diff options
Diffstat (limited to 'Documentation')
28 files changed, 761 insertions, 220 deletions
diff --git a/Documentation/DMA-mapping.txt b/Documentation/DMA-mapping.txt index e07f2530326..3c8ae020b6a 100644 --- a/Documentation/DMA-mapping.txt +++ b/Documentation/DMA-mapping.txt @@ -514,7 +514,7 @@ With scatterlists, you map a region gathered from several regions by: int i, count = pci_map_sg(dev, sglist, nents, direction); struct scatterlist *sg; - for (i = 0, sg = sglist; i < count; i++, sg++) { + for_each_sg(sglist, sg, count, i) { hw_address[i] = sg_dma_address(sg); hw_len[i] = sg_dma_len(sg); } @@ -782,5 +782,5 @@ following people: Jay Estabrook <Jay.Estabrook@compaq.com> Thomas Sailer <sailer@ife.ee.ethz.ch> Andrea Arcangeli <andrea@suse.de> - Jens Axboe <axboe@suse.de> + Jens Axboe <jens.axboe@oracle.com> David Mosberger-Tang <davidm@hpl.hp.com> diff --git a/Documentation/HOWTO b/Documentation/HOWTO index c64e969dc33..dceb3092149 100644 --- a/Documentation/HOWTO +++ b/Documentation/HOWTO @@ -330,7 +330,7 @@ Here is a list of some of the different kernel trees available: - ACPI development tree, Len Brown <len.brown@intel.com> git.kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git - - Block development tree, Jens Axboe <axboe@suse.de> + - Block development tree, Jens Axboe <jens.axboe@oracle.com> git.kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git - DRM development tree, Dave Airlie <airlied@linux.ie> diff --git a/Documentation/block/00-INDEX b/Documentation/block/00-INDEX new file mode 100644 index 00000000000..961a0513f8c --- /dev/null +++ b/Documentation/block/00-INDEX @@ -0,0 +1,20 @@ +00-INDEX + - This file +as-iosched.txt + - Anticipatory IO scheduler +barrier.txt + - I/O Barriers +biodoc.txt + - Notes on the Generic Block Layer Rewrite in Linux 2.5 +capability.txt + - Generic Block Device Capability (/sys/block/<disk>/capability) +deadline-iosched.txt + - Deadline IO scheduler tunables +ioprio.txt + - Block io priorities (in CFQ scheduler) +request.txt + - The members of struct request (in include/linux/blkdev.h) +stat.txt + - Block layer statistics in /sys/block/<dev>/stat +switching-sched.txt + - Switching I/O schedulers at runtime diff --git a/Documentation/block/as-iosched.txt b/Documentation/block/as-iosched.txt index a598fe10a29..738b72be128 100644 --- a/Documentation/block/as-iosched.txt +++ b/Documentation/block/as-iosched.txt @@ -20,15 +20,10 @@ actually has a head for each physical device in the logical RAID device. However, setting the antic_expire (see tunable parameters below) produces very similar behavior to the deadline IO scheduler. - Selecting IO schedulers ----------------------- -To choose IO schedulers at boot time, use the argument 'elevator=deadline'. -'noop', 'as' and 'cfq' (the default) are also available. IO schedulers are -assigned globally at boot time only presently. It's also possible to change -the IO scheduler for a determined device on the fly, as described in -Documentation/block/switching-sched.txt. - +Refer to Documentation/block/switching-sched.txt for information on +selecting an io scheduler on a per-device basis. Anticipatory IO scheduler Policies ---------------------------------- @@ -115,7 +110,7 @@ statistics (average think time, average seek distance) on the process that submitted the just completed request are examined. If it seems likely that that process will submit another request soon, and that request is likely to be near the just completed request, then the IO -scheduler will stop dispatching more read requests for up time (antic_expire) +scheduler will stop dispatching more read requests for up to (antic_expire) milliseconds, hoping that process will submit a new request near the one that just completed. If such a request is made, then it is dispatched immediately. If the antic_expire wait time expires, then the IO scheduler @@ -165,3 +160,13 @@ The parameters are: for big seek time devices though not a linear correspondence - most processes have only a few ms thinktime. +In addition to the tunables above there is a read-only file named est_time +which, when read, will show: + + - The probability of a task exiting without a cooperating task + submitting an anticipated IO. + + - The current mean think time. + + - The seek distance used to determine if an incoming IO is better. + diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt index dc3f49e3e53..93f223b9723 100644 --- a/Documentation/block/biodoc.txt +++ b/Documentation/block/biodoc.txt @@ -2,7 +2,7 @@ ===================================================== Notes Written on Jan 15, 2002: - Jens Axboe <axboe@suse.de> + Jens Axboe <jens.axboe@oracle.com> Suparna Bhattacharya <suparna@in.ibm.com> Last Updated May 2, 2002 @@ -21,7 +21,7 @@ Credits: --------- 2.5 bio rewrite: - Jens Axboe <axboe@suse.de> + Jens Axboe <jens.axboe@oracle.com> Many aspects of the generic block layer redesign were driven by and evolved over discussions, prior patches and the collective experience of several diff --git a/Documentation/block/deadline-iosched.txt b/Documentation/block/deadline-iosched.txt index be08ffd1e9b..c23cab13c3d 100644 --- a/Documentation/block/deadline-iosched.txt +++ b/Documentation/block/deadline-iosched.txt @@ -5,16 +5,10 @@ This little file attempts to document how the deadline io scheduler works. In particular, it will clarify the meaning of the exposed tunables that may be of interest to power users. -Each io queue has a set of io scheduler tunables associated with it. These -tunables control how the io scheduler works. You can find these entries -in: - -/sys/block/<device>/queue/iosched - -assuming that you have sysfs mounted on /sys. If you don't have sysfs mounted, -you can do so by typing: - -# mount none /sys -t sysfs +Selecting IO schedulers +----------------------- +Refer to Documentation/block/switching-sched.txt for information on +selecting an io scheduler on a per-device basis. ******************************************************************************** @@ -41,14 +35,11 @@ fifo_batch When a read request expires its deadline, we must move some requests from the sorted io scheduler list to the block device dispatch queue. fifo_batch -controls how many requests we move, based on the cost of each request. A -request is either qualified as a seek or a stream. The io scheduler knows -the last request that was serviced by the drive (or will be serviced right -before this one). See seek_cost and stream_unit. +controls how many requests we move. -write_starved (number of dispatches) -------------- +writes_starved (number of dispatches) +-------------- When we have to move requests from the io scheduler queue to the block device dispatch queue, we always give a preference to reads. However, we @@ -73,6 +64,6 @@ that comes at basically 0 cost we leave that on. We simply disable the rbtree front sector lookup when the io scheduler merge function is called. -Nov 11 2002, Jens Axboe <axboe@suse.de> +Nov 11 2002, Jens Axboe <jens.axboe@oracle.com> diff --git a/Documentation/block/ioprio.txt b/Documentation/block/ioprio.txt index 35e516b0b8a..8ed8c59380b 100644 --- a/Documentation/block/ioprio.txt +++ b/Documentation/block/ioprio.txt @@ -180,4 +180,4 @@ int main(int argc, char *argv[]) ---> snip ionice.c tool <--- -March 11 2005, Jens Axboe <axboe@suse.de> +March 11 2005, Jens Axboe <jens.axboe@oracle.com> diff --git a/Documentation/block/request.txt b/Documentation/block/request.txt index fff58acb40a..754e104ed36 100644 --- a/Documentation/block/request.txt +++ b/Documentation/block/request.txt @@ -1,7 +1,7 @@ struct request documentation -Jens Axboe <axboe@suse.de> 27/05/02 +Jens Axboe <jens.axboe@oracle.com> 27/05/02 1.0 Index diff --git a/Documentation/block/switching-sched.txt b/Documentation/block/switching-sched.txt index 5fa130a6753..634c952e196 100644 --- a/Documentation/block/switching-sched.txt +++ b/Documentation/block/switching-sched.txt @@ -1,3 +1,18 @@ +To choose IO schedulers at boot time, use the argument 'elevator=deadline'. +'noop', 'as' and 'cfq' (the default) are also available. IO schedulers are +assigned globally at boot time only presently. + +Each io queue has a set of io scheduler tunables associated with it. These +tunables control how the io scheduler works. You can find these entries +in: + +/sys/block/<device>/queue/iosched + +assuming that you have sysfs mounted on /sys. If you don't have sysfs mounted, +you can do so by typing: + +# mount none /sys -t sysfs + As of the Linux 2.6.10 kernel, it is now possible to change the IO scheduler for a given block device on the fly (thus making it possible, for instance, to set the CFQ scheduler for the system default, but @@ -20,3 +35,9 @@ noop anticipatory deadline [cfq] # echo anticipatory > /sys/block/hda/queue/scheduler # cat /sys/block/hda/queue/scheduler noop [anticipatory] deadline cfq + +Each io queue has a set of io scheduler tunables associated with it. These +tunables control how the io scheduler works. You can find these entries +in: + +/sys/block/<device>/queue/iosched