aboutsummaryrefslogtreecommitdiff
path: root/arch/powerpc/math-emu/sfp-machine.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/math-emu/sfp-machine.h')
-rw-r--r--arch/powerpc/math-emu/sfp-machine.h377
1 files changed, 0 insertions, 377 deletions
diff --git a/arch/powerpc/math-emu/sfp-machine.h b/arch/powerpc/math-emu/sfp-machine.h
deleted file mode 100644
index 4b17d83cfcd..00000000000
--- a/arch/powerpc/math-emu/sfp-machine.h
+++ /dev/null
@@ -1,377 +0,0 @@
-/* Machine-dependent software floating-point definitions. PPC version.
- Copyright (C) 1997 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Library General Public License as
- published by the Free Software Foundation; either version 2 of the
- License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Library General Public License for more details.
-
- You should have received a copy of the GNU Library General Public
- License along with the GNU C Library; see the file COPYING.LIB. If
- not, write to the Free Software Foundation, Inc.,
- 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-
- Actually, this is a PPC (32bit) version, written based on the
- i386, sparc, and sparc64 versions, by me,
- Peter Maydell (pmaydell@chiark.greenend.org.uk).
- Comments are by and large also mine, although they may be inaccurate.
-
- In picking out asm fragments I've gone with the lowest common
- denominator, which also happens to be the hardware I have :->
- That is, a SPARC without hardware multiply and divide.
- */
-
-/* basic word size definitions */
-#define _FP_W_TYPE_SIZE 32
-#define _FP_W_TYPE unsigned long
-#define _FP_WS_TYPE signed long
-#define _FP_I_TYPE long
-
-#define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2))
-#define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1))
-#define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2))
-
-/* You can optionally code some things like addition in asm. For
- * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't
- * then you get a fragment of C code [if you change an #ifdef 0
- * in op-2.h] or a call to add_ssaaaa (see below).
- * Good places to look for asm fragments to use are gcc and glibc.
- * gcc's longlong.h is useful.
- */
-
-/* We need to know how to multiply and divide. If the host word size
- * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which
- * codes the multiply with whatever gcc does to 'a * b'.
- * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm
- * function that can multiply two 1W values and get a 2W result.
- * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which
- * does bitshifting to avoid overflow.
- * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size
- * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or
- * _FP_DIV_HELP_ldiv (see op-1.h).
- * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W).
- * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd
- * to do this.]
- * In general, 'n' is the number of words required to hold the type,
- * and 't' is either S, D or Q for single/double/quad.
- * -- PMM
- */
-/* Example: SPARC64:
- * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_imm(S,R,X,Y)
- * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm)
- * #define _FP_MUL_MEAT_Q(R,X,Y) _FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm)
- *
- * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm)
- * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y)
- * #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv_64(Q,R,X,Y)
- *
- * Example: i386:
- * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64)
- * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64)
- *
- * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32)
- * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
- */
-
-#define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,umul_ppmm)
-#define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,umul_ppmm)
-
-#define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y)
-#define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
-
-/* These macros define what NaN looks like. They're supposed to expand to
- * a comma-separated set of 32bit unsigned ints that encode NaN.
- */
-#define _FP_NANFRAC_S _FP_QNANBIT_S
-#define _FP_NANFRAC_D _FP_QNANBIT_D, 0
-#define _FP_NANFRAC_Q _FP_QNANBIT_Q, 0, 0, 0
-
-#define _FP_KEEPNANFRACP 1
-
-/* This macro appears to be called when both X and Y are NaNs, and
