err(dev, "Device BUG? premature end of BOS header "
+ "data [offset 0x%02x]: only %zu bytes left\n",
+ (int)(itr - (void *)bos), top - itr);
+ result = -ENOSPC;
+ goto error_bad_cap;
+ }
+ cap_size = cap_hdr->bLength;
+ cap_type = cap_hdr->bDevCapabilityType;
+ d_printf(4, dev, "BOS Capability: 0x%02x (%zu bytes)\n",
+ cap_type, cap_size);
+ if (cap_size == 0)
+ break;
+ if (cap_size > top - itr) {
+ dev_err(dev, "Device BUG? premature end of BOS data "
+ "[offset 0x%02x cap %02x %zu bytes]: "
+ "only %zu bytes left\n",
+ (int)(itr - (void *)bos),
+ cap_type, cap_size, top - itr);
+ result = -EBADF;
+ goto error_bad_cap;
+ }
+ d_dump(3, dev, itr, cap_size);
+ switch (cap_type) {
+ case USB_CAP_TYPE_WIRELESS_USB:
+ if (cap_size != sizeof(*wusb_dev->wusb_cap_descr))
+ dev_err(dev, "Device BUG? WUSB Capability "
+ "descriptor is %zu bytes vs %zu "
+ "needed\n", cap_size,
+ sizeof(*wusb_dev->wusb_cap_descr));
+ else {
+ wusb_dev->wusb_cap_descr = itr;
+ wusb_cap_descr_printf(3, dev, itr);
+ }
+ break;
+ default:
+ dev_err(dev, "BUG? Unknown BOS capability 0x%02x "
+ "(%zu bytes) at offset 0x%02x\n", cap_type,
+ cap_size, (int)(itr - (void *)bos));
+ }
+ itr += cap_size;
+ }
+ result = 0;
+error_bad_cap:
+ return result;
+}
+
+/*
+ * Add information from the BOS descriptors to the device
+ *
+ * @usb_dev: referenced
+ * @wusb_dev: referenced and unlocked
+ *
+ * So what we do is we alloc a space for the BOS descriptor of 64
+ * bytes; read the first four bytes which include the wTotalLength
+ * field (WUSB1.0[T7-26]) and if it fits in those 64 bytes, read the
+ * whole thing. If not we realloc to that size.
+ *
+ * Then we call the groking function, that will fill up
+ * wusb_dev->wusb_cap_descr, which is what we'll need later on.
+ */
+static int wusb_dev_bos_add(struct usb_device *usb_dev,
+ struct wusb_dev *wusb_dev)
+{
+ ssize_t result;
+ struct device *dev = &usb_dev->dev;
+ struct usb_bos_descriptor *bos;
+ size_t alloc_size = 32, desc_size = 4;
+
+ bos = kmalloc(alloc_size, GFP_KERNEL);
+ if (bos == NULL)
+ return -ENOMEM;
+ result = usb_get_descriptor(usb_dev, USB_DT_BOS, 0, bos, desc_size);
+ if (result < 4) {
+ dev_err(dev, "Can't get BOS descriptor or too short: %zd\n",
+ result);
+ goto error_get_descriptor;
+ }
+ desc_size = le16_to_cpu(bos->wTotalLength);
+ if (desc_size >= alloc_size) {
+ kfree(bos);
+ alloc_size = desc_size;
+ bos = kmalloc(alloc_size, GFP_KERNEL);
+ if (bos == NULL)
+ return -ENOMEM;
+ }
+ result = usb_get_descriptor(usb_dev, USB_DT_BOS, 0, bos, desc_size);
+ if (result < 0 || result != desc_size) {
+ dev_err(dev, "Can't get BOS descriptor or too short (need "
+ "%zu bytes): %zd\n", desc_size, result);
+ goto error_get_descriptor;
+ }
+ if (result < sizeof(*bos)
+ || le16_to_cpu(bos->wTotalLength) != desc_size) {
+ dev_err(dev, "Can't get BOS descriptor or too short (need "