diff --git a/Documentation/cachetlb.txt b/Documentation/cachetlb.txt index 866b7613942..552cabac060 100644 --- a/Documentation/cachetlb.txt +++ b/Documentation/cachetlb.txt @@ -133,12 +133,6 @@ changes occur: The ia64 sn2 platform is one example of a platform that uses this interface. -8) void lazy_mmu_prot_update(pte_t pte) - This interface is called whenever the protection on - any user PTEs change. This interface provides a notification - to architecture specific code to take appropriate action. - - Next, we have the cache flushing interfaces. In general, when Linux is changing an existing virtual-->physical mapping to a new value, the sequence will be in one of the following forms: diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt index f2c0a684293..ec9de6917f0 100644 --- a/Documentation/cpusets.txt +++ b/Documentation/cpusets.txt @@ -35,7 +35,8 @@ CONTENTS: ---------------------- Cpusets provide a mechanism for assigning a set of CPUs and Memory -Nodes to a set of tasks. +Nodes to a set of tasks. In this document "Memory Node" refers to +an on-line node that contains memory. Cpusets constrain the CPU and Memory placement of tasks to only the resources within a tasks current cpuset. They form a nested @@ -86,9 +87,6 @@ This can be especially valuable on: and a database), or * NUMA systems running large HPC applications with demanding performance characteristics. - * Also cpu_exclusive cpusets are useful for servers running orthogonal - workloads such as RT applications requiring low latency and HPC - applications that are throughput sensitive These subsets, or "soft partitions" must be able to be dynamically adjusted, as the job mix changes, without impacting other concurrently @@ -131,8 +129,6 @@ Cpusets extends these two mechanisms as follows: - A cpuset may be marked exclusive, which ensures that no other cpuset (except direct ancestors and descendents) may contain any overlapping CPUs or Memory Nodes. - Also a cpu_exclusive cpuset would be associated with a sched - domain. - You can list all the tasks (by pid) attached to any cpuset. The implementation of cpusets requires a few, simple hooks @@ -144,9 +140,6 @@ into the rest of the kernel, none in performance critical paths: allowed in that tasks cpuset. - in sched.c migrate_all_tasks(), to keep migrating tasks within the CPUs allowed by their cpuset, if possible. - - in sched.c, a new API partition_sched_domains for handling - sched domain changes associated with cpu_exclusive cpusets - and related changes in both sched.c and arch/ia64/kernel/domain.c - in the mbind and set_mempolicy system calls, to mask the requested Memory Nodes by what's allowed in that tasks cpuset. - in page_alloc.c, to restrict memory to allowed nodes. @@ -220,8 +213,8 @@ and name space for cpusets, with a minimum of additional kernel code. The cpus and mems files in the root (top_cpuset) cpuset are read-only. The cpus file automatically tracks the value of cpu_online_map using a CPU hotplug notifier, and the mems file -automatically tracks the value of node_online_map using the -cpuset_track_online_nodes() hook. +automatically tracks the value of node_states[N_MEMORY]--i.e., +nodes with memory--using the cpuset_track_online_nodes() hook. 1.4 What are exclusive cpusets ? @@ -231,15 +224,6 @@ If a cpuset is cpu or mem exclusive, no other cpuset, other than a direct ancestor or descendent, may share any of the same CPUs or Memory Nodes. -A cpuset that is cpu_exclusive has a scheduler (sched) domain -associated with it. The sched domain consists of all CPUs in the -current cpuset that are not part of any exclusive child cpusets. -This ensures that the scheduler load balancing code only balances -against the CPUs that are in the sched domain as defined above and -not all of the CPUs in the system. This removes any overhead due to -load balancing code trying to pull tasks outside of the cpu_exclusive -cpuset only to be prevented by the tasks' cpus_allowed mask. - A cpuset that is mem_exclusive restricts kernel allocations for page, buffer and other data commonly shared by the kernel across multiple users. All cpusets, whether mem_exclusive or not, restrict diff --git a/Documentation/fb/00-INDEX b/Documentation/fb/00-INDEX index 92e89aeef52..caabbd395e6 100644 --- a/Documentation/fb/00-INDEX +++ b/Documentation/fb/00-INDEX @@ -5,21 +5,49 @@ please mail me. 00-INDEX - this file +arkfb.txt + - info on the fbdev driver for ARK Logic chips. +aty128fb.txt + - info on the ATI Rage128 frame buffer driver. +cirrusfb.txt + - info on the driver for Cirrus Logic chipsets. +cyblafb/ + - directory with documentation files related to the cyblafb driver. +deferred_io.txt + - an introduction to deferred IO. +fbcon.txt + - intro to and usage guide for the framebuffer console (fbcon). framebuffer.txt - - introduction to frame buffer devices + - introduction to frame buffer devices. +imacfb.txt + - info on the generic EFI platform driver for Intel based Macs. +intel810.txt + - documentation for the Intel 810/815 framebuffer driver. +intelfb.txt + - docs for Intel 830M/845G/852GM/855GM/865G/915G/945G fb driver. internals.txt - - quick overview of frame buffer device internals + - quick overview of frame buffer device internals. +matroxfb.txt + - info on the Matrox framebuffer driver for Alpha, Intel and PPC. modedb.txt - - info on the video mode database -aty128fb.txt - - info on the ATI Rage128 frame buffer driver -clgenfb.txt - - info on the Cirrus Logic frame buffer driver + - info on the video mode database. matroxfb.txt - - info on the Matrox frame buffer driver + - info on the Matrox frame buffer driver. pvr2fb.txt - - info on the PowerVR 2 frame buffer driver + - info on the PowerVR 2 frame buffer driver. +pxafb.txt + - info on the driver for the PXA25x LCD controller. +s3fb.txt + - info on the fbdev driver for S3 Trio/Virge chips. +sa1100fb.txt + - information about the driver for the SA-1100 LCD controller. +sisfb.txt + - info on the framebuffer device driver for various SiS chips. +sstfb.txt + - info on the frame buffer driver for 3dfx' Voodoo Graphics boards. tgafb.txt - info on the TGA (DECChip 21030) frame buffer driver vesafb.txt - info on the VESA frame buffer device +vt8623fb.txt + - info on the fb driver for the graphics core in VIA VT8623 chipsets. diff --git a/Documentation/fb/uvesafb.txt b/Documentation/fb/uvesafb.txt new file mode 100644 index 00000000000..bcfc233a008 --- /dev/null +++ b/Documentation/fb/uvesafb.txt @@ -0,0 +1,188 @@ + +uvesafb - A Generic Driver for VBE2+ compliant video cards +========================================================== + +1. Requirements +--------------- + +uvesafb should work with any video card that has a Video BIOS compliant +with the VBE 2.0 standard. + +Unlike other drivers, uvesafb makes use of a userspace helper called +v86d. v86d is used to run the x86 Video BIOS code in a simulated and +controlled environment. This allows uvesafb to function on arches other +than x86. Check the v86d documentation for a list of currently supported +arches. + +v86d source code can be downloaded from the following website: + http://dev.gentoo.org/~spock/projects/uvesafb + +Please refer to the v86d documentation for detailed configuration and +installation instructions. + +Note that the v86d userspace helper has to be available at all times in +order for uvesafb to work properly. If you want to use uvesafb during +early boot, you will have to include v86d into an initramfs image, and +either compile it into the kernel or use it as an initrd. + +2. Caveats and limitations +-------------------------- + +uvesafb is a _generic_ driver which supports a wide variety of video +cards, but which is ultimately limited by the Video BIOS interface. +The most important limitations are: + +- Lack of any type of acceleration. +- A strict and limited set of supported video modes. Often the native + or most optimal resolution/refresh rate for your setup will not work + with uvesafb, simply because the Video BIOS doesn't support the + video mode you want to use. This can be especially painful with + widescreen panels, where native video modes don't have the 4:3 aspect + ratio, which is what most BIOS-es are limited to. +- Adjusting the refresh rate is only possible with a VBE 3.0 compliant + Video BIOS. Note that many nVidia Video BIOS-es claim to be VBE 3.0 + compliant, while they simply ignore any refresh rate settings. + +3. Configuration +---------------- + +uvesafb can be compiled either as a module, or directly into the kernel. +In both cases it supports the same set of configuration options, which +are either given on the kernel command line or as module parameters, e.g.: + + video=uvesafb:1024x768-32,mtrr:3,ywrap (compiled into the kernel) + + # modprobe uvesafb mode=1024x768-32 mtrr=3 scroll=ywrap (module) + +Accepted options: + +ypan Enable display panning using the VESA protected mode + interface. The visible screen is just a window of the + video memory, console scrolling is done by changing the + start of the window. Available on