- * has to choose one and copy it to R. i386 goes for the larger of the
- * two, sparc64 just picks Y. I don't understand this at all so I'll
- * go with sparc64 because it's shorter :-> -- PMM
- */
-#define _FP_CHOOSENAN(fs, wc, R, X, Y) \
- do { \
- R##_s = Y##_s; \
- _FP_FRAC_COPY_##wc(R,Y); \
- R##_c = FP_CLS_NAN; \
- } while (0)
-
-
-extern void fp_unpack_d(long *, unsigned long *, unsigned long *,
- long *, long *, void *);
-extern int fp_pack_d(void *, long, unsigned long, unsigned long, long, long);
-extern int fp_pack_ds(void *, long, unsigned long, unsigned long, long, long);
-
-#define __FP_UNPACK_RAW_1(fs, X, val) \
- do { \
- union _FP_UNION_##fs *_flo = \
- (union _FP_UNION_##fs *)val; \
- \
- X##_f = _flo->bits.frac; \
- X##_e = _flo->bits.exp; \
- X##_s = _flo->bits.sign; \
- } while (0)
-
-#define __FP_UNPACK_RAW_2(fs, X, val) \
- do { \
- union _FP_UNION_##fs *_flo = \
- (union _FP_UNION_##fs *)val; \
- \
- X##_f0 = _flo->bits.frac0; \
- X##_f1 = _flo->bits.frac1; \
- X##_e = _flo->bits.exp; \
- X##_s = _flo->bits.sign; \
- } while (0)
-
-#define __FP_UNPACK_S(X,val) \
- do { \
- __FP_UNPACK_RAW_1(S,X,val); \
- _FP_UNPACK_CANONICAL(S,1,X); \
- } while (0)
-
-#define __FP_UNPACK_D(X,val) \
- fp_unpack_d(&X##_s, &X##_f1, &X##_f0, &X##_e, &X##_c, val)
-
-#define __FP_PACK_RAW_1(fs, val, X) \
- do { \
- union _FP_UNION_##fs *_flo = \
- (union _FP_UNION_##fs *)val; \
- \
- _flo->bits.frac = X##_f; \
- _flo->bits.exp = X##_e; \
- _flo->bits.sign = X##_s; \
- } while (0)
-
-#define __FP_PACK_RAW_2(fs, val, X) \
- do { \
- union _FP_UNION_##fs *_flo = \
- (union _FP_UNION_##fs *)val; \
- \
- _flo->bits.frac0 = X##_f0; \
- _flo->bits.frac1 = X##_f1; \
- _flo->bits.exp = X##_e; \
- _flo->bits.sign = X##_s; \
- } while (0)
-
-#include <linux/kernel.h>
-#include <linux/sched.h>
-
-#define __FPU_FPSCR (current->thread.fpscr.val)
-
-/* We only actually write to the destination register
- * if exceptions signalled (if any) will not trap.
- */
-#define __FPU_ENABLED_EXC \
-({ \
- (__FPU_FPSCR >> 3) & 0x1f; \
-})
-
-#define __FPU_TRAP_P(bits) \
- ((__FPU_ENABLED_EXC & (bits)) != 0)
-
-#define __FP_PACK_S(val,X) \
-({ int __exc = _FP_PACK_CANONICAL(S,1,X); \
- if(!__exc || !__FPU_TRAP_P(__exc)) \
- __FP_PACK_RAW_1(S,val,X); \
- __exc; \
-})
-
-#define __FP_PACK_D(val,X) \
- fp_pack_d(val, X##_s, X##_f1, X##_f0, X##_e, X##_c)
-
-#define __FP_PACK_DS(val,X) \
- fp_pack_ds(val, X##_s, X##_f1, X##_f0, X##_e, X##_c)
-
-/* Obtain the current rounding mode. */
-#define FP_ROUNDMODE \
-({ \
- __FPU_FPSCR & 0x3; \
-})
-
-/* the asm fragments go here: all these are taken from glibc-2.0.5's
- * stdlib/longlong.h
- */
-
-#include <linux/types.h>
-#include <asm/byteorder.h>
-
-/* add_ssaaaa is used in op-2.h and should be equivalent to
- * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al))
- * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
- * high_addend_2, low_addend_2) adds two UWtype integers, composed by
- * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
- * respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow
- * (i.e. carry out) is not stored anywhere, and is lost.
- */
-#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
- do { \
- if (__builtin_constant_p (bh) && (bh) == 0) \
- __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2" \
- : "=r" ((USItype)(sh)), \
- "=&r" ((USItype)(sl)) \
- : "%r" ((USItype)(ah)), \
- "%r" ((USItype)(al)), \
- "rI" ((USItype)(bl))); \
- else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \
- __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2" \
- : "=r" ((USItype)(sh)), \
- "=&r" ((USItype)(sl)) \
- : "%r" ((USItype)(ah)), \
- "%r" ((USItype)(al)), \
- "rI" ((USItype)(bl))); \
- else \
- __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3" \
- : "=r" ((USItype)(sh)), \
- "=&r" ((USItype)(sl)) \
- : "%r" ((USItype)(ah)), \
- "r" ((USItype)(bh)), \
- "%r" ((USItype)(al)), \
- "rI" ((USItype)(bl))); \
- } while (0)
-
-/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to
- * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al))
- * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
- * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
- * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
- * LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE
- * and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere,
- * and is lost.
