diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/crypto/api-intro.txt | 1 | ||||
-rw-r--r-- | Documentation/filesystems/proc.txt | 1 | ||||
-rw-r--r-- | Documentation/networking/README.ipw2100 | 246 | ||||
-rw-r--r-- | Documentation/networking/README.ipw2200 | 300 | ||||
-rw-r--r-- | Documentation/power/swsusp-dmcrypt.txt | 138 | ||||
-rw-r--r-- | Documentation/power/swsusp.txt | 7 | ||||
-rw-r--r-- | Documentation/power/video.txt | 9 | ||||
-rw-r--r-- | Documentation/vm/locking | 15 | ||||
-rw-r--r-- | Documentation/watchdog/watchdog-api.txt | 20 |
9 files changed, 728 insertions, 9 deletions
diff --git a/Documentation/crypto/api-intro.txt b/Documentation/crypto/api-intro.txt index a2d5b490077..74dffc68ff9 100644 --- a/Documentation/crypto/api-intro.txt +++ b/Documentation/crypto/api-intro.txt @@ -223,6 +223,7 @@ CAST5 algorithm contributors: TEA/XTEA algorithm contributors: Aaron Grothe + Michael Ringe Khazad algorithm contributors: Aaron Grothe diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index 6c98f2bd421..5024ba7a592 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -133,6 +133,7 @@ Table 1-1: Process specific entries in /proc statm Process memory status information status Process status in human readable form wchan If CONFIG_KALLSYMS is set, a pre-decoded wchan + smaps Extension based on maps, presenting the rss size for each mapped file .............................................................................. For example, to get the status information of a process, all you have to do is diff --git a/Documentation/networking/README.ipw2100 b/Documentation/networking/README.ipw2100 new file mode 100644 index 00000000000..2046948b020 --- /dev/null +++ b/Documentation/networking/README.ipw2100 @@ -0,0 +1,246 @@ + +=========================== +Intel(R) PRO/Wireless 2100 Network Connection Driver for Linux +README.ipw2100 + +March 14, 2005 + +=========================== +Index +--------------------------- +0. Introduction +1. Release 1.1.0 Current Features +2. Command Line Parameters +3. Sysfs Helper Files +4. Radio Kill Switch +5. Dynamic Firmware +6. Power Management +7. Support +8. License + + +=========================== +0. Introduction +------------ ----- ----- ---- --- -- - + +This document provides a brief overview of the features supported by the +IPW2100 driver project. The main project website, where the latest +development version of the driver can be found, is: + + http://ipw2100.sourceforge.net + +There you can find the not only the latest releases, but also information about +potential fixes and patches, as well as links to the development mailing list +for the driver project. + + +=========================== +1. Release 1.1.0 Current Supported Features +--------------------------- +- Managed (BSS) and Ad-Hoc (IBSS) +- WEP (shared key and open) +- Wireless Tools support +- 802.1x (tested with XSupplicant 1.0.1) + +Enabled (but not supported) features: +- Monitor/RFMon mode +- WPA/WPA2 + +The distinction between officially supported and enabled is a reflection +on the amount of validation and interoperability testing that has been +performed on a given feature. + + +=========================== +2. Command Line Parameters +--------------------------- + +If the driver is built as a module, the following optional parameters are used +by entering them on the command line with the modprobe command using this +syntax: + + modprobe ipw2100 [<option>=<VAL1><,VAL2>...] + +For example, to disable the radio on driver loading, enter: + + modprobe ipw2100 disable=1 + +The ipw2100 driver supports the following module parameters: + +Name Value Example: +debug 0x0-0xffffffff debug=1024 +mode 0,1,2 mode=1 /* AdHoc */ +channel int channel=3 /* Only valid in AdHoc or Monitor */ +associate boolean associate=0 /* Do NOT auto associate */ +disable boolean disable=1 /* Do not power the HW */ + + +=========================== +3. Sysfs Helper Files +--------------------------- + +There are several ways to control the behavior of the driver. Many of the +general capabilities are exposed through the Wireless Tools (iwconfig). There +are a few capabilities that are exposed through entries in the Linux Sysfs. + + +----- Driver