x86 only. + +ywrap Same as ypan, but assumes your gfx board can wrap-around + the video memory (i.e. starts reading from top if it + reaches the end of video memory). Faster than ypan. + Available on x86 only. + +redraw Scroll by redrawing the affected part of the screen, this + is the safe (and slow) default. + +(If you're using uvesafb as a module, the above three options are + used a parameter of the scroll option, e.g. scroll=ypan.) + +vgapal Use the standard VGA registers for palette changes. + +pmipal Use the protected mode interface for palette changes. + This is the default if the protected mode interface is + available. Available on x86 only. + +mtrr:n Setup memory type range registers for the framebuffer + where n: + 0 - disabled (equivalent to nomtrr) (default) + 1 - uncachable + 2 - write-back + 3 - write-combining + 4 - write-through + + If you see the following in dmesg, choose the type that matches + the old one. In this example, use "mtrr:2". +... +mtrr: type mismatch for e0000000,8000000 old: write-back new: write-combining +... + +nomtrr Do not use memory type range registers. + +vremap:n + Remap 'n' MiB of video RAM. If 0 or not specified, remap memory + according to video mode. + +vtotal:n + If the video BIOS of your card incorrectly determines the total + amount of video RAM, use this option to override the BIOS (in MiB). + +<mode> The mode you want to set, in the standard modedb format. Refer to + modedb.txt for a detailed description. When uvesafb is compiled as + a module, the mode string should be provided as a value of the + 'mode' option. + +vbemode:x + Force the use of VBE mode x. The mode will only be set if it's + found in the VBE-provided list of supported modes. + NOTE: The mode number 'x' should be specified in VESA mode number + notation, not the Linux kernel one (eg. 257 instead of 769). + HINT: If you use this option because normal <mode> parameter does + not work for you and you use a X server, you'll probably want to + set the 'nocrtc' option to ensure that the video mode is properly + restored after console <-> X switches. + +nocrtc Do not use CRTC timings while setting the video mode. This option + has any effect only if the Video BIOS is VBE 3.0 compliant. Use it + if you have problems with modes set the standard way. Note that + using this option implies that any refresh rate adjustments will + be ignored and the refresh rate will stay at your BIOS default (60 Hz). + +noedid Do not try to fetch and use EDID-provided modes. + +noblank Disable hardware blanking. + +v86d:path + Set path to the v86d executable. This option is only available as + a module parameter, and not as a part of the video= string. If you + need to use it and have uvesafb built into the kernel, use + uvesafb.v86d="path". + +Additionally, the following parameters may be provided. They all override the +EDID-provided values and BIOS defaults. Refer to your monitor's specs to get +the correct values for maxhf, maxvf and maxclk for your hardware. + +maxhf:n Maximum horizontal frequency (in kHz). +maxvf:n Maximum vertical frequency (in Hz). +maxclk:n Maximum pixel clock (in MHz). + +4. The sysfs interface +---------------------- + +uvesafb provides several sysfs nodes for configurable parameters and +additional information. + +Driver attributes: + +/sys/bus/platform/drivers/uvesafb + - v86d (default: /sbin/v86d) + Path to the v86d executable. v86d is started by uvesafb + if an instance of the daemon isn't already running. + +Device attributes: + +/sys/bus/platform/drivers/uvesafb/uvesafb.0 + - nocrtc + Use the default refresh rate (60 Hz) if set to 1. + + - oem_product_name + - oem_product_rev + - oem_string + - oem_vendor + Information about the card and its maker. + + - vbe_modes + A list of video modes supported by the Video BIOS along with their + VBE mode numbers in hex. + + - vbe_version + A BCD value indicating the implemented VBE standard. + +5. Miscellaneous +---------------- + +Uvesafb will set a video mode with the default refresh rate and timings +from the Video BIOS if you set pixclock to 0 in fb_var_screeninfo. + + +-- + Michal Januszewski <spock@gentoo.org> + Last updated: 2007-06-16 + + Documentation of the uvesafb options is loosely based on vesafb.txt. + diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking index f0f825808ca..fe26cc97852 100644 --- a/Documentation/filesystems/Locking +++ b/Documentation/filesystems/Locking @@ -178,15 +178,18 @@ prototypes: locking rules: All except set_page_dirty may block - BKL PageLocked(page) + BKL PageLocked(page) i_sem writepage: no yes, unlocks (see below) readpage: no yes, unlocks sync_page: no maybe writepages: no set_page_dirty no no readpages: no -prepare_write: no yes -commit_write: no yes +prepare_write: no yes yes +commit_write: no yes yes +write_begin: no locks the page yes +write_end: no yes, unlocks yes +perform_write: no n/a yes bmap: yes invalidatepage: no yes releasepage: no yes diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index 045f3e055a2..6f8e16e3d6c 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt @@ -537,6 +537,12 @@ struct address_space_operations { struct list_head *pages, unsigned nr_pages); int (*prepare_write)(struct file *, struct page *, unsigned, unsigned); int (*commit_write)(struct file *, struct page *, unsigned, unsigned); + int (*write_begin)(struct file *, struct address_space *mapping, + loff_t pos, unsigned len, unsigned flags, + struct page **pagep, void **fsdata); + int (*write_end)(struct file *, struct address_space *mapping, + loff_t pos, unsigned len, unsigned copied, + struct page *page, void *fsdata); sector_t (*bmap)(struct address_space *, sector_t); int (*invalidatepage) (struct page *, unsigned long); int (*releasepage) (struct page *, int); @@ -615,11 +621,7 @@ struct address_space_operations { any basic-blocks on storage, then those blocks should be pre-read (if they haven't been read already) so that the updated blocks can be written out properly. - The page will be locked. If prepare_write wants to unlock the - page it, like readpage, may do so and return - AOP_TRUNCATED_PAGE. - In this case the prepare_write will be retried one the lock is - regained. + The page will be locked. Note: the page _must not_ be marked uptodate in this function (or anywhere else) unless it actually is uptodate right now. As @@ -633,6 +635,45 @@ struct address_space_operations { operations. It should avoid returning an error if possible - errors should have been handled by prepare_write. + write_begin: This is intended as a replacement for prepare_write. The + key differences being that: + - it returns a locked page (in *pagep) rather than being + given a pre locked page; + - it must be able to cope with short writes (where the + length passed to write_begin is greater than the number + of bytes copied into the page). + + Called by the generic buffered write code to ask the filesystem to + prepare to write len bytes at the given offset in the file. The + address_space should check that the write will be able to complete, + by allocating space if necessary and doing any other internal + housekeeping. If the write will update parts of any basic-blocks on + storage, then those blocks should be pre-read (if they haven't been + read already) so that the updated blocks can be written out properly. + + The filesystem must return the locked pagecache page for the specified + offset, in *pagep, for the caller to write into. + + flags is a field for AOP_FLAG_xxx flags, described in + include/linux/fs.h. + + A void * may be returned in fsdata, which then gets passed into + write_end. + + Returns 0 on success; < 0 on failure (which is the error code), in + which case write_end is not called. + + write_end: After a successful write_begin, and data copy, write_end must + be called. len is the original len passed to write_begin, and copied + is the amount that was able to be copied (copied == len is always true + if write_begin was called with the AOP_FLAG_UNINTERRUPTIBLE flag). + + The filesystem must take care of unlocking the page and releasing it + refcount, and updating i_size. + + Returns < 0 on failure, otherwise the number of bytes (<= 'copied') + that were able to be copied into pagecache. + bmap: called by the VFS to map a logical block offset within object to physical block number. This method is used by the FIBMAP ioctl and for working with swap-files. To be able to swap to diff --git a/Documentation/ide.txt b/Documentation/ide.txt index 3bb9f9c9861..1d50f23a5ca 100644 --- a/Documentation/ide.txt +++ b/Documentation/ide.txt @@ -242,6 +242,8 @@ Summary of ide driver parameters for kernel command line and quite likely to cause trouble with older/odd IDE drives. + "hdx=nodma" : disallow DMA + "hdx=swapdata" : when the drive is a disk, byte swap all data "hdx=bswap" : same as above.......... @@ -278,8 +280,6 @@ Summary of ide driver parameters for kernel command line "idex=four" : four drives on idex and ide(x^1) share same ports "idex=reset" : reset interface after probe - - "idex=dma" : automatically configure/use DMA if possible. "idex=ata66" : informs the interface that it has an 80c cable for chipsets that are ATA-66 capable, but the @@ -288,8 +288,6 @@ Summary of ide driver parameters for kernel command line "ide=reverse" : formerly called to pci sub-system, but now local. - "ide=nodma" : disable DMA globally for the IDE subsystem. - The following are valid ONLY on ide0, which usually corresponds to the first ATA interface found on the particular host, and the defaults for the base,ctl ports must not be altered. diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.txt index e08ef8759a0..f099b814d38 100644 --- a/Documentation/kbuild/makefiles.txt +++ b/Documentation/kbuild/makefiles.txt @@ -276,41 +276,39 @@ more details, with real examples. --- 3.7 Compilation flags - EXTRA_CFLAGS, EXTRA_AFLAGS, EXTRA_LDFLAGS, EXTRA_ARFLAGS + ccflags-y, asflags-y and ldflags-y + The three flags listed above applies only to the kbuild makefile + where they are assigned. They are used for all the normal + cc, as and ld invocation happenign during a recursive build. + Note: Flags with the same behaviour were previously named: + EXTRA_CFLAGS, EXTRA_AFLAGS and EXTRA_LDFLAGS. + They are yet supported but their use are deprecated. - All the EXTRA_ variables apply only to the kbuild makefile - where they are assigned. The EXTRA_ variables apply to all - commands executed in the kbuild makefile. - - $(EXTRA_CFLAGS) specifies options for compiling C files with - $(CC). + ccflags-y specifies options for compiling C files with $(CC). Example: # drivers/sound/emu10k1/Makefile - EXTRA_CFLAGS += -I$(obj) - ifdef DEBUG - EXTRA_CFLAGS += -DEMU10K1_DEBUG - endif + ccflags-y += -I$(obj) + ccflags-$(DEBUG) += -DEMU10K1_DEBUG This variable is necessary because the top Makefile owns the - variable $(CFLAGS) and uses it for compilation flags for the + variable $(KBUILD_CFLAGS) and uses it for compilation flags for the entire tree. - $(EXTRA_AFLAGS) is a similar string for per-directory options + asflags-y is a similar string for per-directory options when compiling assembly language source. Example: #arch/x86_64/kernel/Makefile - EXTRA_AFLAGS := -traditional + asflags-y := -traditional - $(EXTRA_LDFLAGS) and $(EXTRA_ARFLAGS) are similar strings for - per-directory options to $(LD) and $(AR). + ldflags-y is a string for per-directory options to $(LD). Example: #arch/m68k/fpsp040/Makefile - EXTRA_LDFLAGS := -x + ldflags-y := -x CFLAGS_$@, AFLAGS_$@ @@ -425,6 +423,7 @@ more details, with real examples. as-instr checks if the assembler reports a specific instruction and then outputs either option1 or option2 C escapes are supported in the test instruction + Note: as-instr-option uses KBUILD_AFLAGS for $(AS) options cc-option cc-option is used to check if $(CC) supports a given option, and not @@ -438,6 +437,7 @@ more details, with real examples. -march=pentium-mmx if supported by $(CC), otherwise -march=i586. The second argument to cc-option is optional, and if omitted, cflags-y will be assigned no value if first option is not supported. + Note: cc-option uses KBUILD_CFLAGS for $(CC) options cc-option-yn cc-option-yn is used to check if gcc supports a given option @@ -453,6 +453,7 @@ more details, with real examples. option. When $(biarch) equals 'y', the expanded variables $(aflags-y) and $(cflags-y) will be assigned the values -a32 and -m32, respectively. + Note: cc-option-yn uses KBUILD_CFLAGS for $(CC) options cc-option-align gcc versions >= 3.0 changed the type of options used to specify @@ -464,10 +465,11 @@ more details, with real examples. cc-option-align = -falign Example: - CFLAGS += $(cc-option-align)-functions=4 + KBUILD_CFLAGS += $(cc-option-align)-functions=4 In the above example, the option -falign-functions=4 is used for gcc >= 3.00. For gcc < 3.00, -malign-functions=4 is used. + Note: cc-option-align uses KBUILD_CFLAGS for $(CC) options cc-version cc-version returns a numerical version of the $(CC) compiler version. @@ -492,9 +494,9 @@ more details, with real examples. Example: #fs/reiserfs/Makefile - EXTRA_CFLAGS := $(call cc-ifversion, -lt, 0402, -O1) + ccflags-y := $(call cc-ifversion, -lt, 0402, -O1) - In this example, EXTRA_CFLAGS will be assigned the value -O1 if the + In this example, ccflags-y will be assigned the value -O1 if the $(CC) version is less than 4.2. cc-ifversion takes all the shell operators: -eq, -ne, -lt, -le, -gt, and -ge @@ -780,8 +782,8 @@ When kbuild executes, the following steps are followed (roughly): Example: #arch/s390/Makefile LDFLAGS := -m elf_s390 - Note: EXTRA_LDFLAGS and LDFLAGS_$@ can be used to further customise - the flags used. See chapter 7. + Note: ldflags-y can be used to further customise + the flags used. See chapter 3.7. LDFLAGS_MODULE Options for $(LD) when linking modules @@ -817,26 +819,26 @@ When kbuild executes, the following steps are followed (roughly): In this example, the binary $(obj)/image is a binary version of vmlinux. The usage of $(call if_changed,xxx) will be described later. - AFLAGS $(AS) assembler flags + KBUILD_AFLAGS $(AS) assembler flags Default value - see top level Makefile Append or modify as required per architecture. Example: #arch/sparc64/Makefile - AFLAGS += -m64 -mcpu=ultrasparc + KBUILD_AFLAGS += -m64 -mcpu=ultrasparc - CFLAGS $(CC) compiler flags + KBUILD_CFLAGS $(CC) compiler flags Default value - see top level Makefile Append or modify as required per architecture. - Often, the CFLAGS variable depends on the configuration. + Often, the KBUILD_CFLAGS variable depends on the configuration. Example: #arch/i386/Makefile cflags-$(CONFIG_M386) += -march=i386 - CFLAGS += $(cflags-y) + KBUILD_CFLAGS += $(cflags-y) Many arch Makefiles dynamically run the target C compiler to probe supported options: @@ -848,7 +850,7 @@ When kbuild executes, the following steps are followed (roughly): -march=pentium2,-march=i686) ... # Disable unit-at-a-time mode ... - CFLAGS += $(call cc-option,-fno-unit-at-a-time) + KBUILD_CFLAGS += $(call cc-option,-fno-unit-at-a-time) ... @@ -1096,8 +1098,8 @@ When kbuild executes, the following steps are followed (roughly): specified options when building the target vmlinux.lds. When building the *.lds target, kbuild uses the variables: - CPPFLAGS : Set in top-level Makefile - EXTRA_CPPFLAGS : May be set in the kbuild makefile + KBUILD_CPPFLAGS : Set in top-level Makefile + cppflags-y : May be set in the kbuild makefile CPPFLAGS_$(@F) : Target specific flags. Note that the full filename is used in this assignment. diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 085e4a095ea..eb247997f67 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -349,6 +349,11 @@ and is between 256 and 4096 characters. It is defined in the file blkmtd_bs= blkmtd_count= + boot_delay= Milliseconds to delay each printk during boot. + Values larger than 10 seconds (10000) are changed to + no delay (0). + Format: integer + bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards) bttv.radio= Most important insmod options are available as kernel args too. @@ -906,6 +911,11 @@ and is between 256 and 4096 characters. It is defined in the file n must be a power of two. The default size is set in the kernel config file. + logo.nologo [FB] Disables display of the built-in Linux logo. + This may be used to provide more screen space for + kernel log messages and is useful when debugging + kernel boot problems. + lp=0 [LP] Specify parallel ports to use, e.g, lp=port[,port...] lp=none,parport0 (lp0 not configured, lp1 uses lp=reset first parallel port). 'lp=0' disables the diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt index 241e26c4ff9..4b48c2e82c3 100644 --- a/Documentation/sound/alsa/ALSA-Configuration.txt +++ b/Documentation/sound/alsa/ALSA-Configuration.txt @@ -365,13 +365,14 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. Module snd-cmipci ----------------- - Module for C-Media CMI8338 and 8738 PCI sound cards. + Module for C-Media CMI8338/8738/8768/8770 PCI sound cards. - mpu_port - 0x300,0x310,0x320,0x330 = legacy port, - 1 = integrated PCI port, + mpu_port - port address of MIDI interface (8338 only): + 0x300,0x310,0x320,0x330 = legacy port, 0 = disable (default) - fm_port - 0x388 = legacy port, - 1 = integrated PCI port (default), + fm_port - port address of OPL-3 FM synthesizer (8x38 only): + 0x388 = legacy port, + 1 = integrated PCI port (default on 8738), 0 = disable soft_ac3 - Software-conversion of raw SPDIF packets (model 033 only) (default = 1) @@ -768,6 +769,10 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. single_cmd - Use single immediate commands to communicate with codecs (for debugging only) enable_msi - Enable Message Signaled Interrupt (MSI) (default = off) + power_save - Automatic power-saving timtout (in second, 0 = + disable) + power_save_controller - Reset HD-audio controller in power-saving mode + (default = on) This module supports one card and autoprobe. @@ -828,6 +833,8 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. ALC268 3stack 3-stack model + toshiba Toshiba A205 + acer Acer laptops auto auto-config reading BIOS (default) ALC662 @@ -842,7 +849,11 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. 