- */
-#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
- do { \
- if (__builtin_constant_p (ah) && (ah) == 0) \
- __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2" \
- : "=r" ((USItype)(sh)), \
- "=&r" ((USItype)(sl)) \
- : "r" ((USItype)(bh)), \
- "rI" ((USItype)(al)), \
- "r" ((USItype)(bl))); \
- else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0) \
- __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2" \
- : "=r" ((USItype)(sh)), \
- "=&r" ((USItype)(sl)) \
- : "r" ((USItype)(bh)), \
- "rI" ((USItype)(al)), \
- "r" ((USItype)(bl))); \
- else if (__builtin_constant_p (bh) && (bh) == 0) \
- __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2" \
- : "=r" ((USItype)(sh)), \
- "=&r" ((USItype)(sl)) \
- : "r" ((USItype)(ah)), \
- "rI" ((USItype)(al)), \
- "r" ((USItype)(bl))); \
- else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \
- __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2" \
- : "=r" ((USItype)(sh)), \
- "=&r" ((USItype)(sl)) \
- : "r" ((USItype)(ah)), \
- "rI" ((USItype)(al)), \
- "r" ((USItype)(bl))); \
- else \
- __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2" \
- : "=r" ((USItype)(sh)), \
- "=&r" ((USItype)(sl)) \
- : "r" ((USItype)(ah)), \
- "r" ((USItype)(bh)), \
- "rI" ((USItype)(al)), \
- "r" ((USItype)(bl))); \
- } while (0)
-
-/* asm fragments for mul and div */
-
-/* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two
- * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype
- * word product in HIGH_PROD and LOW_PROD.
- */
-#define umul_ppmm(ph, pl, m0, m1) \
- do { \
- USItype __m0 = (m0), __m1 = (m1); \
- __asm__ ("mulhwu %0,%1,%2" \
- : "=r" ((USItype)(ph)) \
- : "%r" (__m0), \
- "r" (__m1)); \
- (pl) = __m0 * __m1; \
- } while (0)
-
-/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
- * denominator) divides a UDWtype, composed by the UWtype integers
- * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
- * in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less
- * than DENOMINATOR for correct operation. If, in addition, the most
- * significant bit of DENOMINATOR must be 1, then the pre-processor symbol
- * UDIV_NEEDS_NORMALIZATION is defined to 1.
- */
-#define udiv_qrnnd(q, r, n1, n0, d) \
- do { \
- UWtype __d1, __d0, __q1, __q0, __r1, __r0, __m; \
- __d1 = __ll_highpart (d); \
- __d0 = __ll_lowpart (d); \
- \
- __r1 = (n1) % __d1; \
- __q1 = (n1) / __d1; \
- __m = (UWtype) __q1 * __d0; \
- __r1 = __r1 * __ll_B | __ll_highpart (n0); \
- if (__r1 < __m) \
- { \
- __q1--, __r1 += (d); \
- if (__r1 >= (d)) /* we didn't get carry when adding to __r1 */ \
- if (__r1 < __m) \
- __q1--, __r1 += (d); \
- } \
- __r1 -= __m; \
- \
- __r0 = __r1 % __d1; \
- __q0 = __r1 / __d1; \
- __m = (UWtype) __q0 * __d0; \
- __r0 = __r0 * __ll_B | __ll_lowpart (n0); \
- if (__r0 < __m) \
- { \
- __q0--, __r0 += (d); \
- if (__r0 >= (d)) \
- if (__r0 < __m) \
- __q0--, __r0 += (d); \
- } \
- __r0 -= __m; \
- \
- (q) = (UWtype) __q1 * __ll_B | __q0; \
- (r) = __r0; \
- } while (0)
-
-#define UDIV_NEEDS_NORMALIZATION 1
-
-#define abort() \
- return 0
-
-#ifdef __BIG_ENDIAN
-#define __BYTE_ORDER __BIG_ENDIAN
-#else
-#define __BYTE_ORDER __LITTLE_ENDIAN
-#endif
-
-/* Exception flags. */
-#define EFLAG_INVALID (1 << (31 - 2))
-#define EFLAG_OVERFLOW (1 << (31 - 3))
-#define EFLAG_UNDERFLOW (1 << (31 - 4))
-#define EFLAG_DIVZERO (1 << (31 - 5))
-#define EFLAG_INEXACT (1 << (31 - 6))
-
-#define EFLAG_VXSNAN (1 << (31 - 7))
-#define EFLAG_VXISI (1 << (31 - 8))
-#define EFLAG_VXIDI (1 << (31 - 9))
-#define EFLAG_VXZDZ (1 << (31 - 10))
-#define EFLAG_VXIMZ (1 << (31 - 11))
-#define EFLAG_VXVC (1 << (31 - 12))
-#define EFLAG_VXSOFT (1 << (31 - 21))
-#define EFLAG_VXSQRT (1 << (31 - 22))
-#define EFLAG_VXCVI (1 << (31 - 23))