Level ------ +For the driver level files, look in /sys/bus/pci/drivers/ipw2100/ + + debug_level + + This controls the same global as the 'debug' module parameter. For + information on the various debugging levels available, run the 'dvals' + script found in the driver source directory. + + NOTE: 'debug_level' is only enabled if CONFIG_IPW2100_DEBUG is turn + on. + +----- Device Level ------ +For the device level files look in + + /sys/bus/pci/drivers/ipw2100/{PCI-ID}/ + +For example: + /sys/bus/pci/drivers/ipw2100/0000:02:01.0 + +For the device level files, see /sys/bus/pci/drivers/ipw2100: + + rf_kill + read - + 0 = RF kill not enabled (radio on) + 1 = SW based RF kill active (radio off) + 2 = HW based RF kill active (radio off) + 3 = Both HW and SW RF kill active (radio off) + write - + 0 = If SW based RF kill active, turn the radio back on + 1 = If radio is on, activate SW based RF kill + + NOTE: If you enable the SW based RF kill and then toggle the HW + based RF kill from ON -> OFF -> ON, the radio will NOT come back on + + +=========================== +4. Radio Kill Switch +--------------------------- +Most laptops provide the ability for the user to physically disable the radio. +Some vendors have implemented this as a physical switch that requires no +software to turn the radio off and on. On other laptops, however, the switch +is controlled through a button being pressed and a software driver then making +calls to turn the radio off and on. This is referred to as a "software based +RF kill switch" + +See the Sysfs helper file 'rf_kill' for determining the state of the RF switch +on your system. + + +=========================== +5. Dynamic Firmware +--------------------------- +As the firmware is licensed under a restricted use license, it can not be +included within the kernel sources. To enable the IPW2100 you will need a +firmware image to load into the wireless NIC's processors. + +You can obtain these images from <http://ipw2100.sf.net/firmware.php>. + +See INSTALL for instructions on installing the firmware. + + +=========================== +6. Power Management +--------------------------- +The IPW2100 supports the configuration of the Power Save Protocol +through a private wireless extension interface. The IPW2100 supports +the following different modes: + + off No power management. Radio is always on. + on Automatic power management + 1-5 Different levels of power management. The higher the + number the greater the power savings, but with an impact to + packet latencies. + +Power management works by powering down the radio after a certain +interval of time has passed where no packets are passed through the +radio. Once powered down, the radio remains in that state for a given +period of time. For higher power savings, the interval between last +packet processed to sleep is shorter and the sleep period is longer. + +When the radio is asleep, the access point sending data to the station +must buffer packets at the AP until the station wakes up and requests +any buffered packets. If you have an AP that does not correctly support +the PSP protocol you may experience packet loss or very poor performance +while power management is enabled. If this is the case, you will need +to try and find a firmware update for your AP, or disable power +management (via `iwconfig eth1 power off`) + +To configure the power level on the IPW2100 you use a combination of +iwconfig and iwpriv. iwconfig is used to turn power management on, off, +and set it to auto. + + iwconfig eth1 power off Disables radio power down + iwconfig eth1 power on Enables radio power management to + last set level (defaults to AUTO) + iwpriv eth1 set_power 0 Sets power level to AUTO and enables + power management if not previously + enabled. + iwpriv eth1 set_power 1-5 Set the power level as specified, + enabling power management if not + previously enabled. + +You can view the current power level setting via: + + iwpriv eth1 get_power + +It will return the current period or timeout that is configured as a string +in the form of xxxx/yyyy (z) where xxxx is the timeout interval (amount of +time after packet processing), yyyy is the period to sleep (amount of