+ "%zu bytes): %zd\n", desc_size, result);
+ goto error_get_descriptor;
+ }
+ d_printf(2, dev, "Got BOS descriptor %zd bytes, %u capabilities\n",
+ result, bos->bNumDeviceCaps);
+ d_dump(2, dev, bos, result);
+ result = wusb_dev_bos_grok(usb_dev, wusb_dev, bos, result);
+ if (result < 0)
+ goto error_bad_bos;
+ wusb_dev->bos = bos;
+ return 0;
+
+error_bad_bos:
+error_get_descriptor:
+ kfree(bos);
+ wusb_dev->wusb_cap_descr = NULL;
+ return result;
+}
+
+static void wusb_dev_bos_rm(struct wusb_dev *wusb_dev)
+{
+ kfree(wusb_dev->bos);
+ wusb_dev->wusb_cap_descr = NULL;
+};
+
+static struct usb_wireless_cap_descriptor wusb_cap_descr_default = {
+ .bLength = sizeof(wusb_cap_descr_default),
+ .bDescriptorType = USB_DT_DEVICE_CAPABILITY,
+ .bDevCapabilityType = USB_CAP_TYPE_WIRELESS_USB,
+
+ .bmAttributes = USB_WIRELESS_BEACON_NONE,
+ .wPHYRates = cpu_to_le16(USB_WIRELESS_PHY_53),
+ .bmTFITXPowerInfo = 0,
+ .bmFFITXPowerInfo = 0,
+ .bmBandGroup = cpu_to_le16(0x0001), /* WUSB1.0[7.4.1] bottom */
+ .bReserved = 0
+};
+
+/*
+ * USB stack's device addition Notifier Callback
+ *
+ * Called from drivers/usb/core/hub.c when a new device is added; we
+ * use this hook to perform certain WUSB specific setup work on the
+ * new device. As well, it is the first time we can connect the
+ * wusb_dev and the usb_dev. So we note it down in wusb_dev and take a
+ * reference that we'll drop.
+ *
+ * First we need to determine if the device is a WUSB device (else we
+ * ignore it). For that we use the speed setting (USB_SPEED_VARIABLE)
+ * [FIXME: maybe we'd need something more definitive]. If so, we track
+ * it's usb_busd and from there, the WUSB HC.
+ *
+ * Because all WUSB HCs are contained in a 'struct wusbhc', voila, we
+ * get the wusbhc for the device.
+ *
+ * We have a reference on @usb_dev (as we are called at the end of its
+ * enumeration).
+ *
+ * NOTE: @usb_dev locked
+ */
+static void wusb_dev_add_ncb(struct usb_device *usb_dev)
+{
+ int result = 0;
+ struct wusb_dev *wusb_dev;
+ struct wusbhc *wusbhc;
+ struct device *dev = &usb_dev->dev;
+ u8 port_idx;
+
+ if (usb_dev->wusb == 0 || usb_dev->devnum == 1)
+ return; /* skip non wusb and wusb RHs */
+
+ d_fnstart(3, dev, "(usb_dev %p)\n", usb_dev);
+
+ wusbhc = wusbhc_get_by_usb_dev(usb_dev);
+ if (wusbhc == NULL)
+ goto error_nodev;
+ mutex_lock(&wusbhc->mutex);
+ wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, usb_dev);
+ port_idx = wusb_port_no_to_idx(usb_dev->portnum);
+ mutex_unlock(&wusbhc->mutex);
+ if (wusb_dev == NULL)
+ goto error_nodev;
+ wusb_dev->usb_dev = usb_get_dev(usb_dev);
+ usb_dev->wusb_dev = wusb_dev_get(wusb_dev);
+ result = wusb_dev_sec_add(wusbhc, usb_dev, wusb_dev);
+ if (result < 0) {
+ dev_err(dev, "Cannot enable security: %d\n", result);
+ goto error_sec_add;
+ }
+ /* Now query the device for it's BOS and attach it to wusb_dev */
+ result = wusb_dev_bos_add(usb_dev, wusb_dev);