3stack-dig 3-jack with SPDIF I/O 6stack-dig 6-jack digital with SPDIF I/O arima Arima W820Di1 + targa Targa T8, MSI-1049 T8 + asus-a7j ASUS A7J + asus-a7m ASUS A7M macpro MacPro support + mbp3 Macbook Pro rev3 imac24 iMac 24'' with jack detection w2jc ASUS W2JC auto auto-config reading BIOS (default) @@ -854,6 +865,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. 3stack-6ch-dig 3-jack 6-channel with SPDIF I/O 6stack-dig-demo 6-jack digital for Intel demo board acer Acer laptops (Travelmate 3012WTMi, Aspire 5600, etc) + acer-aspire Acer Aspire 9810 medion Medion Laptops medion-md2 Medion MD2 targa-dig Targa/MSI @@ -862,6 +874,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. lenovo-101e Lenovo 101E lenovo-nb0763 Lenovo NB0763 lenovo-ms7195-dig Lenovo MS7195 + haier-w66 Haier W66 6stack-hp HP machines with 6stack (Nettle boards) 3stack-hp HP machines with 3stack (Lucknow, Samba boards) auto auto-config reading BIOS (default) @@ -885,6 +898,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. 3stack-660-digout 3-jack with SPDIF OUT (for ALC660VD) lenovo Lenovo 3000 C200 dallas Dallas laptops + hp HP TX1000 auto auto-config reading BIOS (default) CMI9880 @@ -920,6 +934,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. 3stack 3-stack, shared surrounds laptop 2-channel only (FSC V2060, Samsung M50) laptop-eapd 2-channel with EAPD (Samsung R65, ASUS A6J) + laptop-automute 2-channel with EAPD and HP-automute (Lenovo N100) ultra 2-channel with EAPD (Samsung Ultra tablet PC) AD1988 @@ -945,14 +960,30 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. can be adjusted. Appearing only when compiled with $CONFIG_SND_DEBUG=y - STAC9200/9205/9254 + STAC9200 ref Reference board + dell-d21 Dell (unknown) + dell-d22 Dell (unknown) + dell-d23 Dell (unknown) + dell-m21 Dell Inspiron 630m, Dell Inspiron 640m + dell-m22 Dell Latitude D620, Dell Latitude D820 + dell-m23 Dell XPS M1710, Dell Precision M90 + dell-m24 Dell Latitude 120L + dell-m25 Dell Inspiron E1505n + dell-m26 Dell Inspiron 1501 + dell-m27 Dell Inspiron E1705/9400 + gateway Gateway laptops with EAPD control + + STAC9205/9254 + ref Reference board + dell-m42 Dell (unknown) + dell-m43 Dell Precision + dell-m44 Dell Inspiron STAC9220/9221 ref Reference board 3stack D945 3stack 5stack D945 5stack + SPDIF - dell Dell XPS M1210 intel-mac-v1 Intel Mac Type 1 intel-mac-v2 Intel Mac Type 2 intel-mac-v3 Intel Mac Type 3 @@ -964,6 +995,10 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. macbook-pro Intel Mac Book Pro 2nd generation (eq. type 3) imac-intel Intel iMac (eq. type 2) imac-intel-20 Intel iMac (newer version) (eq. type 3) + dell-d81 Dell (unknown) + dell-d82 Dell (unknown) + dell-m81 Dell (unknown) + dell-m82 Dell XPS M1210 STAC9202/9250/9251 ref Reference board, base config @@ -975,6 +1010,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. ref Reference board 3stack D965 3stack 5stack D965 5stack + SPDIF + dell-3stack Dell Dimension E520 STAC9872 vaio Setup for VAIO FE550G/SZ110 @@ -989,6 +1025,9 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. subsystem ID (output of "lspci -nv") to ALSA BTS or alsa-devel ML (see the section "Links and Addresses"). + power_save and power_save_controller options are for power-saving + mode. See powersave.txt for details. + Note 2: If you get click noises on output, try the module option position_fix=1 or 2. position_fix=1 will use the SD_LPIB register value without FIFO size correction as the current @@ -1349,7 +1388,6 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. port - port number or -1 (disable) irq - IRQ number or -1 (disable) pnp - PnP detection - 0 = disable, 1 = enable (default) - uart_enter - Issue UART_ENTER command at open - bool, default = on This module supports multiple devices and PnP. @@ -1630,6 +1668,21 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. The power-management is supported. + Module snd-sc6000 + ----------------- + + Module for Gallant SC-6000 soundcard. + + port - Port # (0x220 or 0x240) + mss_port - MSS Port # (0x530 or 0xe80) + irq - IRQ # (5,7,9,10,11) + mpu_irq - MPU-401 IRQ # (5,7,9,10) ,0 - no MPU-401 irq + dma - DMA # (1,3,0) + + This module supports multiple cards. + + This card is also known as Audio Excel DSP 16 or Zoltrix AV302. + Module snd-sgalaxy ------------------ @@ -1650,9 +1703,11 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. Module for ENSONIQ SoundScape PnP cards. port - Port # (PnP setup) + wss_port - WSS Port # (PnP setup) irq - IRQ # (PnP setup) mpu_irq - MPU-401 IRQ # (PnP setup) dma - DMA # (PnP setup) + dma2 - 2nd DMA # (PnP setup, -1 to disable) This module supports multiple cards. ISA PnP must be enabled. You need sscape_ctl tool in alsa-tools package for loading @@ -1697,8 +1752,52 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. dma2 - DMA2 # for CS4232 PCM interface. isapnp - ISA PnP detection - 0 = disable, 1 = enable (default) + The below are options for wavefront_synth features: + wf_raw - Assume that we need to boot the OS (default:no) + If yes, then during driver loading, the state of the board is + ignored, and we reset the board and load the firmware anyway. + fx_raw - Assume that the FX process needs help (default:yes) + If false, we'll leave the FX processor in whatever state it is + when the driver is loaded. The default is to download the + microprogram and associated coefficients to set it up for + "default" operation, whatever that means. + debug_default - Debug parameters for card initialization + wait_usecs - How long to wait without sleeping, usecs + (default:150) + This magic number seems to give pretty optimal throughput + based on my limited experimentation. + If you want to play around with it and find a better value, be + my guest. Remember, the idea is to get a number that causes us + to just busy wait for as many WaveFront commands as possible, + without coming up with a number so large that we hog the whole + CPU. + Specifically, with this number, out of about 134,000 status + waits, only about 250 result in a sleep. + sleep_interval - How long to sleep when waiting for reply + (default: 100) + sleep_tries - How many times to try sleeping during a wait + (default: 50) + ospath - Pathname to processed ICS2115 OS firmware + (default:wavefront.os) + The path name of the ISC2115 OS firmware. In the recent + version, it's handled via firmware loader framework, so it + must be installed in the proper path, typically, + /lib/firmware. + reset_time - How long to wait for a reset to take effect + (default:2) + ramcheck_time - How many seconds to wait for the RAM test + (default:20) + osrun_time - How many seconds to wait for the ICS2115 OS + (default:10) + This module supports multiple cards and ISA PnP. + Note: the firmware file "wavefront.os" was located in the earlier + version in /etc. Now it's loaded via firmware loader, and + must be in the proper firmware path, such as /lib/firmware. + Copy (or symlink) the file appropriately if you get an error + regarding firmware downloading after upgrading the kernel. + Module snd-sonicvibes --------------------- diff --git a/Documentation/sound/alsa/CMIPCI.txt b/Documentation/sound/alsa/CMIPCI.txt index 4b2b1538705..16935c8561f 100644 --- a/Documentation/sound/alsa/CMIPCI.txt +++ b/Documentation/sound/alsa/CMIPCI.txt @@ -1,5 +1,5 @@ - Brief Notes on C-Media 8738/8338 Driver - ======================================= + Brief Notes on C-Media 8338/8738/8768/8770 Driver + ================================================= Takashi Iwai <tiwai@suse.de> @@ -209,10 +209,13 @@ In addition to the standard SB mixer, CM8x38 provides more functions. MIDI CONTROLLER --------------- -The MPU401-UART interface is disabled as default. You need to set -module option "mpu_port" with a valid I/O port address to enable the -MIDI support. The valid I/O ports are 0x300, 0x310, 0x320 and 0x330. -Choose the value which doesn't conflict with other cards. +With CMI8338 chips, the MPU401-UART interface is disabled as default. +You need to set the module option "mpu_port" to a valid I/O port address +to enable MIDI support. Valid I/O ports are 0x300, 0x310, 0x320 and +0x330. Choose a value that doesn't conflict with other cards. + +With CMI8738 and newer chips, the MIDI interface is enabled by default +and the driver automatically chooses a port address. There is _no_ hardware wavetable function on this chip (except for OPL3 synth below). @@ -230,6 +233,8 @@ Set "fm_port" module option for more cards. The output quality of FM OPL/3 is, however, very weird. I don't know why.. +CMI8768 and newer chips do not have the FM synth. + Joystick and Modem ------------------ diff --git a/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl b/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl index 74d3a35b59b..2c3fc3cb3b6 100644 --- a/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl +++ b/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl @@ -18,8 +18,8 @@ </affiliation> </author> - <date>November 17, 2005</date> - <edition>0.3.6</edition> + <date>September 10, 2007</date> + <edition>0.3.7</edition> <abstract> <para> @@ -405,8 +405,9 @@ /* definition of the chip-specific record */ struct mychip { struct snd_card *card; - // rest of implementation will be in the section - // "PCI Resource Managements" + /* rest of implementation will be in the section + * "PCI Resource Managements" + */ }; /* chip-specific destructor @@ -414,7 +415,7 @@ */ static int snd_mychip_free(struct mychip *chip) { - .... // will be implemented later... + .... /* will be implemented later... */ } /* component-destructor @@ -440,8 +441,9 @@ *rchip = NULL; - // check PCI availability here - // (see "PCI Resource Managements") + /* check PCI availability here + * (see "PCI Resource Managements") + */ .... /* allocate a chip-specific data with zero filled */ @@ -451,12 +453,13 @@ chip->card = card; - // rest of initialization here; will be implemented - // later, see "PCI Resource Managements" + /* rest of initialization here; will be implemented + * later, see "PCI Resource Managements" + */ .... - if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, - chip, &ops)) < 0) { + err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); + if (err < 0) { snd_mychip_free(chip); return err; } @@ -490,7 +493,8 @@ return -ENOMEM; /* (3) */ - if ((err = snd_mychip_create(card, pci, &chip)) < 0) { + err = snd_mychip_create(card, pci, &chip); + if (err < 0) { snd_card_free(card); return err; } @@ -502,10 +506,11 @@ card->shortname, chip->ioport, chip->irq); /* (5) */ - .... // implemented later + .... /* implemented later */ /* (6) */ - if ((err = snd_card_register(card)) < 0) { + err = snd_card_register(card); + if (err < 0) { snd_card_free(card); return err; } @@ -605,7 +610,8 @@ <![CDATA[ struct mychip *chip; .... - if ((err = snd_mychip_create(card, pci, &chip)) < 0) { + err = snd_mychip_create(card, pci, &chip); + if (err < 0) { snd_card_free(card); return err; } @@ -666,7 +672,8 @@ <informalexample> <programlisting> <![CDATA[ - if ((err = snd_card_register(card)) < 0) { + err = snd_card_register(card); + if (err < 0) { snd_card_free(card); return err; } @@ -1091,7 +1098,7 @@ static int snd_mychip_free(struct mychip *chip) { /* disable hardware here if any */ - .... // (not implemented in this document) + .... /* (not implemented in this document) */ /* release the irq */ if (chip->irq >= 0) @@ -1119,7 +1126,8 @@ *rchip = NULL; /* initialize the PCI entry */ - if ((err = pci_enable_device(pci)) < 0) + err = pci_enable_device(pci); + if (err < 0) return err; /* check PCI availability (28bit DMA) */ if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 || @@ -1141,7 +1149,8 @@ chip->irq = -1; /* (1) PCI resource allocation */ - if ((err = pci_request_regions(pci, "My Chip")) < 0) { + err = pci_request_regions(pci, "My Chip"); + if (err < 0) { kfree(chip); pci_disable_device(pci); return err; @@ -1156,10 +1165,10 @@ chip->irq = pci->irq; /* (2) initialization of the chip hardware */ - .... // (not implemented in this document) + .... /* (not implemented in this document) */ - if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, - chip, &ops)) < 0) { + err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); + if (err < 0) { snd_mychip_free(chip); return err; } @@ -1233,7 +1242,8 @@ <informalexample> <programlisting> <![CDATA[ - if ((err = pci_enable_device(pci)) < 0) + err = pci_enable_device(pci); + if (err < 0) return err; if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 || pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) { @@ -1294,7 +1304,8 @@ <informalexample> <programlisting> <![CDATA[ - if ((err = pci_request_regions(pci, "My Chip")) < 0) { + err = pci_request_regions(pci, "My Chip"); + if (err < 0) { kfree(chip); pci_disable_device(pci); return err; @@ -1322,7 +1333,7 @@ <programlisting> <![CDATA[ if (request_irq(pci->irq, snd_mychip_interrupt, - IRQF_DISABLED|IRQF_SHARED, "My Chip", chip)) { + IRQF_SHARED, "My Chip", chip)) { printk(KERN_ERR "cannot grab irq %d\n", pci->irq); snd_mychip_free(chip); return -EBUSY; @@ -1773,7 +1784,8 @@ struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw = snd_mychip_playback_hw; - // more hardware-initialization will be done here + /* more hardware-initialization will be done here */ + .... return 0; } @@ -1781,7 +1793,8 @@ static int snd_mychip_playback_close(struct snd_pcm_substream *substream) { struct mychip *chip = snd_pcm_substream_chip(substream); - // the hardware-specific codes will be here + /* the hardware-specific codes will be here */ + .... return 0; } @@ -1793,7 +1806,8 @@ struct snd_pcm_runtime *runtime = substream->runtime; runtime->hw = snd_mychip_capture_hw; - // more hardware-initialization will be done here + /* more hardware-initialization will be done here */ + .... return 0; } @@ -1801,7 +1815,8 @@ static int snd_mychip_capture_close(struct snd_pcm_substream *substream) { struct mychip *chip = snd_pcm_substream_chip(substream); - // the hardware-specific codes will be here + /* the hardware-specific codes will be here */ + .... return 0; } @@ -1844,10 +1859,12 @@ { switch (cmd) { case SNDRV_PCM_TRIGGER_START: - // do something to start the PCM engine + /* do something to start the PCM engine */ + .... break; case SNDRV_PCM_TRIGGER_STOP: - // do something to stop the PCM engine + /* do something to stop the PCM engine */ + .... break; default: return -EINVAL; @@ -1900,8 +1917,8 @@ struct snd_pcm *pcm; int err; - if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, - &pcm)) < 0) + err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); + if (err < 0) return err; pcm->private_data = chip; strcpy(pcm->name, "My Chip"); @@ -1939,8 +1956,8 @@ struct snd_pcm *pcm; int err; - if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, - &pcm)) < 0) + err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); + if (err < 0) return err; pcm->private_data = chip; strcpy(pcm->name, "My Chip"); @@ -2097,7 +2114,7 @@ struct mychip *chip = snd_pcm_chip(pcm); /* free your own data */ kfree(chip->my_private_pcm_data); - // do what you like else + /* do what you like else */ .... } @@ -2884,10 +2901,10 @@ struct _snd_pcm_runtime { <![CDATA[ switch (cmd) { case SNDRV_PCM_TRIGGER_START: - // do something to start the PCM engine + /* do something to start the PCM engine */ break; case SNDRV_PCM_TRIGGER_STOP: - // do something to stop the PCM engine + /* do something to stop the PCM engine */ break; default: return -EINVAL; @@ -3071,7 +3088,7 @@ struct _snd_pcm_runtime { spin_unlock(&chip->lock); snd_pcm_period_elapsed(chip->substream); spin_lock(&chip->lock); - // acknowledge the interrupt if necessary + /* acknowledge the interrupt if necessary */ } .... spin_unlock(&chip->lock); @@ -3134,7 +3151,7 @@ struct _snd_pcm_runtime { snd_pcm_period_elapsed(substream); spin_lock(&chip->lock); } - // acknowledge the interrupt if necessary + /* acknowledge the interrupt if necessary */ } .... spin_unlock(&chip->lock); @@ -3456,6 +3473,13 @@ struct _snd_pcm_runtime { </para> <para> + The <structfield>tlv</structfield> field can be used to provide + metadata about the control; see the + <link linkend="control-interface-tlv"> + <citetitle>Metadata</citetitle></link> subsection. + </para> + + <para> The other three are <link linkend="control-interface-callbacks"><citetitle> callback functions</citetitle></link>. @@ -3604,7 +3628,7 @@ struct _snd_pcm_runtime { <title>Example of info callback</title> <programlisting> <![CDATA[ - static int snd_myctl_info(struct snd_kcontrol *kcontrol, + static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; @@ -3639,7 +3663,7 @@ struct _snd_pcm_runtime { <informalexample> <programlisting> <![CDATA[ - static int snd_myctl_info(struct snd_kcontrol *kcontrol, + static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static char *texts[4] = { @@ -3658,6 +3682,16 @@ struct _snd_pcm_runtime { </programlisting> </informalexample> </para> + + <para> + Some common info callbacks are prepared for easy use: + <function>snd_ctl_boolean_mono_info()</function> and + <function>snd_ctl_boolean_stereo_info()</function>. + Obviously, the former is an info callback for a mono channel + boolean item, just like <function>snd_myctl_mono_info</function> + above, and the latter is for a stereo channel boolean item. + </para> + </section> <section id="control-interface-callbacks-get"> @@ -3794,7 +3828,8 @@ struct _snd_pcm_runtime { <informalexample> <programlisting> <![CDATA[ - if ((err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip))) < 0) + err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip)); + if (err < 0) return err; ]]> </programlisting> @@ -3843,6 +3878,56 @@ struct _snd_pcm_runtime { </para> </section> + <section id="control-interface-tlv"> + <title>Metadata</title> + <para> + To provide information about the dB values of a mixer control, use + on of the <constant>DECLARE_TLV_xxx</constant> macros from + <filename><sound/tlv.h></filename> to define a variable + containing this information, set the<structfield>tlv.p + </structfield> field to point to this variable, and include the + <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ</constant> flag in the + <structfield>access</structfield> field; like this: + <informalexample> + <programlisting> +<![CDATA[ + static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0); + + static struct snd_kcontrol_new my_control __devinitdata = { + ... + .