time to +wait before powering the radio and querying the access point for buffered +packets), and z is the 'power level'. If power management is turned off the +xxxx/yyyy will be replaced with 'off' -- the level reported will be the active +level if `iwconfig eth1 power on` is invoked. + + +=========================== +7. Support +--------------------------- + +For general development information and support, +go to: + + http://ipw2100.sf.net/ + +The ipw2100 1.1.0 driver and firmware can be downloaded from: + + http://support.intel.com + +For installation support on the ipw2100 1.1.0 driver on Linux kernels +2.6.8 or greater, email support is available from: + + http://supportmail.intel.com + +=========================== +8. License +--------------------------- + + Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved. + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License (version 2) as + published by the Free Software Foundation. + + This program is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., 59 + Temple Place - Suite 330, Boston, MA 02111-1307, USA. + + The full GNU General Public License is included in this distribution in the + file called LICENSE. + + License Contact Information: + James P. Ketrenos <ipw2100-admin@linux.intel.com> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + diff --git a/Documentation/networking/README.ipw2200 b/Documentation/networking/README.ipw2200 new file mode 100644 index 00000000000..6916080c5f0 --- /dev/null +++ b/Documentation/networking/README.ipw2200 @@ -0,0 +1,300 @@ + +Intel(R) PRO/Wireless 2915ABG Driver for Linux in support of: + +Intel(R) PRO/Wireless 2200BG Network Connection +Intel(R) PRO/Wireless 2915ABG Network Connection + +Note: The Intel(R) PRO/Wireless 2915ABG Driver for Linux and Intel(R) +PRO/Wireless 2200BG Driver for Linux is a unified driver that works on +both hardware adapters listed above. In this document the Intel(R) +PRO/Wireless 2915ABG Driver for Linux will be used to reference the +unified driver. + +Copyright (C) 2004-2005, Intel Corporation + +README.ipw2200 + +Version: 1.0.0 +Date : January 31, 2005 + + +Index +----------------------------------------------- +1. Introduction +1.1. Overview of features +1.2. Module parameters +1.3. Wireless Extension Private Methods +1.4. Sysfs Helper Files +2. About the Version Numbers +3. Support +4. License + + +1. Introduction +----------------------------------------------- +The following sections attempt to provide a brief introduction to using +the Intel(R) PRO/Wireless 2915ABG Driver for Linux. + +This document is not meant to be a comprehensive manual on +understanding or using wireless technologies, but should be sufficient +to get you moving without wires on Linux. + +For information on building and installing the driver, see the INSTALL +file. + + +1.1. Overview of Features +----------------------------------------------- +The current release (1.0.0) supports the following features: + ++ BSS mode (Infrastructure, Managed) ++ IBSS mode (Ad-Hoc) ++ WEP (OPEN and SHARED KEY mode) ++ 802.1x EAP via wpa_supplicant and xsupplicant ++ Wireless Extension support ++ Full B and G rate support (2200 and 2915) ++ Full A rate support (2915 only) ++ Transmit power control ++ S state support (ACPI suspend/resume) ++ long/short preamble support + + + +1.2. Command Line Parameters +----------------------------------------------- + +Like many modules used in the Linux kernel, the Intel(R) PRO/Wireless +2915ABG Driver for Linux allows certain configuration options to be +provided as module parameters. The most common way to specify a module +parameter is via the command line. + +The general form is: + +% modprobe ipw2200 parameter=value + +Where the supported parameter are: + + associate + Set to 0 to disable the auto scan-and-associate functionality of the + driver. If disabled, the driver will not attempt to scan + for and associate to a network until it has been configured with + one or more properties for the target network, for example configuring + the network SSID. Default is 1 (auto-associate) + + Example: % modprobe ipw2200 associate=0 + + auto_create + Set to 0 to disable the auto creation of an Ad-Hoc