+ if (result < 0) {
+ dev_err(dev, "Cannot get BOS descriptors: %d\n", result);
+ goto error_bos_add;
+ }
+ result = wusb_dev_sysfs_add(wusbhc, usb_dev, wusb_dev);
+ if (result < 0)
+ goto error_add_sysfs;
+out:
+ wusb_dev_put(wusb_dev);
+ wusbhc_put(wusbhc);
+error_nodev:
+ d_fnend(3, dev, "(usb_dev %p) = void\n", usb_dev);
+ return;
+
+ wusb_dev_sysfs_rm(wusb_dev);
+error_add_sysfs:
+ wusb_dev_bos_rm(wusb_dev);
+error_bos_add:
+ wusb_dev_sec_rm(wusb_dev);
+error_sec_add:
+ mutex_lock(&wusbhc->mutex);
+ __wusbhc_dev_disconnect(wusbhc, wusb_port_by_idx(wusbhc, port_idx));
+ mutex_unlock(&wusbhc->mutex);
+ goto out;
+}
+
+/*
+ * Undo all the steps done at connection by the notifier callback
+ *
+ * NOTE: @usb_dev locked
+ */
+static void wusb_dev_rm_ncb(struct usb_device *usb_dev)
+{
+ struct wusb_dev *wusb_dev = usb_dev->wusb_dev;
+
+ if (usb_dev->wusb == 0 || usb_dev->devnum == 1)
+ return; /* skip non wusb and wusb RHs */
+
+ wusb_dev_sysfs_rm(wusb_dev);
+ wusb_dev_bos_rm(wusb_dev);
+ wusb_dev_sec_rm(wusb_dev);
+ wusb_dev->usb_dev = NULL;
+ usb_dev->wusb_dev = NULL;
+ wusb_dev_put(wusb_dev);
+ usb_put_dev(usb_dev);
+}
+
+/*
+ * Handle notifications from the USB stack (notifier call back)
+ *
+ * This is called when the USB stack does a
+ * usb_{bus,device}_{add,remove}() so we can do WUSB specific
+ * handling. It is called with [for the case of
+ * USB_DEVICE_{ADD,REMOVE} with the usb_dev locked.
+ */
+int wusb_usb_ncb(struct notifier_block *nb, unsigned long val,
+ void *priv)
+{
+ int result = NOTIFY_OK;
+
+ switch (val) {
+ case USB_DEVICE_ADD:
+ wusb_dev_add_ncb(priv);
+ break;
+ case USB_DEVICE_REMOVE:
+ wusb_dev_rm_ncb(priv);
+ break;
+ case USB_BUS_ADD:
+ /* ignore (for now) */
+ case USB_BUS_REMOVE:
+ break;
+ default:
+ WARN_ON(1);
+ result = NOTIFY_BAD;
+ };
+ return result;
+}
+
+/*
+ * Return a referenced wusb_dev given a @wusbhc and @usb_dev
+ */
+struct wusb_dev *__wusb_dev_get_by_usb_dev(struct wusbhc *wusbhc,
+ struct usb_device *usb_dev)
+{
+ struct wusb_dev *wusb_dev;
+ u8 port_idx;
+
+ port_idx = wusb_port_no_to_idx(usb_dev->portnum);
+ BUG_ON(port_idx > wusbhc->ports_max);
+ wusb_dev = wusb_port_by_idx(wusbhc, port_idx)->wusb_dev;
+ if (wusb_dev != NULL) /* ops, device is gone */
+ wusb_dev_get(wusb_dev);
+ return wusb_dev;
+}
+EXPORT_SYMBOL_GPL(__wusb_dev_get_by_usb_dev);
+
+void wusb_dev_destroy(struct kref *_wusb_dev)
+{
+ struct wusb_dev *wusb_dev
+ = container_of(_wusb_dev, struct wusb_dev, refcnt);
+ list_del_init(&wusb_dev->cack_node);
+ wusb_dev_free(wusb_dev);
+ d_fnend(1, NULL, "%s (wusb_dev %p) = void\n", __func__, wusb_dev);
+}
+EXPORT_SYMBOL_GPL(wusb_dev_destroy);
+
+/*
+ * Create all the device connect handling infrastructure
+ *
+ * This is basically the device info array, Connect Acknowledgement
+ * (cack) lists, keep-alive timers (and delayed work thread).