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | + SNDRV_CTL_ELEM_ACCESS_TLV_READ, + ... + .tlv.p = db_scale_my_control, + }; +]]> + </programlisting> + </informalexample> + </para> + + <para> + The <function>DECLARE_TLV_DB_SCALE</function> macro defines + information about a mixer control where each step in the control's + value changes the dB value by a constant dB amount. + The first parameter is the name of the variable to be defined. + The second parameter is the minimum value, in units of 0.01 dB. + The third parameter is the step size, in units of 0.01 dB. + Set the fourth parameter to 1 if the minimum value actually mutes + the control. + </para> + + <para> + The <function>DECLARE_TLV_DB_LINEAR</function> macro defines + information about a mixer control where the control's value affects + the output linearly. + The first parameter is the name of the variable to be defined. + The second parameter is the minimum value, in units of 0.01 dB. + The third parameter is the maximum value, in units of 0.01 dB. + If the minimum value mutes the control, set the second parameter to + <constant>TLV_DB_GAIN_MUTE</constant>. + </para> + </section> + </chapter> @@ -3880,7 +3965,7 @@ struct _snd_pcm_runtime { { struct mychip *chip = ac97->private_data; .... - // read a register value here from the codec + /* read a register value here from the codec */ return the_register_value; } @@ -3889,7 +3974,7 @@ struct _snd_pcm_runtime { { struct mychip *chip = ac97->private_data; .... - // write the given register value to the codec + /* write the given register value to the codec */ } static int snd_mychip_ac97(struct mychip *chip) @@ -3902,7 +3987,8 @@ struct _snd_pcm_runtime { .read = snd_mychip_ac97_read, }; - if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus)) < 0) + err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus); + if (err < 0) return err; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; @@ -4447,10 +4533,10 @@ struct _snd_pcm_runtime { <informalexample> <programlisting> <![CDATA[ - struct list_head *list; struct snd_rawmidi_substream *substream; - list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) { - substream = list_entry(list, struct snd_rawmidi_substream, list); + list_for_each_entry(substream, + &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams, + list { sprintf(substream->name, "My MIDI Port %d", substream->number + 1); } /* same for SNDRV_RAWMIDI_STREAM_INPUT */ diff --git a/Documentation/sound/alsa/OSS-Emulation.txt b/Documentation/sound/alsa/OSS-Emulation.txt index bfa0c9aacb4..022aaeb0e9d 100644 --- a/Documentation/sound/alsa/OSS-Emulation.txt +++ b/Documentation/sound/alsa/OSS-Emulation.txt @@ -303,10 +303,3 @@ ICE1712 supports only the unconventional format, interleaved the buffer as the conventional (mono or 2-channels, 8 or 16bit) format on OSS. -USB devices ------------ -Some USB devices support only 24bit format packed in 3bytes. This -format is not supported by OSS and no conversion is provided by kernel -OSS emulation. You can use the user-space OSS emulation via libaoss -instead. - diff --git a/Documentation/sound/alsa/hda_codec.txt b/Documentation/sound/alsa/hda_codec.txt index 4eaae2a4553..8e1b0252669 100644 --- a/Documentation/sound/alsa/hda_codec.txt +++ b/Documentation/sound/alsa/hda_codec.txt @@ -49,6 +49,9 @@ struct hda_bus_ops { unsigned int verb, unsigned int parm); unsigned int (*get_response)(struct hda_codec *codec); void (*private_free)(struct hda_bus *); +#ifdef CONFIG_SND_HDA_POWER_SAVE + void (*pm_notify)(struct hda_codec *codec); +#endif }; The command callback is called when the codec module needs to send a @@ -56,9 +59,16 @@ VERB to the controller. It's always a single command. The get_response callback is called when the codec requires the answer for the last command. These two callbacks are mandatory and have to be given. -The last, private_free callback, is optional. It's called in the +The third, private_free callback, is optional. It's called in the destructor to release any necessary data in the lowlevel driver. +The pm_notify callback is available only with +CONFIG_SND_HDA_POWER_SAVE kconfig. It's called when the codec needs +to power up or may power down. The controller should check the all +belonging codecs on the bus whether they are actually powered off +(check codec->power_on), and optionally the driver may power down the +contoller side, too. + The bus instance is created via snd_hda_bus_new(). You need to pass the card instance, the template, and the pointer to store the resultant bus instance. @@ -86,10 +96,8 @@ resultant codec instance (can be NULL if not needed). The codec is stored in a linked list of bus instance. You can follow the codec list like: - struct list_head *p; struct hda_codec *codec; - list_for_each(p, &bus->codec_list) { - codec = list_entry(p, struct hda_codec, list); + list_for_each_entry(codec, &bus->codec_list, list) { ... } @@ -100,10 +108,15 @@ initialization sequence is called when the controls are built later. Codec Access ============ -To access codec, use snd_codec_read() and snd_codec_write(). +To access codec, use snd_hda_codec_read() and snd_hda_codec_write(). snd_hda_param_read() is for reading parameters. For writing a sequence of verbs, use snd_hda_sequence_write(). +There are variants of cached read/write, snd_hda_codec_write_cache(), +snd_hda_sequence_write_cache(). These are used for recording the +register states for the power-mangement resume. When no PM is needed, +these are equivalent with non-cached version. + To retrieve the number of sub nodes connected to the given node, use snd_hda_get_sub_nodes(). The connection list can be obtained via snd_hda_get_connections() call. @@ -239,6 +252,10 @@ set the codec->patch_ops field. This is defined as below: int (*suspend)(struct hda_codec *codec, pm_message_t state); int (*resume)(struct hda_codec *codec); #endif + #ifdef CONFIG_SND_HDA_POWER_SAVE + int (*check_power_status)(struct hda_codec *codec, + hda_nid_t nid); + #endif }; The build_controls callback is called from snd_hda_build_controls(). @@ -251,6 +268,18 @@ The unsol_event callback is called when an unsolicited event is received. The suspend and resume callbacks are for power management. +They can be NULL if no special sequence is required. When the resume +callback is NULL, the driver calls the init callback and resumes the +registers from the cache. If other handling is needed, you'd need to +write your own resume callback. There, the amp values can be resumed +via + void snd_hda_codec_resume_amp(struct hda_codec *codec); +and the other codec registers via + void snd_hda_codec_resume_cache(struct hda_codec *codec); + +The check_power_status callback is called when the amp value of the +given widget NID is changed. The codec code can turn on/off the power +appropriately from this information. Each entry can be NULL if not necessary to be called. @@ -267,8 +296,7 @@ Digital I/O =========== Call snd_hda_create_spdif_out_ctls() from the patch to create controls -related with SPDIF out. In the patch resume callback, call -snd_hda_resume_spdif(). +related with SPDIF out. Helper Functions @@ -284,12 +312,7 @@ as a module parameter, and PCI subsystem IDs. If the matching entry is found, it returns the config field value. snd_hda_add_new_ctls() can be used to create and add control entries. -Pass the zero-terminated array of struct snd_kcontrol_new. The same array -can be passed to snd_hda_resume_ctls() for resume. -Note that this will call control->put callback of these entries. So, -put callback should check codec->in_resume and force to restore the -given value if it's non-zero even if the value is identical with the -cached value. +Pass the zero-terminated array of struct snd_kcontrol_new Macros HDA_CODEC_VOLUME(), HDA_CODEC_MUTE() and their variables can be used for the entry of struct snd_kcontrol_new. diff --git a/Documentation/sound/alsa/powersave.txt b/Documentation/sound/alsa/powersave.txt new file mode 100644 index 00000000000..9657e809922 --- /dev/null +++ b/Documentation/sound/alsa/powersave.txt @@ -0,0 +1,41 @@ +Notes on Power-Saving Mode +========================== + +AC97 and HD-audio drivers have the automatic power-saving mode. +This feature is enabled via Kconfig CONFIG_SND_AC97_POWER_SAVE +and CONFIG_SND_HDA_POWER_SAVE options, respectively. + +With the automatic power-saving, the driver turns off the codec power +appropriately when no operation is required. When no applications use +the device and/or no analog loopback is set, the power disablement is +done fully or partially. It'll save a certain power consumption, thus +good for laptops (even for desktops). + +The time-out for automatic power-off can be specified via power_save +module option of snd-ac97-codec and snd-hda-intel modules. Specify +the time-out value in seconds. 