network + matching the channel and network name parameters provided. + Default is 1. + + channel + channel number for association. The normal method for setting + the channel would be to use the standard wireless tools + (i.e. `iwconfig eth1 channel 10`), but it is useful sometimes + to set this while debugging. Channel 0 means 'ANY' + + debug + If using a debug build, this is used to control the amount of debug + info is logged. See the 'dval' and 'load' script for more info on + how to use this (the dval and load scripts are provided as part + of the ipw2200 development snapshot releases available from the + SourceForge project at http://ipw2200.sf.net) + + mode + Can be used to set the default mode of the adapter. + 0 = Managed, 1 = Ad-Hoc + + +1.3. Wireless Extension Private Methods +----------------------------------------------- + +As an interface designed to handle generic hardware, there are certain +capabilities not exposed through the normal Wireless Tool interface. As +such, a provision is provided for a driver to declare custom, or +private, methods. The Intel(R) PRO/Wireless 2915ABG Driver for Linux +defines several of these to configure various settings. + +The general form of using the private wireless methods is: + + % iwpriv $IFNAME method parameters + +Where $IFNAME is the interface name the device is registered with +(typically eth1, customized via one of the various network interface +name managers, such as ifrename) + +The supported private methods are: + + get_mode + Can be used to report out which IEEE mode the driver is + configured to support. Example: + + % iwpriv eth1 get_mode + eth1 get_mode:802.11bg (6) + + set_mode + Can be used to configure which IEEE mode the driver will + support. + + Usage: + % iwpriv eth1 set_mode {mode} + Where {mode} is a number in the range 1-7: + 1 802.11a (2915 only) + 2 802.11b + 3 802.11ab (2915 only) + 4 802.11g + 5 802.11ag (2915 only) + 6 802.11bg + 7 802.11abg (2915 only) + + get_preamble + Can be used to report configuration of preamble length. + + set_preamble + Can be used to set the configuration of preamble length: + + Usage: + % iwpriv eth1 set_preamble {mode} + Where {mode} is one of: + 1 Long preamble only + 0 Auto (long or short based on connection) + + +1.4. Sysfs Helper Files: +----------------------------------------------- + +The Linux kernel provides a pseudo file system that can be used to +access various components of the operating system. The Intel(R) +PRO/Wireless 2915ABG Driver for Linux exposes several configuration +parameters through this mechanism. + +An entry in the sysfs can support reading and/or writing. You can +typically query the contents of a sysfs entry through the use of cat, +and can set the contents via echo. For example: + +% cat /sys/bus/pci/drivers/ipw2200/debug_level + +Will report the current debug level of the driver's logging subsystem +(only available if CONFIG_IPW_DEBUG was configured when the driver was +built). + +You can set the debug level via: + +% echo $VALUE > /sys/bus/pci/drivers/ipw2200/debug_level + +Where $VALUE would be a number in the case of this sysfs entry. The +input to sysfs files does not have to be a number. For example, the +firmware loader used by hotplug utilizes sysfs entries for transferring +the firmware image from user space into the driver. + +The Intel(R) PRO/Wireless 2915ABG Driver for Linux exposes sysfs entries +at two levels -- driver level, which apply to all instances of the +driver (in the event that there are more than one device installed) and +device level, which applies only to the single specific instance. + + +1.4.1 Driver Level Sysfs Helper Files +----------------------------------------------- + +For the driver level files, look in /sys/bus/pci/drivers/ipw2200/ + + debug_level + + This controls the same global as the 'debug' module parameter + + +1.4.2 Device Level Sysfs Helper Files +----------------------------------------------- + +For the device level files, look in + + /sys/bus/pci/drivers/ipw2200/{PCI-ID}/ + +For example: + /sys/bus/pci/drivers/ipw2200/0000:02:01.0 + +For the device level files, see /sys/bus/pci/[drivers/ipw2200: + + rf_kill + read - + 0 = RF kill not enabled (radio on) + 1 = SW based RF kill active (radio off) + 2 = HW based RF kill active (radio off) + 3 = Both HW and SW RF kill active (radio off) + write - + 0 = If SW based RF kill active, turn the radio back on + 1 = If radio is on, activate SW based RF kill + + NOTE: If you enable the SW based RF kill and then toggle the HW + based RF kill from ON -> OFF -> ON, the radio will NOT come back on + + ucode + read-only access to the ucode version number + + +2. About the Version Numbers +----------------------------------------------- + +Due to the nature of open source development projects, there are +frequently changes being incorporated that have not gone through +a complete validation process. These changes are incorporated into +development snapshot releases. + +Releases are numbered with a three level scheme: + + major.minor.development + +Any version where the 'development' portion is 0 (for example +1.0.0, 1.1.0, etc.) indicates a stable version that will be made +available for kernel inclusion. + +Any version where the 'development' portion is not a 0 (for +example 1.0.1, 1.1.5, etc.) indicates a development version that is +being made available for testing and cutting edge users. The stability +and functionality of the development releases are not know. We make +efforts to try and keep all snapshots reasonably stable, but due to the +frequency of their release, and the desire to get those releases +available as quickly as possible, unknown anomalies should be expected. + +The major version number will be incremented when significant changes +are made to the driver. Currently, there are no major changes planned. + + +3. Support +----------------------------------------------- + +For installation support of the 1.0.0 version, you can contact +http://supportmail.intel.com, or you can use the open source project +support. + +For general information and support, go to: + + http://ipw2200.sf.net/ + + +4. License +----------------------------------------------- + + Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved. + + This program is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License version 2 as + published by the Free Software Foundation. + + This program is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., 59 + Temple Place - Suite 330, Boston, MA 02111-1307, USA. + + The full GNU General Public License is included in this distribution in the + file called LICENSE. + + Contact Information: + James P. Ketrenos <ipw2100-admin@linux.intel.com> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + + diff --git a/Documentation/power/swsusp-dmcrypt.txt b/Documentation/power/swsusp-dmcrypt.txt new file mode 100644 index 00000000000..59931b46ff7 --- /dev/null +++ b/Documentation/power/swsusp-dmcrypt.txt @@ -0,0 +1,138 @@ +Author: Andreas Steinmetz <ast@domdv.de> + + +How to use dm-crypt and swsusp together: +======================================== + +Some prerequisites: +You know how dm-crypt works. If not, visit the following web page: +http://www.saout.de/misc/dm-crypt/ +You have read Documentation/power/swsusp.txt and understand it. +You did read Documentation/initrd.txt and know how an initrd works. +You know how to create or how to modify an initrd. + +Now your system is properly set up, your disk is encrypted except for +the swap device(s) and the boot partition which may contain a mini +system for crypto setup and/or rescue purposes. You may even have +an initrd that does your current crypto setup already. + +At this point you want to encrypt your swap, too. Still you want to +be able to suspend using swsusp. This, however, means that you +have to be able to either enter a passphrase or that you read +the key(s) from an external device like a pcmcia flash disk +or an usb stick prior to resume. So you need an initrd, that sets +up dm-crypt and then asks swsusp to resume from the encrypted +swap device. + +The most important thing is that you set up dm-crypt in such +a way that the swap device you suspend to/resume from has +always the same major/minor within the initrd as well as +within your running system. The easiest way to achieve this is +to always set up this swap device first with dmsetup, so that +it will