+ */
+int wusbhc_devconnect_create(struct wusbhc *wusbhc)
+{
+ d_fnstart(3, wusbhc->dev, "(wusbhc %p)\n", wusbhc);
+
+ wusbhc->keep_alive_ie.hdr.bIEIdentifier = WUIE_ID_KEEP_ALIVE;
+ wusbhc->keep_alive_ie.hdr.bLength = sizeof(wusbhc->keep_alive_ie.hdr);
+ INIT_DELAYED_WORK(&wusbhc->keep_alive_timer, wusbhc_keep_alive_run);
+
+ wusbhc->cack_ie.hdr.bIEIdentifier = WUIE_ID_CONNECTACK;
+ wusbhc->cack_ie.hdr.bLength = sizeof(wusbhc->cack_ie.hdr);
+ INIT_LIST_HEAD(&wusbhc->cack_list);
+
+ d_fnend(3, wusbhc->dev, "(wusbhc %p) = void\n", wusbhc);
+ return 0;
+}
+
+/*
+ * Release all resources taken by the devconnect stuff
+ */
+void wusbhc_devconnect_destroy(struct wusbhc *wusbhc)
+{
+ d_fnstart(3, wusbhc->dev, "(wusbhc %p)\n", wusbhc);
+ d_fnend(3, wusbhc->dev, "(wusbhc %p) = void\n", wusbhc);
+}
+
+/*
+ * wusbhc_devconnect_start - start accepting device connections
+ * @wusbhc: the WUSB HC
+ *
+ * Sets the Host Info IE to accept all new connections.
+ *
+ * FIXME: This also enables the keep alives but this is not necessary
+ * until there are connected and authenticated devices.
+ */
+int wusbhc_devconnect_start(struct wusbhc *wusbhc,
+ const struct wusb_ckhdid *chid)
+{
+ struct device *dev = wusbhc->dev;
+ struct wuie_host_info *hi;
+ int result;
+
+ hi = kzalloc(sizeof(*hi), GFP_KERNEL);
+ if (hi == NULL)
+ return -ENOMEM;
+
+ hi->hdr.bLength = sizeof(*hi);
+ hi->hdr.bIEIdentifier = WUIE_ID_HOST_INFO;
+ hi->attributes = cpu_to_le16((wusbhc->rsv->stream << 3) | WUIE_HI_CAP_ALL);
+ hi->CHID = *chid;
+ result = wusbhc_mmcie_set(wusbhc, 0, 0, &hi->hdr);
+ if (result < 0) {
+ dev_err(dev, "Cannot add Host Info MMCIE: %d\n", result);
+ goto error_mmcie_set;
+ }
+ wusbhc->wuie_host_info = hi;
+
+ queue_delayed_work(wusbd, &wusbhc->keep_alive_timer,
+ (wusbhc->trust_timeout*CONFIG_HZ)/1000/2);
+
+ return 0;
+
+error_mmcie_set:
+ kfree(hi);
+ return result;
+}
+
+/*
+ * wusbhc_devconnect_stop - stop managing connected devices
+ * @wusbhc: the WUSB HC
+ *
+ * Removes the Host Info IE and stops the keep alives.
+ *
+ * FIXME: should this disconnect all devices?
+ */
+void wusbhc_devconnect_stop(struct wusbhc *wusbhc)
+{
+ cancel_delayed_work_sync(&wusbhc->keep_alive_timer);
+ WARN_ON(!list_empty(&wusbhc->cack_list));
+
+ wusbhc_mmcie_rm(wusbhc, &wusbhc->wuie_host_info->hdr);
+ kfree(wusbhc->wuie_host_info);
+ wusbhc->wuie_host_info = NULL;
+}
+
+/*
+ * wusb_set_dev_addr - set the WUSB device address used by the host
+ * @wusbhc: the WUSB HC the device is connect to
+ * @wusb_dev: the WUSB device
+ * @addr: new device address
+ */
+int wusb_set_dev_addr(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev, u8 addr)
+{
+ int result;
+
+ wusb_dev->addr = addr;
+ result = wusbhc->dev_info_set(wusbhc, wusb_dev);
+ if (result)
+ dev_err(wusbhc->dev, "device %d: failed to set device "
+ "address\n", wusb_dev->port_idx);
+ else
+ dev_info(wusbhc->dev, "device %d: %s addr %u\n",
+ wusb_dev->port_idx,
+ (addr & WUSB_DEV_ADDR_UNAUTH) ? "unauth" : "auth",
+ wusb_dev->addr);
+
+ return result;
+}
diff --git a/drivers/usb/wusbcore/mmc.c b/drivers/usb/wusbcore/mmc.c
new file mode 100644
index 00000000000..e5390b77aaa
--- /dev/null
+++ b/drivers/usb/wusbcore/mmc.c
@@ -0,0 +1,329 @@
+/*
+ * WUSB Wire Adapter: Control/Data Streaming Interface (WUSB[8])
+ * MMC (Microscheduled Management Command) handling
+ *
+ * Copyright (C) 2005-2006 Intel Corporation
+ * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License version
+ * 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA.