0 means to disable the automatic +power-saving. The default value of timeout is given via +CONFIG_SND_AC97_POWER_SAVE_DEFAULT and +CONFIG_SND_HDA_POWER_SAVE_DEFAULT Kconfig options. Setting this to 1 +(the minimum value) isn't recommended because many applications try to +reopen the device frequently. 10 would be a good choice for normal +operations. + +The power_save option is exported as writable. This means you can +adjust the value via sysfs on the fly. For example, to turn on the +automatic power-save mode with 10 seconds, write to +/sys/modules/snd_ac97_codec/parameters/power_save (usually as root): + + # echo 10 > /sys/modules/snd_ac97_codec/parameters/power_save + + +Note that you might hear click noise/pop when changing the power +state. Also, it often takes certain time to wake up from the +power-down to the active state. These are often hardly to fix, so +don't report extra bug reports unless you have a fix patch ;-) + +For HD-audio interface, there is another module option, +power_save_controller. This enables/disables the power-save mode of +the controller side. Setting this on may reduce a bit more power +consumption, but might result in longer wake-up time and click noise. +Try to turn it off when you experience such a thing too often. diff --git a/Documentation/spi/spi-summary b/Documentation/spi/spi-summary index 76ea6c837be..8861e47e5a2 100644 --- a/Documentation/spi/spi-summary +++ b/Documentation/spi/spi-summary @@ -156,21 +156,29 @@ using the driver model to connect controller and protocol drivers using device tables provided by board specific initialization code. SPI shows up in sysfs in several locations: + /sys/devices/.../CTLR ... physical node for a given SPI controller + /sys/devices/.../CTLR/spiB.C ... spi_device on bus "B", chipselect C, accessed through CTLR. + /sys/bus/spi/devices/spiB.C ... symlink to that physical + .../CTLR/spiB.C device + /sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver that should be used with this device (for hotplug/coldplug) - /sys/bus/spi/devices/spiB.C ... symlink to the physical - spiB.C device - /sys/bus/spi/drivers/D ... driver for one or more spi*.* devices - /sys/class/spi_master/spiB ... class device for the controller - managing bus "B". All the spiB.* devices share the same + /sys/class/spi_master/spiB ... symlink (or actual device node) to + a logical node which could hold class related state for the + controller managing bus "B". All spiB.* devices share one physical SPI bus segment, with SCLK, MOSI, and MISO. +Note that the actual location of the controller's class state depends +on whether you enabled CONFIG_SYSFS_DEPRECATED or not. At this time, +the only class-specific state is the bus number ("B" in "spiB"), so +those /sys/class entries are only useful to quickly identify busses. + How does board-specific init code declare SPI devices? ------------------------------------------------------ @@ -337,7 +345,8 @@ SPI protocol drivers somewhat resemble platform device drivers: The driver core will autmatically attempt to bind this driver to any SPI device whose board_info gave a modalias of "CHIP". Your probe() code -might look like this unless you're creating a class_device: +might look like this unless you're creating a device which is managing +a bus (appearing under /sys/class/spi_master). static int __devinit CHIP_probe(struct spi_device *spi) { @@ -442,7 +451,7 @@ An SPI controller will probably be registered on the platform_bus; write a driver to bind to the device, whichever bus is involved. The main task of this type of driver is to provide an "spi_master". -Use spi_alloc_master() to allocate the master, and class_get_devdata() +Use spi_alloc_master() to allocate the master, and spi_master_get_devdata() to get the driver-private data allocated for that device. struct spi_master *master; @@ -452,7 +461,7 @@ to get the driver-private data allocated for that device. if (!master) return -ENODEV; - c = class_get_devdata(&master->cdev); + c = spi_master_get_devdata(master); The driver will initialize the fields of that spi_master, including the bus number (maybe the same as the platform device ID) and three methods diff --git a/Documentation/spi/spidev_test.c b/Documentation/spi/spidev_test.c index 218e8621529..cf0e3ce0d52 100644 --- a/Documentation/spi/spidev_test.c +++ b/Documentation/spi/spidev_test.c @@ -29,7 +29,7 @@ static void pabort(const char *s) abort(); } -static char *device = "/dev/spidev1.1"; +static const char *device = "/dev/spidev1.1"; static uint8_t mode; static uint8_t bits = 8; static uint32_t speed = 500000; @@ -69,7 +69,7 @@ static void transfer(int fd) puts(""); } -void print_usage(char *prog) +void print_usage(const char *prog) { printf("Usage: %s [-DsbdlHOLC3]\n", prog); puts(" -D --device device to use (default /dev/spidev1.1)\n" @@ -88,7 +88,7 @@ void print_usage(char *prog) void parse_opts(int argc, char *argv[]) { while (1) { - static struct option lopts[] = { + static const struct option lopts[] = { { "device", 1, 0, 'D' }, { "speed", 1, 0, 's' }, { "delay", 1, 0, 'd' }, diff --git a/Documentation/vm/numa_memory_policy.txt b/Documentation/vm/numa_memory_policy.txt index 8242f52d0f2..dd498649799 100644 --- a/Documentation/vm/numa_memory_policy.txt +++ b/Documentation/vm/numa_memory_policy.txt @@ -302,31 +302,30 @@ MEMORY POLICIES AND CPUSETS Memory policies work within cpusets as described above. For memory policies that require a node or set of nodes, the nodes are restricted to the set of -nodes whose memories are allowed by the cpuset constraints. If the -intersection of the set of nodes specified for the policy and the set of nodes -allowed by the cpuset is the empty set, the policy is considered invalid and -cannot be installed. +nodes whose memories are allowed by the cpuset constraints. If the nodemask +specified for the policy contains nodes that are not allowed by the cpuset, or +the intersection of the set of nodes specified for the policy and the set of +nodes with memory is the empty set, the policy is considered invalid +and cannot be installed. The interaction of memory policies and cpusets can be problematic for a couple of reasons: -1) the memory policy APIs take physical node id's as arguments. However, the - memory policy APIs do not provide a way to determine what nodes are valid - in the context where the application is running. An application MAY consult - the cpuset file system [directly or via an out of tree, and not generally - available, libcpuset API] to obtain this information, but then the - application must be aware that it is running in a cpuset and use what are - intended primarily as administrative APIs. - - However, as long as the policy specifies at least one node that is valid - in the controlling cpuset, the policy can be used. +1) the memory policy APIs take physical node id's as arguments. As mentioned + above, it is illegal to specify nodes that are not allowed in the cpuset. + The application must query the allowed nodes using the get_mempolicy() + API with the MPOL_F_MEMS_ALLOWED flag to determine the allowed nodes and + restrict itself to those nodes. However, the resources available to a + cpuset can be changed by the system administrator, or a workload manager + application, at any time. So, a task may still get errors attempting to + specify policy nodes, and must query the allowed memories again. 2) when tasks in two cpusets share access to a memory region, such as shared memory segments created by shmget() of mmap() with the MAP_ANONYMOUS and MAP_SHARED flags, and any of the tasks install shared policy on the region, only nodes whose memories are allowed in both cpusets may be used in the - policies. Again, obtaining this information requires "stepping outside" - the memory policy APIs, as well as knowing in what cpusets other task might - be attaching to the shared region, to use the cpuset information. + policies. Obtaining this information requires "stepping outside" the + memory policy APIs to use the cpuset information and requires that one + know in what cpusets other task might be attaching to the shared region. Furthermore, if the cpusets' allowed memory sets are disjoint, "local" allocation is the only valid policy. diff --git a/Documentation/x86_64/mm.txt b/Documentation/x86_64/mm.txt index f42798ed1c5..b89b6d2bebf 100644 --- a/Documentation/x86_64/mm.txt +++ b/Documentation/x86_64/mm.txt @@ -9,6 +9,7 @@ ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole ffff810000000000 - ffffc0ffffffffff (=46 bits) direct mapping of all phys. memory ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space +ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB) ... unused hole ... ffffffff80000000 - ffffffff82800000 (=40 MB) kernel text mapping, from phys 0 ... unused hole ... |