always look like the following: + +brw------- 1 root root 254, 0 Jul 28 13:37 /dev/mapper/swap0 + +Now set up your kernel to use /dev/mapper/swap0 as the default +resume partition, so your kernel .config contains: + +CONFIG_PM_STD_PARTITION="/dev/mapper/swap0" + +Prepare your boot loader to use the initrd you will create or +modify. For lilo the simplest setup looks like the following +lines: + +image=/boot/vmlinuz +initrd=/boot/initrd.gz +label=linux +append="root=/dev/ram0 init=/linuxrc rw" + +Finally you need to create or modify your initrd. Lets assume +you create an initrd that reads the required dm-crypt setup +from a pcmcia flash disk card. The card is formatted with an ext2 +fs which resides on /dev/hde1 when the card is inserted. The +card contains at least the encrypted swap setup in a file +named "swapkey". /etc/fstab of your initrd contains something +like the following: + +/dev/hda1 /mnt ext3 ro 0 0 +none /proc proc defaults,noatime,nodiratime 0 0 +none /sys sysfs defaults,noatime,nodiratime 0 0 + +/dev/hda1 contains an unencrypted mini system that sets up all +of your crypto devices, again by reading the setup from the +pcmcia flash disk. What follows now is a /linuxrc for your +initrd that allows you to resume from encrypted swap and that +continues boot with your mini system on /dev/hda1 if resume +does not happen: + +#!/bin/sh +PATH=/sbin:/bin:/usr/sbin:/usr/bin +mount /proc +mount /sys +mapped=0 +noresume=`grep -c noresume /proc/cmdline` +if [ "$*" != "" ] +then + noresume=1 +fi +dmesg -n 1 +/sbin/cardmgr -q +for i in 1 2 3 4 5 6 7 8 9 0 +do + if [ -f /proc/ide/hde/media ] + then + usleep 500000 + mount -t ext2 -o ro /dev/hde1 /mnt + if [ -f /mnt/swapkey ] + then + dmsetup create swap0 /mnt/swapkey > /dev/null 2>&1 && mapped=1 + fi + umount /mnt + break + fi + usleep 500000 +done +killproc /sbin/cardmgr +dmesg -n 6 +if [ $mapped = 1 ] +then + if [ $noresume != 0 ] + then + mkswap /dev/mapper/swap0 > /dev/null 2>&1 + fi + echo 254:0 > /sys/power/resume + dmsetup remove swap0 +fi +umount /sys +mount /mnt +umount /proc +cd /mnt +pivot_root . mnt +mount /proc +umount -l /mnt +umount /proc +exec chroot . /sbin/init $* < dev/console > dev/console 2>&1 + +Please don't mind the weird loop above, busybox's msh doesn't know +the let statement. Now, what is happening in the script? +First we have to decide if we want to try to resume, or not. +We will not resume if booting with "noresume" or any parameters +for init like "single" or "emergency" as boot parameters. + +Then we need to set up dmcrypt with the setup data from the +pcmcia flash disk. If this succeeds we need to reset the swap +device if we don't want to resume. The line "echo 254:0 > /sys/power/resume" +then attempts to resume from the first device mapper device. +Note that it is important to set the device in /sys/power/resume, +regardless if resuming or not, otherwise later suspend will fail. +If resume starts, script execution terminates here. + +Otherwise we just remove the encrypted swap device and leave it to the +mini system on /dev/hda1 to set the whole crypto up (it is up to +you to modify this to your taste). + +What then follows is the well known process to change the root +file system and continue booting from there. I prefer to unmount +the initrd prior to continue booting but it is up to you to modify +this. diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt index 7a6b7896645..ddf907fbcc0 100644 --- a/Documentation/power/swsusp.txt +++ b/Documentation/power/swsusp.txt @@ -311,3 +311,10 @@ As a rule of thumb use encrypted swap to protect your data while your system is shut down or suspended. Additionally use the encrypted suspend image to prevent sensitive data from being stolen after resume. + +Q: Why we cannot suspend to a swap file? + +A: Because accessing swap file needs the filesystem mounted, and +filesystem might do something wrong (like replaying the journal) +during mount. [Probably could be solved by modifying every filesystem +to support some kind of "really read-only!" option. Patches welcome.] diff --git a/Documentation/power/video.txt b/Documentation/power/video.txt index 7a4a5036d12..1a44e8acb54 100644 --- a/Documentation/power/video.txt +++ b/Documentation/power/video.txt @@ -46,6 +46,12 @@ There are a few types of systems where video works after S3 resume: POSTing bios works. Ole Rohne has patch to do just that at http://dev.gentoo.org/~marineam/patch-radeonfb-2.6.11-rc2-mm2. +(8) on some systems, you can use the video_post utility mentioned here: + http://bugzilla.kernel.org/show_bug.cgi?id=3670. Do echo 3 > /sys/power/state + && /usr/sbin/video_post - which will initialize the display in console mode. + If you are in X, you can switch to a virtual terminal and back to X using + CTRL+ALT+F1 - CTRL+ALT+F7 to get the display working in graphical mode again. + Now, if you pass acpi_sleep=something, and it does not work with your bios, you'll get a hard crash during resume. Be careful. Also it is safest to do your experiments with plain old VGA console. The vesafb @@ -64,7 +70,8 @@ Model hack (or "how to do it") ------------------------------------------------------------------------------ Acer Aspire 1406LC ole's late BIOS init (7), turn off DRI Acer TM 242FX vbetool (6) -Acer TM C300 vga=normal (only suspend on console, not in X), vbetool (6) +Acer TM C110 video_post (8) +Acer TM C300 vga=normal (only suspend on console, not in X), vbetool (6) or video_post (8) Acer TM 4052LCi s3_bios (2) Acer TM 636Lci s3_bios vga=normal (2) Acer TM 650 (Radeon M7) vga=normal plus boot-radeon (5) gets text console back diff --git a/Documentation/vm/locking b/Documentation/vm/locking index c3ef09ae3bb..f366fa95617 100644 --- a/Documentation/vm/locking +++ b/Documentation/vm/locking @@ -83,19 +83,18 @@ single address space optimization, so that the zap_page_range (from vmtruncate) does not lose sending ipi's to cloned threads that might be spawned underneath it and go to user mode to drag in pte's into tlbs. -swap_list_lock/swap_device_lock -------------------------------- +swap_lock +-------------- The swap devices are chained in priority order from the "swap_list" header. The "swap_list" is used for the round-robin swaphandle allocation strategy. The #free swaphandles is maintained in "nr_swap_pages". These two together -are protected by the swap_list_lock. +are protected by the swap_lock. -The swap_device_lock, which is per swap device, protects the reference -counts on the corresponding swaphandles, maintained in the "swap_map" -array, and the "highest_bit" and "lowest_bit" fields. +The swap_lock also protects all the device reference counts on the +corresponding swaphandles, maintained in the "swap_map" array, and the +"highest_bit" and "lowest_bit" fields. -Both of these are spinlocks, and are never acquired from intr level. The -locking hierarchy is swap_list_lock -> swap_device_lock. +The swap_lock is a spinlock, and is never acquired from intr level. To prevent races between swap space deletion or async readahead swapins deciding whether a swap handle is being used, ie worthy of being read in diff --git a/Documentation/watchdog/watchdog-api.txt b/Documentation/watchdog/watchdog-api.txt index 28388aa700c..c5beb548cfc 100644 --- a/Documentation/watchdog/watchdog-api.txt +++ b/Documentation/watchdog/watchdog-api.txt @@ -228,6 +228,26 @@ advantechwdt.c -- Advantech Single Board Computer The GETSTATUS call returns if the device is open or not. [FIXME -- silliness again?] +booke_wdt.c -- PowerPC BookE Watchdog Timer + + Timeout default varies according to frequency, supports + SETTIMEOUT + + Watchdog can not be turned off, CONFIG_WATCHDOG_NOWAYOUT + does not make sense + + GETSUPPORT returns the watchdog_info struct, and + GETSTATUS returns the supported options. GETBOOTSTATUS + returns a 1 if the last reset was caused by the + watchdog and a 0 otherwise. This watchdog can not be + disabled once it has been started. The wdt_period kernel + parameter selects which bit of the time base changing + from 0->1 will trigger the watchdog exception. Changing + the timeout from the ioctl calls will change the + wdt_period as defined above. Finally if you would like to + replace the default Watchdog Handler you can implement the + WatchdogHandler() function in your own code. + eurotechwdt.c -- Eurotech CPU-1220/1410 The timeout can be set using the SETTIMEOUT ioctl and defaults |