+ *
+ *
+ * WUIEs and MMC IEs...well, they are almost the same at the end. MMC
+ * IEs are Wireless USB IEs that go into the MMC period...[what is
+ * that? look in Design-overview.txt].
+ *
+ *
+ * This is a simple subsystem to keep track of which IEs are being
+ * sent by the host in the MMC period.
+ *
+ * For each WUIE we ask to send, we keep it in an array, so we can
+ * request its removal later, or replace the content. They are tracked
+ * by pointer, so be sure to use the same pointer if you want to
+ * remove it or update the contents.
+ *
+ * FIXME:
+ * - add timers that autoremove intervalled IEs?
+ */
+#include <linux/usb/wusb.h>
+#include "wusbhc.h"
+
+/* Initialize the MMCIEs handling mechanism */
+int wusbhc_mmcie_create(struct wusbhc *wusbhc)
+{
+ u8 mmcies = wusbhc->mmcies_max;
+ wusbhc->mmcie = kzalloc(mmcies * sizeof(wusbhc->mmcie[0]), GFP_KERNEL);
+ if (wusbhc->mmcie == NULL)
+ return -ENOMEM;
+ mutex_init(&wusbhc->mmcie_mutex);
+ return 0;
+}
+
+/* Release resources used by the MMCIEs handling mechanism */
+void wusbhc_mmcie_destroy(struct wusbhc *wusbhc)
+{
+ kfree(wusbhc->mmcie);
+}
+
+/*
+ * Add or replace an MMC Wireless USB IE.
+ *
+ * @interval: See WUSB1.0[8.5.3.1]
+ * @repeat_cnt: See WUSB1.0[8.5.3.1]
+ * @handle: See WUSB1.0[8.5.3.1]
+ * @wuie: Pointer to the header of the WUSB IE data to add.
+ * MUST BE allocated in a kmalloc buffer (no stack or
+ * vmalloc).
+ * THE CALLER ALWAYS OWNS THE POINTER (we don't free it
+ * on remove, we just forget about it).
+ * @returns: 0 if ok, < 0 errno code on error.
+ *
+ * Goes over the *whole* @wusbhc->mmcie array looking for (a) the
+ * first free spot and (b) if @wuie is already in the array (aka:
+ * transmitted in the MMCs) the spot were it is.
+ *
+ * If present, we "overwrite it" (update).
+ *
+ *
+ * NOTE: Need special ordering rules -- see below WUSB1.0 Table 7-38.
+ * The host uses the handle as the 'sort' index. We
+ * allocate the last one always for the WUIE_ID_HOST_INFO, and
+ * the rest, first come first serve in inverse order.
+ *
+ * Host software must make sure that it adds the other IEs in
+ * the right order... the host hardware is responsible for
+ * placing the WCTA IEs in the right place with the other IEs
+ * set by host software.
+ *
+ * NOTE: we can access wusbhc->wa_descr without locking because it is
+ * read only.
+ */
+int wusbhc_mmcie_set(struct wusbhc *wusbhc, u8 interval, u8 repeat_cnt,
+ struct wuie_hdr *wuie)
+{
+ int result = -ENOBUFS;
+ struct device *dev = wusbhc->dev;
+ unsigned handle, itr;
+
+ /* Search a handle, taking into account the ordering */
+ mutex_lock(&wusbhc->mmcie_mutex);
+ switch (wuie->bIEIdentifier) {
+ case WUIE_ID_HOST_INFO:
+ /* Always last */
+ handle = wusbhc->mmcies_max - 1;
+ break;
+ case WUIE_ID_ISOCH_DISCARD:
+ dev_err(wusbhc->dev, "Special ordering case for WUIE ID 0x%x "
+ "unimplemented\n", wuie->bIEIdentifier);
+ result = -ENOSYS;
+ goto error_unlock;
+ default:
+ /* search for it or find the last empty slot */
+ handle = ~0;
+ for (itr = 0; itr < wusbhc->mmcies_max - 1; itr++) {
+ if (wusbhc->mmcie[itr] == wuie) {
+ handle = itr;
+ break;
+ }
+ if (wusbhc->mmcie[itr] == NULL)
+ handle = itr;
+ }
+ if (handle == ~0) {
+ if (printk_ratelimit())
+ dev_err(dev, "MMC handle space exhausted\n");
+ goto error_unlock;
+ }
+ }
+ result = (wusbhc->mmcie_add)(wusbhc, interval, repeat_cnt, handle,
+ wuie);
+ if (result >= 0)
+ wusbhc->mmcie[handle] = wuie;
+error_unlock:
+ mutex_unlock(&wusbhc->mmcie_mutex);
+ return result;
+}
+EXPORT_SYMBOL_GPL(wusbhc_mmcie_set);
+
+/*
+ * Remove an MMC IE previously added with wusbhc_mmcie_set()
+ *
+ * @wuie Pointer used to add the WUIE
+ */
+void wusbhc_mmcie_rm(struct wusbhc *wusbhc, struct wuie_hdr *wuie)
+{
+ int result;
+ struct device *dev = wusbhc->dev;
+ unsigned handle, itr;
+
+ mutex_lock(&wusbhc->mmcie_mutex);
+ for (itr = 0; itr < wusbhc->mmcies_max; itr++)
+ if (wusbhc->mmcie[itr] == wuie) {
+ handle = itr;
+ goto found;
+ }
+ mutex_unlock(&wusbhc->mmcie_mutex);
+ return;
+
+found:
+ result = (wusbhc->mmcie_rm)(wusbhc, handle);
+ if (result == 0)
+ wusbhc->mmcie[itr] = NULL;
+ else if (printk_ratelimit())
+ dev_err(dev, "MMC: Failed to remove IE %p (0x%02x)\n",
+ wuie, wuie->bIEIdentifier);
+ mutex_unlock(&wusbhc->mmcie_mutex);
+ return;
+}
+EXPORT_SYMBOL_GPL(wusbhc_mmcie_rm);
+
+/*
+ * wusbhc_start - start transmitting MMCs and accepting connections
+ * @wusbhc: the HC to start
+ * @chid: the CHID to use for this host
+ *
+ * Establishes a cluster reservation, enables device connections, and
+ * starts MMCs with appropriate DNTS parameters.
+ */
+int wusbhc_start(struct wusbhc *wusbhc, const struct wusb_ckhdid *chid)
+{
+ int result;
+ struct device *dev = wusbhc->dev;
+
+ WARN_ON(wusbhc->wuie_host_info != NULL);
+
+ result = wusbhc_rsv_establish(wusbhc);
+ if (result < 0) {
+ dev_err(dev, "cannot establish cluster reservation: %d\n",
+ result);
+ goto error_rsv_establish;
+ }
+
+ result = wusbhc_devconnect_start(wusbhc, chid);
+ if (result < 0) {
+ dev_err(dev, "error enabling device connections: %d\n", result);
+ goto error_devconnect_start;
+ }
+
+ result = wusbhc_sec_start(wusbhc);
+ if (result < 0) {
+ dev_err(dev, "error starting security in the HC: %d\n", result);
+ goto error_sec_start;
+ }
+ /* FIXME: the choice of the DNTS parameters is somewhat
+ * arbitrary */
+ result = wusbhc->set_num_dnts(wusbhc, 0, 15);
+ if (result < 0) {
+ dev_err(dev, "Cannot set DNTS parameters: %d\n", result);
+ goto error_set_num_dnts;
+ }
+ result = wusbhc->start(wusbhc);
+ if (result < 0) {
+ dev_err(dev, "error starting wusbch: %d\n", result);
+ goto error_wusbhc_start;
+ }
+ wusbhc->active = 1;
+ return 0;
+
+error_wusbhc_start:
+ wusbhc_sec_stop(wusbhc);
+error_set_num_dnts:
+error_sec_start:
+ wusbhc_devconnect_stop(wusbhc);
+error_devconnect_start:
+ wusbhc_rsv_terminate(wusbhc);
+error_rsv_establish:
+ return result;
+}
+
+/*
+ * Disconnect all from the WUSB Channel
+ *
+ * Send a Host Disconnect IE in the MMC, wait, don't send it any more
+ */
+static int __wusbhc_host_disconnect_ie(struct wusbhc *wusbhc)
+{
+ int result = -ENOMEM;
+ struct wuie_host_disconnect *host_disconnect_ie;
+ might_sleep();
+ host_disconnect_ie = kmalloc(sizeof(*host_disconnect_ie), GFP_KERNEL);
+ if (host_disconnect_ie == NULL)
+ goto error_alloc;
+ host_disconnect_ie->hdr.bLength = sizeof(*host_disconnect_ie);
+ host_disconnect_ie->hdr.bIEIdentifier = WUIE_ID_HOST_DISCONNECT;
+ result = wusbhc_mmcie_set(wusbhc, 0, 0, &host_disconnect_ie->hdr);
+ if (result < 0)
+ goto error_mmcie_set;
+
+ /* WUSB1.0[8.5.3.1 & 7.5.2] */
+ msleep(100);
+ wusbhc_mmcie_rm(wusbhc, &host_disconnect_ie->hdr);
+error_mmcie_set:
+ kfree(host_disconnect_ie);
+error_alloc:
+ return result;
+}
+
+/*
+ * wusbhc_stop - stop transmitting MMCs
+ * @wusbhc: the HC to stop
+ *
+ * Send a Host Disconnect IE, wait, remove all the MMCs (stop sending MMCs).
+ *
+ * If we can't allocate a Host Stop IE, screw it, we don't notify the
+ * devices we are disconnecting...
+ */
+void wusbhc_stop(struct wusbhc *wusbhc)
+{
+ if (wusbhc->active) {
+ wusbhc->active = 0;
+ wusbhc->stop(wusbhc);
+ wusbhc_sec_stop(wusbhc);
+ __wusbhc_host_disconnect_ie(wusbhc);
+ wusbhc_devconnect_stop(wusbhc);
+ wusbhc_rsv_terminate(wusbhc);
+ }
+}
+EXPORT_SYMBOL_GPL(wusbhc_stop);
+
+/*
+ * Change the CHID in a WUSB Channel
+ *
+ * If it is just a new CHID, send a Host Disconnect IE and then change
+ * the CHID IE.
+ */
+static int __wusbhc_chid_change(struct wusbhc *wusbhc,
+ const struct wusb_ckhdid *chid)
+{
+ int result = -ENOSYS;
+ struct device *dev = wusbhc->dev;
+ dev_err(dev, "%s() not implemented yet\n", __func__);
+ return result;
+
+ BUG_ON(wusbhc->wuie_host_info == NULL);
+ __wusbhc_host_disconnect_ie(wusbhc);
+ wusbhc->wuie_host_info->CHID = *chid;
+ result = wusbhc_mmcie_set(wusbhc, 0, 0, &wusbhc->wuie_host_info->hdr);
+ if (result < 0)
+ dev_err(dev, "Can't update Host Info WUSB IE: %d\n", result);
+ return result;
+}
+
+/*
+ * Set/reset/update a new CHID
+ *
+ * Depending on the previous state of the MMCs, start, stop or change
+ * the sent MMC. This effectively switches the host controller on and
+ * off (radio wise).
+ */
+int wusbhc_chid_set(struct wusbhc *wusbhc, const struct wusb_ckhdid *chid)
+{
+ int result = 0;
+
+ if (memcmp(chid, &wusb_ckhdid_zero, sizeof(chid)) == 0)
+ chid = NULL;
+
+ mutex_lock(&wusbhc->mutex);
+ if (wusbhc->active) {
+ if (chid)
+ result = __wusbhc_chid_change(wusbhc, chid);
+ else
+ wusbhc_stop(wusbhc);
+ } else {
+ if (chid)
+ wusbhc_start(wusbhc, chid);
+ }
+ mutex_unlock(&wusbhc->mutex);
+ return result;
+}
+EXPORT_SYMBOL_GPL(wusbhc_chid_set);